ISO7730, ISO7731 SLLSES0H - SEPTEMBER 2016 - REVISED MARCH 2023 # ISO773x High-Speed, Robust-EMC Reinforced and Basic Triple-Channel Digital Isolators #### 1 Features - 100 Mbps data rate - Robust isolation barrier: - >100-year projected lifetime at 1500 V_{RMS} working voltage - Up to 5000 V_{RMS} isolation rating - Up to 12.8 kV surge capability - ±100 kV/µs typical CMTI - Wide supply range: 2.25 V to 5.5 V - 2.25-V to 5.5-V Level translation - Default output high (ISO773x) and low (ISO773xF) - Wide temperature range: -55°C to +125°C - Low power consumption, typical 1.5 mA per channel at 1 Mbps - Low propagation delay: 11 ns Typical (5-V Supplies) - Robust electromagnetic compatibility (EMC) - System-level ESD, EFT, and surge immunity - ±8 kV IEC 61000-4-2 contact discharge protection across isolation barrier - Low emissions - Wide-SOIC (DW-16) and QSOP (DBQ-16) package options - Automotive version available: ISO773x-Q1 - Safety-related certifications: - DIN EN IEC 60747-17 (VDE 0884-17) - UL 1577 component recognition program - IEC 61010-1, IEC 62368-1, IEC60601-1, and GB 4943.1 certifications ## 2 Applications - Industrial automation - Motor control - Power supplies - Solar inverters - Medical equipment ## 3 Description The ISO773x devices are high-performance, triplechannel digital isolators with 5000 V_{RMS} (DW package) and 3000 V_{RMS} (DBQ package) isolation ratings per UL 1577. This family includes devices with reinforced insulation ratings according to VDE, CSA, TUV and CQC. The ISO7731B device is designed for applications that require basic insulation ratings only. The ISO773x family of devices provides high electromagnetic immunity and low emissions at low power consumption, while isolating CMOS or LVCMOS digital I/Os. Each isolation channel has a logic input and output buffer separated by a double capacitive silicon dioxide (SiO₂) insulation barrier. This device comes with enable pins which can be used to put the respective outputs in high impedance for multi-master driving applications and to reduce power consumption. #### **Device Information** | PART NUMBER | PACKAGE | BODY SIZE (NOM) | |-------------|------------|--------------------| | ISO7730 | SOIC (DW) | 10.30 mm × 7.50 mm | | ISO7731 | SSOP (DBQ) | 4.90 mm × 3.90 mm | | ISO7731B | SOIC (DW) | 10.30 mm × 7.50 mm | V_{CCI}=Input supply, V_{CCO}=Output supply GNDI=Input ground, GNDO=Output ground #### Simplified Schematic ## **Table of Contents** | 1 Features1 | 7.18 Insulation Characteristics Curves | . 2 1 | |---|---|--------------| | 2 Applications 1 | 7.19 Typical Characteristics | . 23 | | 3 Description1 | 8 Parameter Measurement Information | | | 4 Revision History2 | 9 Detailed Description | | | 5 Description Continued4 | 9.1 Overview | | | 6 Pin Configuration and Functions4 | 9.2 Functional Block Diagram | . 27 | | 7 Specifications6 | 9.3 Feature Description | 28 | | 7.1 Absolute Maximum Ratings6 | 9.4 Device Functional Modes | | | 7.2 ESD Ratings6 | 10 Application and Implementation | . 30 | | 7.3 Recommended Operating Conditions7 | 10.1 Application Information | | | 7.4 Thermal Information8 | 10.2 Typical Application | | | 7.5 Power Ratings8 | 11 Power Supply Recommendations | | | 7.6 Insulation Specifications9 | 12 Layout | | | 7.7 Safety-Related Certifications11 | 12.1 Layout Guidelines | | | 7.8 Safety Limiting Values11 | 12.2 Layout Example | . 35 | | 7.9 Electrical Characteristics—5-V Supply | 13 Device and Documentation Support | 36 | | 7.10 Supply Current Characteristics—5-V Supply14 | 13.1 Documentation Support | | | 7.11 Electrical Characteristics—3.3-V Supply15 | 13.2 Receiving Notification of Documentation Updates. | .36 | | 7.12 Supply Current Characteristics—3.3-V Supply 16 | 13.3 Community Resources | 36 | | 7.13 Electrical Characteristics—2.5-V Supply17 | 13.4 Trademarks | . 36 | | 7.14 Supply Current Characteristics—2.5-V Supply 18 | 13.5 Electrostatic Discharge Caution | 36 | | 7.15 Switching Characteristics—5-V Supply19 | 13.6 Glossary | | | 7.16 Switching Characteristics—3.3-V Supply20 | 14 Mechanical, Packaging, and Orderable | | | 7.17 Switching Characteristics—2.5-V Supply21 | Information | . 37 | | | | | | | | | | | | | ## **4 Revision History** NOTE: Page numbers for previous revisions may differ from page numbers in the current version. | С | hanges from Revision G (March 2020) to Revision H (March 2023) | Page | |---|--|------| | • | Changed standard name from: "DIN V VDE V 0884-11:2017-01" to: "DIN EN IEC 60747-17 (VDE 0884- | , | | | throughout the document | | | • | Removed references to standard IEC/EN/CSA 60950-1 throughout the document | 1 | | • | Removed standard revision and year references from all standard names throughout the document | 1 | | • | Added Maximum impulse voltage (V _{IMP}) specification per DIN EN IEC 60747-17 (VDE 0884-17) | 9 | | • | Changed test conditions and values of Maximum surge isolation voltage (V _{IOSM}) specification per DIN E 60747-17 (VDE 0884-17) | | | • | Clarified method b test conditions of Apparent charge (q _{PD}) | 9 | | • | Changed values of Maximum surge isolation voltage (V _{IOSM}) specification per DIN EN IEC 60747-17 (V | 'DE | | | 0884-17) | 11 | | • | Changed working voltage lifetime margin from: 87.5% to: 50%, minimum required insulation lifetime from | | | | 37.5 years to: 30 years and insulation lifetime per TDDB from: 135 years to: 169 years per DIN EN IEC | | | | 60747-17 (VDE 0884-17) | 33 | | • | Changed Figure 10-8 per DIN EN IEC 60747-17 (VDE 0884-17) | 33 | | С | hanges from Revision F (May 2019) to Revision G (March 2020) | Page | | • | Added ISO7731B device to this data sheet for applications that require basic insulation only. Previous d sheet literature number for ISO7731B was SLLSF65A | | | | Changed VDE standard name From: DIN V VDE V 0884-11:2017-01 To: DIN VDE V 0884-11:2017-01 | | | | throughout the document | 1 | | _ | | tina | | • | Changed UL certification bullet in Section 1 From: '5000 V _{RMS} (DW) and 3000 V _{RMS} (DBQ) Isolation Ra | | | | per UL 1577' To: 'UL 1577 component recognition program' | 1 | | | | | Updated table entries......11 | Cł | nanges from Revision E (January 2018) to Revision F (May 2019) | Page | |----------|--|----------------| | • | Made editorial and cosmetic changes throughout the document | 1 | | • | Changed From: "Isolation Barrier Life: >40 Years" To: " >100-year projected lifetime at 1500 V _{RMS} wo | | | | voltage" in Section 1 | | | • | Added "Up to 5000 V _{RMS} isolation rating" in Section 1 | | | • | Added "Up to 12.8 kV surge capability" in Section 1 | | | • | Added "±8 kV IEC 61000-4-2 contact discharge protection across isolation barrier" in Section 1 | | | • | Added "Automotive version available: ISO773x-Q1" in Section 1 | | | • | Fixed typo error in UL 1577 isolation rating for DBQ package From: 2500 V _{RMS} To: 3000 V _{RMS} in Sec Changed From: "All Certifications Complete except CQC Approval of DBQ-16 Package Devices" To: "certifications complete" in Section 1 | "All | | • | Updated Figure 3-1 to show two isolation capacitors in series per channel instead of a single isolation capacitor. | 1 | | • | Added ±8000V contact discharge | <mark>6</mark> | | • | Added table note | <mark>7</mark> | | • | Updated valules for DW package and test conditions | 9 | | • | Updated table entries | | | • | Changed ground symbols for "Input (Devices with F suffix)" in Section 9.4.1 | | | • | Added Section 10.2.3.1 sub-section under Section 10.2.3 section | | | • | Added 'How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems' applicat report to Section 13.1 section | | | Cł | nanges from Revision D (May 2017) to Revision E (January 2018) | Page | | • | Changed the DIN certification number and certification status throughout the document | | | • | Changed the isolation rating of the DBQ package from 2500 V_{RMS} to 3000 V_{RMS} | | | • | Added V _{TEST} conditions for V _{IOTM} , updated DBQ package throughout the document, and updated me condition | | | Cł | nanges from Revision C (December 2016) to Revision D (May 2017) | Page | | • | Updated table entries | | | • | Updated CMTI value from 40 to 85 in all Electrical Characteristics tables | 13 | | | nanges from Revision B (October 2016) to Revision C (December 2016) | Page | | • | Changed title of "Regulatory Information" to "Safety-Related Certifications" and updated certifications | 11
