WIMA FKM 2

Film and Foil Capacitors with Mixed Dielectric for Pulse Applications in PCM 5 mm

Special Features

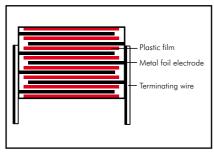
- Pulse duty construction
- Constant capacitance value versus temperature (similar to the obsolete Polycarbonate)
- Low dissipation factor
- According to RoHS 2002/95/EC

Typical Applications

For general DC-applications requiring a high capacitance stability versus temperature e.g.

- Automotive electronics
- Lighting

Construction


Dielectric:

Mixed film

Capacitor electrodes:

Metal foil

Internal construction:

Encapsulation:

Solvent-resistant, flame-retardant plastic case with epoxy resin seal, UL 94 V-0

Terminations:

Tinned wire.

Marking:

Colour: Red. Marking: Gold. Epoxy resin seal: Yellow.

Electrical Data

Capacitance range:

1000 pF to 0.022 μ F (E12-values on request)

Rated voltages:

100 VDC, 250 VDC, 400 VDC

Capacitance tolerances:

 \pm 20%, \pm 10%, \pm 5% (\pm 2.5% available subject to special enquiry)

Operating temperature range:

-55° C to +100° C

Climatic test category:

55/100/56 in accordance with IEC

Insulation resistance at +20° C:

 $\geq 5 \times 10^5 M\Omega$

(mean value: 1 x 10^6 M Ω) Measuring voltage: 100 V/1 min.

Test voltage: $2 U_r$, 2 sec.

Dissipation factors at $+20^{\circ}$ C: tan δ

at f	C ≤ 0.022 µ F
1 kHz	$\leq 3 \times 10^{-3}$
10 kHz	$\leq 5 \times 10^{-3}$
100 kHz	$\leq 8 \times 10^{-3}$

Maximum pulse rise time:

1000 V/ μ sec for pulses equal to the rated voltage

Mechanical Tests

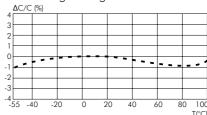
Pull test on leads:

10 N in direction of leads according to IEC 60068-2-21

Vibration:

6 hours at 10 ... 2000 Hz and 0.75 mm displacement amplitude or 10 g in accordance with IEC 60068-2-6

Low air density:


1kPa = 10 mbar in accordance with IEC 60068-2-13

Bump test:

4000 bumps at 390 m/sec² in accordance with IEC 60068-2-29

Capacitance change versus temperature

(f = 1 kHz) (general guide)

Voltage derating:

A voltage derating factor of 1.35 % per K must be applied from +85° C for DC voltages and from +75° C for AC voltages

Reliability:

Operational life > 300 000 hours Failure rate < 5 fit (0.5 x U, and 40° C)

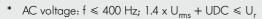
Packing

Available taped and reeled.

Detailed taping information and graphs at the end of the catalogue.

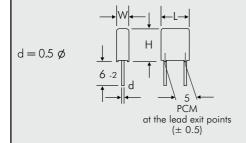
For further details and graphs please refer to Technical Information.

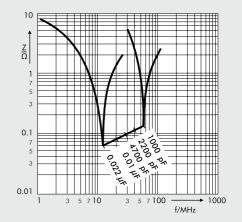
WIMA FKM 2



Continuation

General Data


Capacitance	W	Н		00 VDC. PCM**	/63 VAC* Part number	250 VDC/160 VAC* W H L PCM** Part number						
1000 pF 1500 " 2200 " 3300 " 4700 " 6800 "	2.5 2.5 2.5 2.5 3.5 3.5	6.5 6.5 6.5 6.5 8.5 8.5	7.2 7.2 7.2 7.2 7.2 7.2 7.2	5 5 5 5 5	FKM2D011001A00 FKM2D011501A00 FKM2D012201A00 FKM2D013301A00 FKM2D014701C00 FKM2D016801C00	2.5 2.5 2.5 3.5 3.5 4.5	6.5 6.5 6.5 8.5 8.5 9.5	7.2 7.2 7.2 7.2 7.2 7.2 7.2	5 5 5 5 5	FKM2F011001A00 FKM2F011501A00 FKM2F012201A00 FKM2F013301C00 FKM2F014701C00 FKM2F016801E00		
0.01 µF 0.015 " 0.022 "	4.5 5.5 7.2	9.5 11.5 13	7.2 7.2 7.2	5 5 5	FKM2D021001E00 FKM2D021501H00 FKM2D022201K00	5.5 7.2	11.5 13	7.2 7.2	5 5	FKM2F021001H00 FKM2F021501K00		