 | | Cł | nanges from Revision A (September 2016) to Revision B (October 2016) | Page | | • | Changed Feature From: "VDE and UL Certifications" To: "VDE, UL, and TUV Certifications" | 1 | | • | Updated unit value of CLR to mm | | | <u>.</u> | Updated all certifications marked as planned to certified and updated certificates and table description | ns 11
 | | Cł | nanges from Revision * (September 2016) to Revision A (September 2016) | Page | | • | Changed V _{I(HYS)} MIN value in Electrical Characteristic tables throughout the document | | | • | Updated timing specs in Switching Characteristics tables throughout the document | | | • | Added Note B to Figure 8-3 | 25 | ## **5 Description Continued** The ISO7730 device has all three channels in the same direction and the ISO7731 device has two forward and one reverse-direction channel. If the input power or signal is lost, the default output is *high* for devices without suffix F and *low* for devices with suffix F. See the *Device Functional Modes* section for
further details. Used in conjunction with isolated power supplies, this family of devices helps prevent noise currents on data buses, such as RS-485, RS-232, and CAN, or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. Through innovative chip design and layout techniques, electromagnetic compatibility of the ISO773x device has been significantly enhanced to ease system-level ESD, EFT, surge, and emissions compliance. The ISO773x family of devices is available in 16-pin wide-SOIC and QSOP packages. ## **6 Pin Configuration and Functions** Figure 6-1. ISO7730 DW and DBQ Packages 16-Pin SOIC-WB and QSOP Top View Figure 6-2. ISO7731 DW and DBQ Packages 16-Pin SOIC-WB and QSOP Top View **Table 6-1. Pin Functions** | | PIN | | lubic 0 | | | |------------------|----------|---------|---------|--|--| | NAME | NO. | | I/O | DESCRIPTION | | | INAIVIE | ISO7730 | ISO7731 | | | | | EN1 | _ | 7 | ı | Output enable 1. Output pins on side 1 are enabled when EN1 is high or open and in high-impedance state when EN1 is low. | | | EN2 | 10 | 10 | ı | Output enable 2. Output pins on side 2 are enabled when EN2 is high or open and in high-impedance state when EN2 is low. | | | GND1 | 2, 8 | 2, 8 | _ | Ground connection for V _{CC1} | | | GND2 | 9, 15 | 9, 15 | _ | Ground connection for V _{CC2} | | | INA | 3 | 3 | I | Input, channel A | | | INB | 4 | 4 | I | Input, channel B | | | INC | 5 | 12 | I | Input, channel C | | | NC | 6, 7, 11 | 6, 11 | _ | Not connected | | | OUTA | 14 | 14 | 0 | Output, channel A | | | OUTB | 13 | 13 | 0 | Output, channel B | | | OUTC | 12 | 5 | 0 | Output, channel C | | | V _{CC1} | 1 | 1 | _ | Power supply, V _{CC1} | | | V _{CC2} | 16 | 16 | _ | Power supply, V _{CC2} | | ## 7 Specifications ## 7.1 Absolute Maximum Ratings See(1) | | | MIN | MAX | UNIT | |-------------------------------------|-------------------------------|------|----------------------------|------| | V _{CC1} , V _{CC2} | Supply voltage ⁽²⁾ | -0.5 | 6 | V | | V | Voltage at INx, OUTx, ENx | -0.5 | V _{CCX} + 0.5 (3) | V | | Io | Output current | -15 | 15 | mA | | T _J | Junction temperature | | 150 | °C | | T _{stg} | Storage temperature | -65 | 150 | °C | - (1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. - (2) All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values - (3) Maximum voltage must not exceed 6 V. ## 7.2 ESD Ratings | | | | VALUE | UNIT | |--------------------|--|--|-------|------| | | V _(ESD) Electrostatic discharge | Human body model (HBM), per ANSI/
ESDA/JEDEC JS-001, all pins ⁽¹⁾ | ±6000 | | | V _(ESD) | | Charged device model (CDM), per
JEDEC specification JESD22-C101, all
pins ⁽²⁾ | ±1500 | v | | | | Contact discharge per IEC 61000-4-2;
Isolation barrier withstand test ^{(3) (4)} | ±8000 | | - (1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. - (2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. - (3) IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device. - (4) Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 7.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) | | | | MIN | NOM | MAX | UNIT | |-------------------------------------|-----------------------------|--|---------------------------------------|-----|------------------------|-----------------| | V _{CC1} , V _{CC2} | Supply voltage | | 2.25 | | 5.5 | V | | V _{CC(UVLO+)} | UVLO threshold when supply | UVLO threshold when supply voltage is rising | | 2 | 2.25 | V | | V _{CC(UVLO-)} | UVLO threshold when supply | voltage is falling | 1.7 | 1.8 | | V | | V _{HYS(UVLO)} | Supply voltage UVLO hystere | sis | 100 | 200 | | mV | | | | V _{CCO} ⁽¹⁾ = 5 V | -4 | | | | | I _{он} | High level output current | V _{CCO} = 3.3 V | -2 | | | MA MA | | | | V _{CCO} = 2.5 V | -1 | | | | | | | V _{CCO} = 5 V | | | 4 | 1 | | I _{OL} | Low level output current | V _{CCO} = 3.3 V | | | 2 | mA | | | | V _{CCO} = 2.5 V | | | 1 | V V WV mV mA WA | | V _{IH} | High-level input voltage | - | 0.7 x V _{CCI} ⁽¹⁾ | | V _{CCI} | V | | V _{IL} | Low-level input voltage | | 0 | (| 0.3 x V _{CCI} | V | | DR ⁽²⁾ | Data rate | | 0 | | 100 | Mbps | | T _A | Ambient temperature | | -55 | 25 | 125 | °C | ⁽¹⁾ V_{CCI} = Input-side V_{CC}; V_{CCO} = Output-side V_{CC} (2) 100 Mbps is the maximum specified data rate, although higher data rates are possible. ## 7.4 Thermal Information | | | ISO | 773x | | |-----------------------|--|-----------|------------|------| | | THERMAL METRIC ⁽¹⁾ | DW (SOIC) | DBQ (QSOP) | UNIT | | | | 16 PINS | 16 PINS | | | $R_{\theta JA}$ | Junction-to-ambient thermal resistance | 81.4 | 109 | °C/W | | R _{0JC(top)} | Junction-to-case (top) thermal resistance | 44.9 | 46.8 | °C/W | | $R_{\theta JB}$ | Junction-to-board thermal resistance | 45.9 | 60.6 | °C/W | | Ψ_{JT} | Junction-to-top characterization parameter | 28.1 | 35.9 | °C/W | | ΨЈВ | Junction-to-board characterization parameter | 45.5 | 60 | °C/W | | R _{0JC(bot)} | Junction-to-case (bottom) thermal resistance | - | - | °C/W | ⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. ## 7.5 Power Ratings | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-----------------|--|--|-----|-----|-----|------| | ISO7730 | 1 | | | | | | | P_D | Maximum power dissipation (both sides) | V _{CC1} = V _{CC2} = 5.5 V, T _{.I} = 150°C, C _I = | | | 150 | mW | | P _{D1} | Maximum power dissipation (side-1) | 15 pF, input a 50-MHz 50% duty cycle | | | 25 | mW | | P _{D2} | Maximum power dissipation (side-2) | square wave | | | 125 | mW | | ISO7731 | | | | | | | | P_D | Maximum power dissipation (both sides) | V _{CC1} = V _{CC2} = 5.5 V, T _J = 150°C, C _J = | | | 150 | mW | | P _{D1} | Maximum power dissipation (side-1) | 15 pF, input a 50-MHz 50% duty cycle | | | 50 | mW | | P _{D2} | Maximum power dissipation (side-2) | square wave | | | 100 | mW | Submit Document Feedback # 7.6 Insulation Specifications | DADAMETED | | TEST CONDITIONS | | | VALUE | | | |-------------------|--|---|---|-------------------|-------------------|--|--| | PARAMETER (1) | | TEST CONDITIONS | | DW-16 | DBQ -16 | UNIT | | | CLR |