_	400 VDC/200 VAC*									
Capacitance	W	Н	L	PCM**						
1000 pF	2.5	6.5	7.2	5	FKSMG011001A00					
1500 "	3.5	8.5	7.2	5	FKSMG011501C00					
2200 "	3.5	8.5	7.2	5	FKSMG012201C00					
3300 "	4.5	9.5	7.2	5	FKSMG013301E00					
4700 "	4.5	9.5	7.2	5	FKSMG014701E00					
6800 "	5.5	11.5	7.2	5	FKSMG016801H00					
0.01 µ F	7.2	13	7.2	5	FKSMG021001K00					

^{**} PCM = Printed circuit module = lead spacing

Dims. in mm.

Impedance change with frequency (general guide).

Part number completion:						
Tolerance:	20 % = M					
	10% = K					
	5% = J					
	2.5% = H					
Packing:	bulk = S					
Lead length:	6-2 = SD					
Taped versio	n see page 140.					

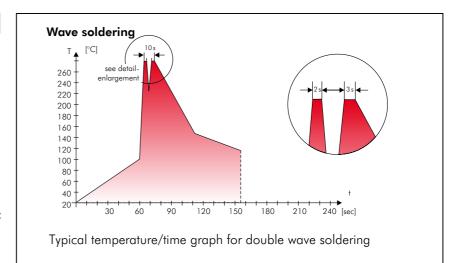
Rights reserved to amend design data without prior notification.

Recommendation for Processing and Application of **Through-Hole Capacitors**

Soldering Process

A preheating of through-hole WIMA capacitors is allowed for temperatures $T_{\text{max}} < 100 \,^{\circ} \text{C}.$

In practice a preheating duration of t < 5 min. has been proven to be best.


Single wave soldering

Soldering bath temperature: $T < 260^{\circ} C$ Immersion time: t < 5 sec

Double wave soldering

Soldering bath temperature: $T < 260^{\circ} C$ Immersion time: $2 \times t < 3 \text{ sec}$

Due to different soldering processes and heat requirements the graphs are to be regarded as a recommendation only.

WIMA Quality and Environmental Philosophy

ISO 9001:2000 Certification

ISO 9001:2000 is an international basic standard of quality assurance systems for all branches of industry. The approval according to ISO 9001:2000 of our factories by the VDE inspectorate certifies that organisation, equipment and monitoring of quality assurance in our factories correspond to internationally recognized standards.

WIMA WPCS

The WIMA Process Control System (WPCS) is a quality surveillance and optimization system developed by WIMA. WPCS is a major part of the quality-oriented WIMA production. Points of application of WPCS during production process:

- incoming material inspection
- metallization
- film inspection
- schoopage
- pre-healing
- lead attachment
- cast resin preparation/ encapsulation
- 100% final inspection
- AQL check

WIMA Environmental Policy

All WIMA capacitors, irrespective of whether through-hole devices or SMD, are made of environmentally friendly materials. Neither during manufacture nor in the product itself any toxic substances are used, e.g.

- Lead
- PBB/PBDE
- PCB
- Arsenic
- CFC

- Hydrocarbon chloride
- Cadmium
- Chromium 6+
- Mercury

We merely use pure, recyclable materials for packing our components, such as:

- carton
- cardboard
- adhesive tape made of paper
- polystyrene

We almost completely refrain from using packing materials such as:

- foamed polystyrene (Styropor®)
- adhesive tapes made of plastic
- metal clips

RoHS Compliance

According to the RoHS Directive 2002/95/EC certain hazardous substances like e.g. lead, cadmium, mercury must not be used any longer in electronic equipment as of July 1st, 2006. For the sake of the environment WIMA has refraind from using such substances since years already.

Tape for lead-free WIMA capacitors

DIN EN ISO 14001:2005

WIMA's environmental management has been established in accordance with the auidelines of DIN EN ISO 14001:2005. The certification has been granted in June 2006.