External clearance ⁽¹⁾ | Shortest terminal-to-terminal distance through air | | >8 | >3.7 | mm | | | CPG | External creepage ⁽¹⁾ | Shortest terminal-to-terminal distance across the | oackage surface | >8 | >3.7 | mm | | | DTI | Distance through the insulation | Minimum internal gap (internal clearance) | | >21 | >21 | μm | | | СТІ | Comparative tracking index | DIN EN 60112 (VDE 0303-11); IEC 60112, UL 746 | 6A | >600 | >600 | V | | | | Material group | According to IEC 60664-1 | | I | I | | | | | | Rated mains voltage ≤ 150 V _{RMS} | | I-IV | I-IV | | | | | Overvoltage category per | Rated mains voltage ≤ 300 V _{RMS} | | I-IV | 1-111 | | | | | Rated mains voltage ≤ 600 V _{RMS} Rated mains voltage ≤ 1000 V _{RMS} Rated mains voltage ≤ 1000 V _{RMS} REC 60747-17 (VDE 0884-17) (2) Maximum repetitive peak isolation voltage AC voltage (bipolar) AC voltage; Time dependent dielectric breakdown (TDDB) Test; See Figure 10-8 DC voltage DC voltage | | I-IV | n/a | | | | | | | Rated mains voltage ≤ 1000 V _{RMS} | | 1-111 | n/a | | | | DIN EN | I IEC 60747-17 (VDE 0884-1 | Rated mains voltage \leq 150 V _{RMS} Rated mains voltage \leq 300 V _{RMS} Rated mains voltage \leq 600 V _{RMS} Rated mains voltage \leq 1000 V _{RMS} Rated mains voltage \leq 1000 V _{RMS} Rated mains voltage \leq 1000 V _{RMS} ISO773x ISO7731B AC voltage (bipolar) ISO773x ISO7731B DC voltage ISO773x ISO7731B ISO | | 1 | | | | | ., | Maximum repetitive peak | A.C. violations (himsley) | ISO773x | 2121 | 566 | ., | | | V_{IORM} | isolation voltage | AC voltage (bipolar) | ISO7731B | 1414 | n/a | V _{PK} | | | | | AC voltage: Time dependent dielectric | ISO773x | 1500 | 400 | ., | | | | Maximum working | | ISO7731B | 1000 | n/a | V _{RMS} | | | V_{IOWM} | isolation voltage | | ISO773x | 2121 | 566 | V _{RMS} V _{DC} V _{PK} | | | | | DC voltage | ISO7731B | 1414 | n/a | V _{DC} | | | V _{IOTM} | Maximum transient isolation voltage | V _{TEST} = V _{IOTM} , t = 60 s (qualification);
V _{TEST} = 1.2 x V _{IOTM} , t= 1 s (100% production) | production) | | 4242 | V _{PK} | | | ., | Maximum impulse | Tested in air, 1.2/50-us waveform per IEC | ISO773x | 8000 | 5000 | | | | V_{IMP} | voltage ⁽³⁾ | 62368-1 | ISO7731B | 6000 | n/a | V _{PK} | | | | Maximum surge isolation | V _{IOSM} ≥ 1.3 x V _{IMP} ; Tested in oil (qualification | ISO773x | 12800 | 10000 | | | | V _{IOSM} | voltage ⁽⁴⁾ | | ISO7731B | 7800 | n/a | V _{PK} | | | | | Method a, After Input/Output safety test subgroup 2/3, $V_{ini} = V_{IOTM}$, $t_{ini} = 60$ s; $V_{pd(m)} = 1.2 \text{ x } V_{IORM}$, $t_m = 10 \text{ s}$ | | ≤5 | ≤5 | | | | | | Method a, After environmental tests subgroup 1, | $V_{pd(m)} = 1.6 \text{ x } V_{IORM},$
$t_m = 10 \text{ s } (ISO773x)$ | ≤5 | ≤5 | | | | q _{pd} | Apparent charge ⁽⁵⁾ | $V_{ini} = V_{IOTM}$, $t_{ini} = 60 \text{ s}$; | | ≤5 | n/a | рС | | | | | Method b; At routine test (100% production) and ptest); $V_{ini} = 1.2 \times V_{IOTM}, t_{ini} = 1 \text{ s;} \\ V_{pd(m)} = 1.875 \times V_{IORM} (ISO773x) \text{ or} \\ V_{pd(m)} = 1.5 \times V_{IORM} (ISO7731B), t_m = 1 \text{ s (method } V_{pd(m)} = V_{ini}, t_m = t_{ini} \text{ (method b2)} $ | | ≤5 | ≤5 | | | | C _{IO} | Barrier capacitance, input to output ⁽⁶⁾ | $V_{IO} = 0.4 \text{ x sin } (2\pi\text{ft}), \text{ f} = 1 \text{ MHz}$ | | ~0.7 | ~0.7 | pF | | | | | V _{IO} = 500 V, T _A = 25°C | | | >10 ¹² | | | | R _{IO} | Isolation resistance ⁽⁶⁾ | V _{IO} = 500 V, 100°C ≤ T _A ≤ 125°C | | >10 ¹¹ | >10 ¹¹ | Ω | | | | | V _{IO} = 500 V at T _S = 150°C | | >109 | >10 ⁹ | | | | | Pollution degree | | | 2 | 2 | | | | | Climatic category | | | 55/125/
21 | 55/125/21 | | | | PARAMETER | | TEST CONDITIONS | | VALUE | | |------------------|--|--|-------|---------|------------------| | | FAINABLIEN | TEST CONDITIONS | DW-16 | DBQ -16 | UNIT | | V _{ISO} | Maximum withstanding isolation voltage | $V_{TEST} = V_{ISO}$, $t = 60$ s (qualification),
$V_{TEST} = 1.2$ x V_{ISO} , $t = 1$ s (100% production) | 5000 | 3000 | V _{RMS} | - (1) Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed-circuit board are used to help increase these specifications. - (2) This coupler is suitable for *safe electrical insulation* (ISO773x) and basic electrical insulation (ISO7731B) only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. - (3) Testing is carried out in air to determine the surge immunity of the package - (4) Testing is carried out in oil to determine the intrinsic surge immunity of the isolation barrier. - (5) Apparent charge is electrical discharge caused by a partial discharge (pd). - (6) All pins on each side of the barrier tied together creating a two-terminal device. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated #### 7.7 Safety-Related Certifications | VDE | CSA | UL | CQC | TUV | |--|--|---|--|---| | Certified according to DIN
EN IEC 60747-17 (VDE
0884-17) | Certified according to IEC 62368-1 and IEC 60601 | Certified according to
UL 1577 Component
Recognition Program | Certified according to GB4943.1 | Certified according to EN 61010-1 and EN 62368-1 | | Maximum transient isolation voltage, 8000 V _{PK} (DW-16) and 4242 V _{PK} (DBQ-16); Maximum repetitive peak isolation voltage, 2121 V _{PK} (DW-16, Reinforced), 1414 V _{PK} (DW-16, Basic) and 566 V _{PK} (DBQ-16); Maximum surge isolation voltage, 12800 V _{PK} (DW-16, Reinforced), 7800 V _{PK} (DW-16, Basic) and 10000 V _{PK} (DBQ-16) | Reinforced insulation per CSA 62368-1 and IEC 62368-1, 800 V _{RMS} (DW-16) and 370 V _{RMS} (DBQ-16) max working voltage (pollution degree 2, material group I); 2 MOPP (Means of Patient Protection) per CSA 60601-1 and IEC 60601-1, 250 V _{RMS} (DW-16) max working voltage | DW-16: Single protection,
5000 V _{RMS} ;
DBQ-16: Single protection,
3000 V _{RMS} | DW-16: Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 700 V _{RMS} maximum working voltage; DBQ-16: Basic Insulation, Altitude ≤ 5000 m, Tropical Climate, 400 V _{RMS} maximum working voltage | 5000 V _{RMS} (DW-16) and 3000 V _{RMS} (DBQ-16) Reinforced insulation per EN 61010-1 up to working voltage of 600 V _{RMS} (DW-16) and 300 V _{RMS} (DBQ-16) 5000 V _{RMS} (DW-16) and 3000 V _{RMS} (DBQ-16) Reinforced insulation per EN 62368-1 up to working voltage of 800 V _{RMS} (DW -16) and 370 V _{RMS} (DBQ-16) of 600 V _{RMS} (DBQ-16) of 600 V _{RMS} | | Certificate numbers:
40040142 (Reinforced)
40047657 (Basic) | Master contract number: 220991 | File number: E181974 | Certificate numbers:
CQC21001304083
(DW-16)
CQC18001199097
(DBQ-16) | Client ID number: 077311 | ## 7.8 Safety Limiting Values Safety limiting⁽¹⁾ intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures. | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------|---|---|-----|-----|------|------| | DW-16 | PACKAGE | | | | | | | | | $R_{\theta,JA} = 81.4^{\circ}\text{C/W}, V_I = 5.5 \text{ V}, T_J = 150^{\circ}\text{C}, T_A = 25^{\circ}\text{C},$ see Figure 7-1 | | | 279 | | | I _S | Safety input, output, or supply current | $R_{\theta JA}$ = 81.4°C/W, V_I = 3.6 V, T_J = 150°C, T_A = 25°C, see Figure 7-1 | | | 427 | mA | | | | $R_{\theta,JA} = 81.4^{\circ}\text{C/W}, V_I = 2.75 \text{ V}, T_J = 150^{\circ}\text{C}, T_A = 25^{\circ}\text{C},$ see Figure 7-1 | | | 558 | | | Ps | Safety input, output, or total power | $R_{\theta JA} = 81.4$ °C/W, $T_J = 150$ °C, $T_A = 25$ °C, see
Figure 7-3 | | | 1536 | mW | | T _S | Maximum safety temperature | | | | 150 | °C | | DBQ-1 | 6 PACKAGE | | | | | | | | | $R_{\theta,JA}$ = 109.0°C/W, V_I = 5.5 V, T_J = 150°C, T_A = 25°C, see Figure 7-2 | | | 209 | | | Is | Safety input, output, or supply current | $R_{\theta JA}$ = 109.0°C/W, V_I = 3.6 V, T_J = 150°C, T_A = 25°C, see Figure 7-2 | | | 319 | mA | | | | $R_{\theta JA}$ = 109.0°C/W, V_I = 2.75 V, T_J = 150°C, T_A = 25°C, see Figure 7-2 | | | 417 | | | P _S | Safety input, output, or total power | $R_{\theta JA} = 109.0^{\circ} \text{C/W}, T_J = 150^{\circ} \text{C}, T_A = 25^{\circ} \text{C}, \text{ see Figure}$
7-4 | | | 1147 | mW | | T _S | Maximum safety temperature | | | | 150 | °C | ⁽¹⁾ The maximum safety temperature, T_S, has the same value as the maximum junction temperature, T_J, specified for the device. The I_S and P_S parameters represent the safety current and safety power respectively. The maximum limits of I_S and P_S should not be exceeded. These limits vary with the ambient temperature, T_A. The junction-to-air thermal resistance, R_{BJA}, in the table is that of a device installed on a high-K test board for leaded surface-mount The junction-to-air thermal resistance, $R_{\theta JA}$, in the table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter: $$\begin{split} T_J &= T_A + R_{\theta JA} \times P, \text{ where P is the power dissipated in the device.} \\ T_{J(max)} &= T_S = T_A + R_{\theta JA} \times P_S, \text{ where } T_{J(max)} \text{ is the maximum allowed junction temperature.} \\ P_S &= I_S \times V_I, \text{ where } V_I \text{ is the maximum input voltage.} \end{split}$$ ## 7.9 Electrical Characteristics—5-V Supply V_{CC1} = V_{CC2} = 5 V ±10% (over recommended operating conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|------------------------------------|---|----------------------------|------------------------|------------------------|-------| | V _{OH} | High-level output voltage | I _{OH} = -4 mA; see Figure 8-1 | V _{CCO} - 0.4 (1) | 4.8 | | V | | V _{OL} | Low-level output voltage | I _{OL} = 4 mA; see Figure 8-1 | | 0.2 | 0.4 | V | | V _{IT+(IN)} | Rising input switching threshold | | | 0.6 x V _{CCI} | 0.7 x V _{CCI} | V | | V _{IT-(IN)} | Falling input switching threshold | | 0.3 x V _{CCI} | 0.4 x V _{CCI} | | V | | V _{I(HYS)} | Input threshold voltage hysteresis | | 0.1 x V _{CCI} | 0.2 x V _{CCI} | | V | | I _{IH} | High-level input current | V _{IH} = V _{CCI} ⁽¹⁾ at INx or ENx | | | 10 | μA | | I _{IL} | Low-level input current | V _{IL} = 0 V at INx or ENx | -10 | | | μA | | CMTI | Common mode transient immunity | $V_I = V_{CCI}$ or 0 V, $V_{CM} = 1200$ V;
see Figure 8-4 | 85 | 100 | | kV/µs | | Cı | Input capacitance (2) | $V_I = V_{CC}/2 + 0.4 \times \sin(2\pi ft), f = 1$
MHz, $V_{CC} = 5 \text{ V}$ | | 2 | | pF | V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} Measured from input pin to same side ground. # 7.10 Supply Current Characteristics—5-V Supply V_{CC1} = V_{CC2} = 5 V ±10% (over recommended operating conditions unless otherwise noted) | PARAMETER | TEST CONDITION | S | SUPPLY
CURRENT | MIN TYP | MAX | UNIT | |------------------------------|--|----------|-------------------|---------|-----|------| | ISO7730 | | | | | - | | | | EN2 = 0 V; V _I = V _{CC1} (ISO7730); | | I _{CC1} | 1 | 1.4 | mA | | Supply current - disable | V _I = 0 V (ISO7730 with F suffix) | | I _{CC2} | 0.3 | 0.4 | mA | | Supply current - disable | EN2 = 0 V; V _I = 0 V (ISO7730); | | I _{CC1} | 4.3 | 6 | mA | | | $V_I = V_{CC1}$ (ISO7730 with F suffix) | | I _{CC2} | 0.3 | 0.4 | mA | | | EN2 = V _{CC2} ; V _I = V _{CC1} (ISO7730); | | I _{CC1} | 1 | 1.4 | mA | | Supply current - DC signal | V _I = 0 V (ISO7730 with F suffix) | | I _{CC2} | 1.6 | 2.5 | mA | | oupply cultoffle DO signal | $EN2 = V_{CC2}; V_I = 0 V (ISO7730);$ | | I _{CC1} | 4.3 | 6 | mA | | | $V_I = V_{CC1}$ (ISO7730 with F suffix) | | I _{CC2} | 1.8 | 2.7 | mA | | | | 1 Mbps | I _{CC1} | 2.6 | 3.7 | mA | | | | Типоро | I _{CC2} | 1.9 | 2.8 | mA | | Supply current - AC signal | EN2 = V_{CCI} ; All channels switching with square wave clock input; C_L = 15 pF | 10 Mbps | I _{CC1} | 2.7 | 3.8 | mA | | | | | I _{CC2} | 3.3 | 4.5 | mA | | | | 100 Mbps | I _{CC1} | 3.6 | 4.6 | mA | | | | 100 Mapo | I _{CC2} | 17.5 | 21 | mA | | ISO7731 | | | | | | | | | EN1 = EN2 = 0 V; V _I = V _{CCI} (1)(ISO7 | 731); | I _{CC1} | 0.8 | 1.2 | mA | | Supply current - disable | V _I = 0 V (ISO7731 with F suffix) | | I _{CC2} | 0.7 | 1 | mA | | cappiy carroin aloabic | EN1 = EN2 = 0 V; V _I = 0 V (ISO7731); | | I _{CC1} | 3 | 4.3 | mA | | | $V_I = V_{CCI}$ (ISO7731 with F suffix) | | I _{CC2} | 1.8 | 2.6 | mA | | | $EN1 = EN2 = V_{CCI}$; $V_I = V_{CCI}$ (1)(ISO | 7731); | I _{CC1} | 1.3 | 1.7 | mA | | Committee and the DC minutes | $V_I = 0 \text{ V (ISO7731 with F suffix)}$ | | I _{CC2} | 1.6 | 2.2 | mA | | Supply current - DC signal | EN1 = EN2 = V_{CCI} ; $V_I = 0 \text{ V (ISO773}$ | 31); | I _{CC1} | 3.5 | 5 | mA | | | $V_I = VCC_I$ (ISO7731 with F suffix) | | I _{CC2} | 2.8 | 4.1 | mA | | | | 1 Mhna | I _{CC1} | 2.7 | 3.4 | mA | | | | 1 Mbps | I _{CC2} | 2.3 | 3.3 | mA | | Supply current AC signal | EN1 = EN2 = V _{CCI} ; All channels switching with square wave clock | 10 Mbps | I _{CC1} | 3 | 4 | mA | | Supply current - AC signal | input; C _L = 15 pF | | I _{CC2} | 3.3 | 4.4 | mA | | | | 100 Mbps | I _{CC1} | 8.5 | 11 | mA | | | | | I _{CC2} | 13.1 | 16 | mA | ⁽¹⁾ $V_{CCI} = Input-side V_{CC}$ # 7.11 Electrical Characteristics—3.3-V Supply V_{CC1} = V_{CC2} = 3.3 V ±10% (over recommended operating conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|------------------------------------|---|---------------------------------------|------------------------|------------------------|-------| | V _{OH} | High-level output voltage | I _{OH} = -2mA; see Figure 8-1 | V _{CCO} - 0.3 ⁽¹⁾ | 3.2 | | V | | V_{OL} | Low-level output voltage | I _{OL} = 2mA; see Figure 8-1 | | 0.1 | 0.3 | V | | V _{IT+(IN)} | Rising input switching threshold | | | 0.6 x V _{CCI} | 0.7 x V _{CCI} | V | | V _{IT-(IN)} | Falling input switching threshold | | 0.3 x V _{CCI} | 0.4 x V _{CCI} | | V | | V _{I(HYS)} | Input threshold voltage hysteresis | | 0.1 x V _{CCI} | 0.2 x V _{CCI} | | V | | I _{IH} | High-level input current | V _{IH} = V _{CCI} ⁽¹⁾ at INx or ENx | | | 10 | μA | | I _{IL} | Low-level input current | V _{IL} = 0 V at INx or ENx | -10 | | | μA | | CMTI | Common mode transient immunity | V _I = V _{CCI} or 0 V, V _{CM} = 1200 V;
see Figure 8-4 | 85 | 100 | | kV/μs | ⁽¹⁾ V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} ## 7.12 Supply Current Characteristics—3.3-V Supply V_{CC1} = V_{CC2} = 3.3 V ±10% (over recommended operating conditions unless otherwise noted) | PARAMETER | (over recommended operating of test condition | | SUPPLY
CURRENT | MIN TYP | MAX | UNIT | |----------------------------|--|--|-------------------|---------|------|------| | ISO7730 | | | | | | | | | EN2 = 0 V; $V_I = V_{CC1}$ (ISO7730);