Typical Dimensions for Taping Configuration

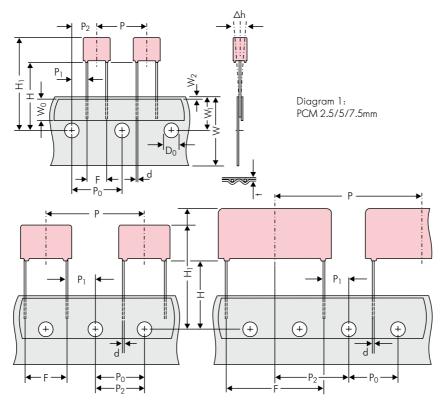


Diagram 2: PCM 10/15 mm

Diagram 3: PCM 22.5 and 27.5*mm
*PCM 27.5 taping possible with two feed holes between components

Dimensions for Radial Taping											
Designation	Symbol	PCM 2.5 taping	PCM 5 taping	PCM 7.5 taping	PCM 10 taping*	PCM 15 taping*	PCM 22.5 taping	PCM 27.5 taping			
Carrier tape width	W	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5	18.0 ±0.5			
Hold-down tape width	W ₀	6.0 for hot-sealing adhesive tape	6.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape	12.0 for hot-sealing adhesive tape			
Hole position	W ₁	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5	9.0 ±0.5			
Hold-down tape position	W ₂	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.	0.5 to 3.0 max.			
Feed hole diameter	D ₀	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2	4.0 ±0.2			
Pitch of component	Р	12.7 ±1.0	12.7 ±1.0	12.7 ±1.0	25.4 ±1.0	25.4 ±1.0	38.1 ±1.5	38.1 ±1.5 or 50.8 ±1.5			
Feed hole pitch	P ₀	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	12.7 ±0.3 cumulative pitch error max. 1.0 mm/20 pitch	cumulative pitch 12.7 ±0.3 error max. 1.0 mm/20 pitch			
Feed hole centre to lead	P ₁	5.1 ±0.5	3.85 ±0.7	2.6 ±0.7	7.7 ±0.7	5.2 ±0.7	7.8 ±0.7	5.3 ±0.7			
Hole centre to component centre	P ₂	6.35 ±1.3	6.35 ±1.3	6.35 ±1.3	12.7 ±1.3	12.7 ±1.3	19.05 ±1.3	19.05 ±1.3			
Feed hole centre to bottom	Н	16.5 ±0.3	16.5 ±0.3	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5	16.5 ±0.5			
edge of the component	""	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5	18.5 ±0.5			
Feed hole centre to top edge of the component	H ₁	$H+H_{component} < H_1$ 32.25 max.	$H+H_{component} < H_1$ 32.25 max.	$H+H_{component} < H_1$ 24.5 to 31.5	H+H _{component} < H ₁ 25.0 to 31.5	H+H _{component} < H ₁ 26.0 to 37.0	$H+H_{component} < H_1$ 30.0 to 43.0	H+H _{component} < H ₁ 35.0 to 45.0			
Lead spacing at upper edge of carrier tape	F	2.5 ±0.5	5.0 ^{+0.8} _{-0.2}	7.5 ±0.8	10.0 ±0.8	15 ±0.8	22.5 ±0.8	27.5 ±0.8			
Lead diameter	d	0.4 ±0.05	0.5 ±0.05	*0.5 ±0.05 or 0.6 +0.06 -0.05	*0.5 ±0.05 or 0.6 +0,06 -0.05	0.8 +0,08 -0.05	0.8 +0,08 -0.05	0.8 +0.08 -0.05			
Component alignment	Δh	± 2.0 max.	± 2.0 max.	± 3.0 max.	± 3.0 max.	± 3.0 max.	\pm 3.0 max.	\pm 3.0 max.			
Total tape thickness	t	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2	0.7 ±0.2			
D 1		ROLL//	AMMO	AMMO							
Package (see also page 141) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						REEL $\begin{picture}(60,360) max & 52 \div 2 \\ \beta 30 \div 1 & 8 \div 8 \div 2 \text{ or } REEL \begin{picture}(60,300) max & 54 \div 2 \\ \beta 25 \div 1 & 6 \div 2 \div 2 \div 6 \$					
Unit					see details page 143.						

Dims in mm.

Please clarify customer-specific deviations with the manufacturer.

[•] Diameter of leads see General Data.

^{*} PCM 10 and PCM 15 can be crimped to PCM 7.5. Position of components according to PCM 7.5 (sketch 11. $P_0 = 12.7$ or 15.0 is possible

Packing Quantities for Bulk Capacitors and TPS*

		Ç;	ze			er packaging ur		pcs. per packaging unit/TPS*			
PCM			20	,	Mini	Standard	Maxi	Mini	Standard		
	W	Н	L	Codes	M	S	G	Х	Υ		
	2.5	7	4.6	0