$V_I = 0$ V (ISO7730 with F suffix) | | I _{CC1} | 1 | 1.4 | mA | | Supply current - disable | | | I _{CC2} | 0.3 | 0.4 | mA | | oupply current - disable | EN2 = 0 V; V _I = 0 V (ISO7730); | | I _{CC1} | 4.3 | 6 | mA | | | $V_I = V_{CC1}$ (ISO7730 with F suffix) | | I _{CC2} | 0.3 | 0.4 | mA | | | EN2 = V _{CC2} ; V _I = V _{CC1} (ISO7730); | | I _{CC1} | 1 | 1.4 | mA | | Supply current - DC signal | $V_I = 0 \text{ V (ISO7730 with F suffix)}$ | | I _{CC2} | 1.6 | 2.5 | mA | | Cupply cultone DO signal | EN2 =V _{CC2} ; V _I = 0 V (ISO7730); | | I _{CC1} | 4.3 | 6 | mA | | | V _I = V _{CC1} (ISO7730 with F suffix) | | I _{CC2} | 1.8 | 2.7 | mA | | | | 1 Mbps | I _{CC1} | 2.6 | 3.7 | mA | | | | | I _{CC2} | 1.8 | 2.8 | mA | | Supply current - AC signal | EN2 = V _{CCI} ; All channels switching with square wave clock input; C _I = | 10 Mbps | I _{CC1} | 2.7 | 3.8 | mA | | | 15 pF | To Maps | I _{CC2} | 2.8 | 3.9 | mA | | | | 100 Mbps | I _{CC1} | 3.3 | 4.3 | mA | | | | 100 Mbps | I _{CC2} | 13 | 17 | mA | | ISO7731 | | | | | | | | | EN1 = EN2 = 0 V; V _I = V _{CCI} ⁽¹⁾ (ISO7) | 731); | I _{CC1} | 0.8 | 1.2 | mA | | Supply current - disable | V _I = 0 V (ISO7731 with F suffix) | | I _{CC2} | 0.7 | 1 | mA | | cupply durient disable | 7 1 | EN1 = EN2 = 0 V; V _I = 0 V (ISO7731); | | 3 | 4.3 | mA | | | V _I = V _{CCI} (ISO7731 with F suffix) | | I _{CC2} | 1.8 | 2.6 | mA | | | EN1 = EN2 = V _{CCI} ; V _I = V _{CCI} (ISO77 | 31); | I _{CC1} | 1.3 | 1.7 | mA | | Supply current - DC signal | V _I = 0 V (ISO7731 with F suffix) | | I _{CC2} | 1.6 | 2.2 | mA | | cupply culteric Bo signal | EN1 = EN2 = V _{CCI} ; V _I = 0 V (ISO773 | 31); | I _{CC1} | 3.5 | 5 | mA | | | $V_I = V_{CCI}$ (ISO7731 with F suffix) | | I _{CC2} | 2.8 | 4.1 | mA | | | | 1 Mbps | I _{CC1} | 2.4 | 3.4 | mA | | | | - Mibps | I _{CC2} | 2.2 | 3.3 | mA | | Supply current - AC signal | EN1 = EN2 = V _{CCI} ; All channels switching with square wave clock | 10 Mbps | I _{CC1} | 2.8 | 3.8 | mA | | oupply ouriont - Ao signal | input; C _L = 15 pF | | I _{CC2} | 2.9 | 4 | mA | | | | 100 Mbps | I _{CC1} | 6.7 | 8.5 | mA | | | | | I _{CC2} | 10 | 12.5 | mA | ⁽¹⁾ $V_{CCI} = Input-side V_{CC}$ ## 7.13 Electrical Characteristics—2.5-V Supply V_{CC1} = V_{CC2} = 2.5 V ±10% (over recommended operating
conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |----------------------|------------------------------------|---|----------------------------|------------------------|---------------------------------------|-------| | V _{OH} | High-level output voltage | I _{OH} = -1mA; see Figure 8-1 | V _{CCO} - 0.2 (1) | 2.45 | | V | | V _{OL} | Low-level output voltage | I _{OL} = 1mA; see Figure 8-1 | | 0.05 | 0.2 | V | | V _{IT+(IN)} | Rising input switching threshold | | | 0.6 x V _{CCI} | 0.7 x V _{CCI} ⁽¹⁾ | V | | V _{IT-(IN)} | Falling input switching threshold | | 0.3 x V _{CCI} | 0.4 x V _{CCI} | | V | | V _{I(HYS)} | Input threshold voltage hysteresis | | 0.1 x V _{CCI} | 0.2 x V _{CCI} | | V | | I _{IH} | High-level input current | V _{IH} = V _{CCI} ⁽¹⁾ at INx or ENx | | | 10 | μA | | I _{IL} | Low-level input current | V _{IL} = 0 V at INx or ENx | -10 | | | μA | | CMTI | Common mode transient immunity | V _I = V _{CCI} or 0 V, V _{CM} = 1200 V;
see Figure 8-4 | 85 | 100 | | kV/µs | ⁽¹⁾ V_{CCI} = Input-side V_{CC} ; V_{CCO} = Output-side V_{CC} # 7.14 Supply Current Characteristics—2.5-V Supply V_{CC1} = V_{CC2} = 2.5 V ±10% (over recommended operating conditions unless otherwise noted) | PARAMETER | TEST CONDITIONS | | SUPPLY
CURRENT | MIN TYP | MAX | UNIT | |-----------------------------|---|-------------|-------------------|---------|-----|------| | ISO7730 | | | | | | | | | EN2 = 0 V; V _I = V _{CC1} (ISO7730); | | I _{CC1} | 1 | 1.4 | mA | | Supply current - disable | V _I = 0 V (ISO7730 with F suffix) | | I _{CC2} | 0.3 | 0.4 | mA | | oupply current - disable | EN2 = 0 V; V _I = 0 V (ISO7730); | | I _{CC1} | 4.3 | 6 | mA | | | $V_I = V_{CC1}$ (ISO7730 with F suffix) | | I _{CC2} | 0.3 | 0.4 | mA | | | EN2 = V _{CC2} ; V _I = V _{CC1} (ISO7730); | | I _{CC1} | 1 | 1.4 | mA | | Supply current - DC signal | V _I = 0 V (ISO7730 with F suffix) | | I _{CC2} | 1.6 | 2.5 | mA | | ouppry current - Do signal | EN2 =V _{CC2} ; V _I = 0 V (ISO7730); | | I _{CC1} | 4.3 | 6 | mA | | | $V_I = V_{CC1}$ (ISO7730 with F suffix) | | I _{CC2} | 1.8 | 2.7 | mA | | | | 1 Mbps | I _{CC1} | 2.6 | 3.7 | mA | | | | 1 Mbps | I _{CC2} | 1.8 | 2.7 | mA | | Supply current - AC signal | EN2 = V _{CCI} ;All channels switching with square wave clock input; C _I = | 10 Mbps | I _{CC1} | 2.6 | 3.8 | mA | | | 15 pF | 10 Mbps | I _{CC2} | 2.5 | 3.6 | mA | | | | 100 Mbps | I _{CC1} | 3.1 | 4.2 | mA | | | | 100 Mpbs | I _{CC2} | 10.2 | 14 | mA | | ISO7731 | | | | | | | | | EN1 = EN2 = 0 V; V _I = V _{CCI} (1)(ISO7 | 731); | I _{CC1} | 0.8 | 1.2 | mA | | Supply current - disable | V _I = 0 V (ISO7731 with F suffix) | n F suffix) | | 0.7 | 1 | mA | | Supply current - disable | EN1 = EN2 = 0 V; V _I = 0 V (ISO773 | 1); | I _{CC1} | 3 | 4.3 | mA | | | $V_I = V_{CCI}$ (ISO7731 with F suffix) | | I _{CC2} | 1.8 | 2.6 | mA | | | EN1 = EN2 = V _{CCI} ; V _I = V _{CCI} (ISO77 | '31); | I _{CC1} | 1.3 | 1.7 | mA | | Supply current - DC signal | V _I = 0 V (ISO7731 with F suffix) | | I _{CC2} | 1.6 | 2.2 | mA | | Supply current - DC signal | EN1 = EN2 = V _{CCI} ; V _I = 0 V (ISO773 | 31); | I _{CC1} | 3.5 | 5 | mA | | | $V_I = V_{CCI}$ (ISO7731 with F suffix) | | I _{CC2} | 2.8 | 4.1 | mA | | | | 1 Mbps | I _{CC1} | 2.4 | 3.4 | mA | | | | 1 Minhs | I _{CC2} | 2.2 | 3.2 | mA | | Supply current - AC signal | EN1 = EN2 = V _{CCI} ; All channels | 10 Mbps | I _{CC1} | 2.7 | 3.7 | mA | | Supply culterit - AC signal | input; C _L = 15 pF | | I _{CC2} | 2.7 | 3.8 | mA | | | | 100 Mbps | I _{CC1} | 5.6 | 7 | mA | | | | | I _{CC2} | 8 | 10 | mA | ⁽¹⁾ $V_{CCI} = Input-side V_{CC}$ Submit Document Feedback ## 7.15 Switching Characteristics—5-V Supply V_{CC1} = V_{CC2} = 5 V ±10% (over recommended operating conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------------|---|--|-----|-----|-----|------| | t _{PLH} , t _{PHL} | Propagation delay time | Coo Figure 9.4 | 6 | 11 | 16 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH} | See Figure 8-1 | | 0.6 | 4.9 | ns | | t _{sk(o)} | Channel-to-channel output skew time ⁽²⁾ | Same-direction channels | | | 4 | ns | | t _{sk(pp)} | Part-to-part skew time ⁽³⁾ | | | | 4.5 | ns | | t _r | Output signal rise time | C Figure 0.4 | | 1.3 | 3.9 | ns | | t _f | Output signal fall time | See Figure 8-1 | | 1.4 | 3.9 | ns | | t _{PHZ} | Disable propagation delay, high-to-high impedance output | | | 8 | 20 | ns | | t _{PLZ} | Disable propagation delay, low-to-high impedance output | | | 8 | 20 | ns | | | Enable propagation delay, high impedance-to-high output for ISO773x | | | 7 | 20 | ns | | t _{PZH} | Enable propagation delay, high impedance-to-high output for ISO773x with F suffix | See Figure 8-2 | | 3 | 8.5 | μs | | | Enable propagation delay, high impedance-to-low output for ISO773x | | | 3 | 8.5 | μs | | t _{PZL} | Enable propagation delay, high impedance-to-low output for ISO773x with F suffix | | | 7 | 20 | ns | | t _{DO} | Default output delay time from input power loss | Measured from the time VCC goes below 1.7V. See Figure 8-3 | | 0.1 | 0.3 | μs | | t _{ie} | Time interval error | 2 ¹⁶ – 1 PRBS data at 100 Mbps | | 0.6 | | ns | ⁽¹⁾ Also known as pulse skew. ⁽²⁾ t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. ⁽³⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. ## 7.16 Switching Characteristics—3.3-V Supply V_{CC1} = V_{CC2} = 3.3 V ±10% (over recommended operating conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------------|---|--|-----|-----|-----|------| | t _{PLH} , t _{PHL} | Propagation delay time | Con Firmer 0.4 | 6 | 11 | 16 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} – t _{PLH} | See Figure 8-1 | | 0.1 | 5 | ns | | t _{sk(o)} | Channel-to-channel output skew time ⁽²⁾ | Same-direction channels | | | 4.1 | ns | | t _{sk(pp)} | Part-to-part skew time ⁽³⁾ | | | | 4.5 | ns | | t _r | Output signal rise time | Con Firmer 0.4 | | 1.3 | 3 | ns | | t _f | Output signal fall time | See Figure 8-1 | | 1.3 | 3 | ns | | t _{PHZ} | Disable propagation delay, high-to-high impedance output | | | 17 | 30 | ns | | t _{PLZ} | Disable propagation delay, low-to-high impedance output | | | 17 | 30 | ns | | | Enable propagation delay, high impedance-to-high output for ISO773x | | | 17 | 30 | ns | | ^t PZH | Enable propagation delay, high impedance-to-high output for ISO773x with F suffix | See Figure 8-2 | | 3.2 | 8.5 | μs | | | Enable propagation delay, high impedance-to-low output for ISO773x | | | 3.2 | 8.5 | μs | | t _{PZL} | Enable propagation delay, high impedance-to-low output for ISO773x with F suffix | | | 17 | 30 | ns | | t _{DO} | Default output delay time from input power loss | Measured from the time VCC goes below 1.7V. See Figure 8-3 | | 0.1 | 0.3 | μs | | t _{ie} | Time interval error | 2 ¹⁶ – 1 PRBS data at 100 Mbps | | 0.6 | | ns | | | | | | | | | ⁽¹⁾ Also known as pulse skew. Submit Document Feedback ⁽²⁾ t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. ⁽³⁾ t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. ## 7.17 Switching Characteristics—2.5-V Supply V_{CC1} = V_{CC2} = 2.5 V ±10% (over recommended operating conditions unless otherwise noted) | | PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |-------------------------------------|---|--|-----|-----|------|------| | t _{PLH} , t _{PHL} | Propagation delay time | Con Firmer 0.4 | 7.5 | 12 | 18.5 | ns | | PWD | Pulse width distortion ⁽¹⁾ t _{PHL} - t _{PLH} | See Figure 8-1 | | 0.2 | 5.1 | ns | | t _{sk(o)} | Channel-to-channel output skew time ⁽²⁾ | Same-direction channels | | | 4.1 | ns | | t _{sk(pp)} | Part-to-part skew time ⁽³⁾ | | | | 4.6 | ns | | t _r | Output signal rise time | Con Firmum 0.4 | | 1 | 3.5 | ns | | t _f | Output signal fall time | See Figure 8-1 | | 1 | 3.5 | ns | | t _{PHZ} | Disable propagation delay, high-to-high impedance output | | | 22 | 40 | ns | | t _{PLZ} | Disable propagation delay, low-to-high impedance output | | | 22 | 40 | ns | | | Enable propagation delay, high impedance-to-high output for ISO773x | | | 18 | 40 | ns | | t _{PZH} | Enable propagation delay, high impedance-to-high output for ISO773x with F suffix | See Figure 8-2 | | 3.3 | 8.5 | μs | | | Enable propagation delay, high impedance-to-low output for ISO773x | | | 3.3 | 8.5 | μs | | t _{PZL} | Enable propagation delay, high impedance-to-low output for ISO773x with F suffix | | | 18 | 40 | ns | | t _{DO} | Default output delay time from input power loss | Measured from the time VCC goes below 1.7V. See Figure 8-3 | | 0.1 | 0.3 | μs | | t _{ie} | Time interval error | 2 ¹⁶ – 1 PRBS data at 100 Mbps | | 0.6 | | ns | - (1) Also known as pulse skew. - (2)
t_{sk(o)} is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. - (3) t_{sk(pp)} is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. #### 7.18 Insulation Characteristics Curves Figure 7-1. Thermal Derating Curve for Safety Limiting Current per VDE for DW-16 Package Figure 7-2. Thermal Derating Curve for Safety Limiting Current per VDE for DBQ-16 Package 1400 1200 1200 800 800 0 50 100 150 200 Ambient Temperature (°C) D004 Figure 7.4. Thermal Postating Curve for Safety Figure 7-3. Thermal Derating Curve for Safety Limiting Power per VDE for DW-16 Package Figure 7-4. Thermal Derating Curve for Safety Limiting Power per VDE for DBQ-16 Package ### 7.19 Typical Characteristics #### **8 Parameter Measurement Information** - A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 50 kHz, 50% duty cycle, t_r \leq 3 ns, t_f \leq 3ns, Z_O = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application. - B. $C_L = 15$ pF and includes instrumentation and fixture capacitance within $\pm 20\%$. Figure 8-1. Switching Characteristics Test Circuit and Voltage Waveforms Copyright © 2016, Texas Instruments Incorporated - A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 10 kHz, 50% duty cycle, $t_r \leq$ 3 ns, $t_f \leq$ 3 ns, $Z_O =$ 50 Ω . - B. C_L = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 8-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform - C_L = 15 pF and includes instrumentation and fixture capacitance within ±20%. - B. Power Supply Ramp Rate = 10 mV/ns Figure 8-3. Default Output Delay Time Test Circuit and Voltage Waveforms A. $C_L = 15 \text{ pF}$ and includes instrumentation and fixture capacitance within $\pm 20\%$. Figure 8-4. Common-Mode Transient Immunity Test Circuit Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 9 Detailed Description #### 9.1 Overview The ISO773x family of devices has an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. If the ENx pin is low then the output goes to high impedance. The ISO773x family of devices also incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 9-1, shows a functional block diagram of a typical channel. #### 9.2 Functional Block Diagram copyright & 2010, Toxas metamente morpe Figure 9-1. Conceptual Block Diagram of a Digital Capacitive Isolator Figure 9-2 shows a conceptual detail of how the ON-OFF keying scheme works. Figure 9-2. On-Off Keying (OOK) Based Modulation Scheme ### 9.3 Feature Description Table 9-1 provides an overview of the device features. Table 9-1. Device Features | PART NUMBER | CHANNEL DIRECTION | MAXIMUM DATA
RATE | DEFAULT OUTPUT | PACKAGE | RATED ISOLATION(1) | |------------------------|------------------------------|----------------------|----------------|--|--| | ISO7730 | 3 Forward, | 100 Mbps | High | DW-16 | 5000 V _{RMS} / 8000 V _{PK} | | 1007700 | 0 Reverse | 100 Mbp3 | riigii | DBQ-16 | 3000 V _{RMS} / 4242 V _{PK} | | ISO7730 with F | 3 Forward, | 100 Mbps | Low | DW-16 | 5000 V _{RMS} / 8000 V _{PK} | | suffix | 0 Reverse | 100 Mbps | LOW | DBQ-16 | 3000 V _{RMS} / 4242 V _{PK} | | ISO7731 | 731 2 Forward, 100 Mbps High | High | DW-16 | 5000 V _{RMS} / 8000 V _{PK} | | | 1307731 | | 100 Mbps | riigii | DBQ-16 | 3000 V _{RMS} / 4242 V _{PK} | | ISO7731 with F | 2 Forward, | 100 Mbps | Low | DW-16 | 5000 V _{RMS} / 8000 V _{PK} | | suffix | 1 Reverse | 100 Mbps | LOW | DBQ-16 | 3000 V _{RMS} / 4242 V _{PK} | | ISO7731B | 2 Forward,
1 Reverse | 100 Mbps | High | DW-16 | 5000 V _{RMS} / 8000 V _{PK} | | ISO7731B with F suffix | 2 Forward,
1 Reverse | 100 Mbps | Low | DW-16 | 5000 V _{RMS} / 8000 V _{PK} | ⁽¹⁾ See Section 7.7 for detailed isolation ratings. ### 9.3.1 Electromagnetic Compatibility (EMC) Considerations Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO773x family of devices incorporates many chip-level design improvements for overall system robustness. Some of these improvements include: - Robust ESD protection cells for input and output signal pins and inter-chip bond pads. - · Low-resistance connectivity of ESD cells to supply and ground pins. - Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events. - Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path. - PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs. - Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation. #### 9.4 Device Functional Modes Table 9-2 lists the functional modes for the ISO773x devices. Table 9-2. Function Table | V _{CCI} | V _{cco} | INPUT
(INx) ⁽²⁾ | OUTPUT
ENABLE
(ENx) | OUTPUT
(OUTx) | COMMENTS | | | |------------------|------------------|-------------------------------|---------------------------|------------------|--|--|--| | PU | PU | Н | H or open | Н | Normal Operation: A channel output assumes the logic state of its input. | | | | | | L | H or open | L | | | | | | | Open | H or open | Default | Default mode: When INx is open, the corresponding channel output goes to its default logic state. Default is <i>High</i> for ISO773x and <i>Low</i> for ISO773x with F suffix. | | | | Х | PU | Х | L | Z | A low value of Output Enable causes the outputs to be high-impedance | | | | PD | PU | × | H or open | Default | Default mode: When V_{CCI} is unpowered, a channel output assumes the logic state based on the selected default option. Default is High for ISO773x and Low for ISO773x with F suffix. When V_{CCI} transitions from unpowered to powered-up, a channel output assumes the logic state of its input. When V_{CCI} transitions from powered-up to unpowered, channel output assumes the selected default state. | | | | Х | PD | Х | Х | Undetermined | When V_{CCO} is unpowered, a channel output is undetermined ⁽¹⁾ . When V_{CCO} transitions from unpowered to powered-up, a channel output assumes the logic state of its input | | | - (1) The outputs are in undetermined state when 1.7 V < V_{CCI} , V_{CCO} < 2.25 V. - (2) A strongly driven input signal can weakly power the floating V_{CC} via an internal protection diode and cause undetermined output. #### 9.4.1 Device I/O Schematics Copyright © 2016, Texas Instruments Incorporated Figure 9-3. Device I/O Schematics ## 10 Application and Implementation #### Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. ### 10.1 Application Information The ISO773x devices are high-performance, triple-channel digital isolators. These devices come with enable pins on each side which can be used to put the respective outputs in high impedance for multi-master driving applications and reduce power consumption. The ISO773x family of devices use single-ended CMOS-logic switching technology. The voltage range is from 2.25 V to 5.5 V for both supplies, V_{CC1} and V_{CC2} . When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μ C or UART), and a data converter or a line transceiver, regardless of the interface type or standard. #### **10.2 Typical Application** The ISO7731 device, combined with Texas Instruments' mixed-signal microcontroller, RS-485 transceiver, transformer driver, and voltage regulator, can create an isolated RS-485 system as shown in Figure 10-1. Copyright © 2016, Texas Instruments Incorporated Figure 10-1. Isolated RS-485 Interface Circuit ## 10.2.1 Design Requirements To design with these devices, use the parameters listed in Table 10-1. Table 10-1. Design Parameters |
PARAMETER | VALUE | |--|---------------| | Supply voltage, V _{CC1} and V _{CC2} | 2.25 to 5.5 V | | Decoupling capacitor between V _{CC1} and GND1 | 0.1 μF | | Decoupling capacitor from V _{CC2} and GND2 | 0.1 μF | ## 10.2.2 Detailed Design Procedure Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO773x family of devices only requires two external bypass capacitors to operate. Figure 10-2 and Figure 10-3 show the typical circuit hook-up for the devices. Figure 10-2. Typical ISO7730 Circuit Hook-Up Figure 10-3. Typical ISO7731 Circuit Hook-Up ## 10.2.3 Application Curves The following typical eye diagrams of the ISO773x family of devices indicate low jitter and wide open eye at the maximum data rate of 100 Mbps. #### 10.2.3.1 Insulation Lifetime Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown (TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal device and high voltage applied between the two sides; See Figure 10-7 for TDDB test setup. The insulation breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million (ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 50% for lifetime which translates into minimum required insulation lifetime of 30 years at a working voltage that's 20% higher than the specified value. Figure 10-8 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based on the TDDB data, the intrinsic capability of the insulation is $1500 \, V_{RMS}$ with a lifetime of $169 \, years$. Other factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the component. The working voltage of DW-16 package is specified upto $1500 \, V_{RMS}$ and DBQ-16 package up to $400 \, V_{RMS}$. At the lower working voltages, the corresponding insulation lifetime is much longer than $169 \, years$. Figure 10-7. Test Setup for Insulation Lifetime Measurement Figure 10-8. Insulation Lifetime Projection Data ## 11 Power Supply Recommendations To help ensure reliable operation at data rates and supply voltages, a $0.1-\mu F$ bypass capacitor is recommended at the input and output supply pins (V_{CC1} and V_{CC2}). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 or SN6505A. For such applications, detailed power supply design and transformer selection recommendations are available in the SN6501 Transformer Driver for Isolated Power Supplies data sheet or SN6505A Low-Noise 1-A Transformer Drivers for Isolated Power Supplies (SLLSEP9). Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated ## 12 Layout ## 12.1 Layout Guidelines A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 12-1). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer. - Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. - Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. - Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/inch². - Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly. For detailed layout recommendations, refer to the Digital Isolator Design Guide. #### 12.1.1 PCB Material For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and self-extinguishing flammability-characteristics. #### 12.2 Layout Example Figure 12-1. Layout Example Schematic ## 13 Device and Documentation Support ### 13.1 Documentation Support #### 13.1.1 Related Documentation For related documentation, see the following: - Texas Instruments, Digital Isolator Design Guide - Texas Instruments, Isolation Glossary - Texas Instruments, How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems application report - Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet - Texas Instruments, SNx5HVD308xE Low-Power RS-485 Transceivers, Available in a Small MSOP-8 Package data sheet - Texas Instruments, TPS76350 Low-Power 150-mA Low-Dropout Linear Regulators data sheet - Texas Instruments, MSP430F2132 Mixed Signal Microcontroller data sheet ## 13.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on *Alert me* to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. ### 13.3 Community Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. #### 13.4 Trademarks TI E2E[™] is a trademark of Texas Instruments. All trademarks are the property of their respective owners. #### 13.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. #### 13.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. # 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. www.ti.com 24-Jan-2023 # **PACKAGING INFORMATION** | Orderable Device | Status (1) | Package Type | Package
Drawing | Pins | Package
Qty | Eco Plan | Lead finish/
Ball material | MSL Peak Temp | Op Temp (°C) | Device Marking
(4/5) | Samples | |------------------|------------|--------------|--------------------|------|----------------|--------------|-------------------------------|---------------------|--------------|-------------------------|---------| | ISO7730DBQ | ACTIVE | SSOP | DBQ | 16 | 75 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 7730 | Samples | | ISO7730DBQR | ACTIVE | SSOP | DBQ | 16 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 7730 | Samples | | ISO7730DW | ACTIVE | SOIC | DW | 16 | 40 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7730 | Samples | | ISO7730DWR | ACTIVE | SOIC | DW | 16 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7730 | Samples | | ISO7730FDBQ | ACTIVE | SSOP | DBQ | 16 | 75 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 7730F | Samples | | ISO7730FDBQR | ACTIVE | SSOP | DBQ | 16 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 7730F | Samples | | ISO7730FDW | ACTIVE | SOIC | DW | 16 | 40 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7730F | Samples | | ISO7730FDWR | ACTIVE | SOIC | DW | 16 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7730F | Samples | | ISO7731BDW | ACTIVE | SOIC | DW | 16 | 40 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7731B | Samples | | ISO7731BDWR | ACTIVE | SOIC | DW | 16 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7731B | Samples | | ISO7731DBQ | ACTIVE | SSOP | DBQ | 16 | 75 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 7731 | Samples | | ISO7731DBQR | ACTIVE | SSOP | DBQ | 16 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 7731 | Samples | | ISO7731DW | ACTIVE | SOIC | DW | 16 | 40 | RoHS & Green | NIPDAU |
Level-2-260C-1 YEAR | -55 to 125 | ISO7731 | Samples | | ISO7731DWR | ACTIVE | SOIC | DW | 16 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7731 | Samples | | ISO7731FBDW | ACTIVE | SOIC | DW | 16 | 40 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7731FB | Samples | | ISO7731FBDWR | ACTIVE | SOIC | DW | 16 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7731FB | Samples | | ISO7731FDBQ | ACTIVE | SSOP | DBQ | 16 | 75 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 7731F | Samples | | ISO7731FDBQR | ACTIVE | SSOP | DBQ | 16 | 2500 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | 7731F | Samples | | ISO7731FDW | ACTIVE | SOIC | DW | 16 | 40 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7731F | Samples | | ISO7731FDWR | ACTIVE | SOIC | DW | 16 | 2000 | RoHS & Green | NIPDAU | Level-2-260C-1 YEAR | -55 to 125 | ISO7731F | Samples | # **PACKAGE OPTION ADDENDUM** www.ti.com 24-Jan-2023 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement. - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF ISO7730, ISO7731: Automotive: ISO7730-Q1, ISO7731-Q1 NOTE: Qualified Version Definitions: Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects www.ti.com 24-Jan-2023 # TAPE AND REEL INFORMATION # TAPE DIMENSIONS KO PI BO Cavity A0 | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | ISO7730DBQR | SSOP | DBQ | 16 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | ISO7730DWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7730DWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7730DWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7730FDBQR | SSOP | DBQ | 16 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | ISO7730FDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7730FDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7730FDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731BDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731BDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731BDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731DBQR | SSOP | DBQ | 16 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | ISO7731DWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731DWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731DWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731FBDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jan-2023 | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | ISO7731FBDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731FBDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731FDBQR | SSOP | DBQ | 16 | 2500 | 330.0 | 12.4 | 6.4 | 5.2 | 2.1 | 8.0 | 12.0 | Q1 | | ISO7731FDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731FDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | | ISO7731FDWR | SOIC | DW | 16 | 2000 | 330.0 | 16.4 | 10.75 | 10.7 | 2.7 | 12.0 | 16.0 | Q1 | www.ti.com 24-Jan-2023 *All dimensions are nominal | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | ISO7730DBQR | SSOP | DBQ | 16 | 2500 | 350.0 | 350.0 | 43.0 | | ISO7730DWR | SOIC | DW | 16 | 2000 | 350.0 | 350.0 | 43.0 | | ISO7730DWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7730DWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7730FDBQR | SSOP | DBQ | 16 | 2500 | 350.0 | 350.0 | 43.0 | | ISO7730FDWR | SOIC | DW | 16 | 2000 | 350.0 | 350.0 | 43.0 | | ISO7730FDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7730FDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7731BDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7731BDWR | SOIC | DW | 16 | 2000 | 350.0 | 350.0 | 43.0 | | ISO7731BDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7731DBQR | SSOP | DBQ | 16 | 2500 | 350.0 | 350.0 | 43.0 | | ISO7731DWR | SOIC | DW | 16 | 2000 | 356.0 | 356.0 | 35.0 | | ISO7731DWR | SOIC | DW | 16 | 2000 | 356.0 | 356.0 | 35.0 | | ISO7731DWR | SOIC | DW | 16 | 2000 | 350.0 | 350.0 | 43.0 | | ISO7731FBDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7731FBDWR | SOIC | DW | 16 | 2000 | 350.0 | 350.0 | 43.0 | | ISO7731FBDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | # **PACKAGE MATERIALS INFORMATION** www.ti.com 24-Jan-2023 | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | |--------------|--------------|-----------------|------|------|-------------|------------|-------------| | ISO7731FDBQR | SSOP | DBQ | 16 | 2500 | 350.0 | 350.0 | 43.0 | | ISO7731FDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7731FDWR | SOIC | DW | 16 | 2000 | 367.0 | 367.0 | 38.0 | | ISO7731FDWR | SOIC | DW | 16 | 2000 | 350.0 | 350.0 | 43.0 | www.ti.com 24-Jan-2023 # **TUBE** *All dimensions are nominal | | . | <u> </u> | | 222 | | 144 . | - , , | 5, | |-------------|--------------|--------------|------|-----|--------|--------|--------------|--------| | Device | Package Name | Package Type | Pins
| SPQ | L (mm) | W (mm) | T (µm) | B (mm) | | ISO7730DBQ | DBQ | SSOP | 16 | 75 | 505.46 | 6.76 | 3810 | 4 | | ISO7730DW | DW | SOIC | 16 | 40 | 506.98 | 12.7 | 4826 | 6.6 | | ISO7730DW | DW | SOIC | 16 | 40 | 507 | 12.83 | 5080 | 6.6 | | ISO7730FDBQ | DBQ | SSOP | 16 | 75 | 505.46 | 6.76 | 3810 | 4 | | ISO7730FDW | DW | SOIC | 16 | 40 | 507 | 12.83 | 5080 | 6.6 | | ISO7730FDW | DW | SOIC | 16 | 40 | 506.98 | 12.7 | 4826 | 6.6 | | ISO7731BDW | DW | SOIC | 16 | 40 | 507 | 12.83 | 5080 | 6.6 | | ISO7731BDW | DW | SOIC | 16 | 40 | 506.98 | 12.7 | 4826 | 6.6 | | ISO7731DBQ | DBQ | SSOP | 16 | 75 | 505.46 | 6.76 | 3810 | 4 | | ISO7731DW | DW | SOIC | 16 | 40 | 507 | 12.83 | 5080 | 6.6 | | ISO7731DW | DW | SOIC | 16 | 40 | 506.98 | 12.7 | 4826 | 6.6 | | ISO7731FBDW | DW | SOIC | 16 | 40 | 507 | 12.83 | 5080 | 6.6 | | ISO7731FBDW | DW | SOIC | 16 | 40 | 506.98 | 12.7 | 4826 | 6.6 | | ISO7731FDBQ | DBQ | SSOP | 16 | 75 | 505.46 | 6.76 | 3810 | 4 | | ISO7731FDW | DW | SOIC | 16 | 40 | 507 | 12.83 | 5080 | 6.6 | | ISO7731FDW | DW | SOIC | 16 | 40 | 506.98 | 12.7 | 4826 | 6.6 | 7.5 x 10.3, 1.27 mm pitch SMALL OUTLINE INTEGRATED CIRCUIT This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details. SOIC ## NOTES: - 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing - per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. - 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side. - 5. Reference JEDEC registration MS-013. SOIC ## NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SOIC ### NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. SHRINK SMALL-OUTLINE PACKAGE ## NOTES: - 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. - 2. This drawing is subject to change without notice. - 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 inch, per side. - 4. This dimension does not include interlead flash.5. Reference JEDEC registration MO-137, variation AB. SHRINK SMALL-OUTLINE PACKAGE NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. SHRINK SMALL-OUTLINE PACKAGE NOTES: (continued) - 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. - 9. Board assembly site may have different recommendations for stencil design. # IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated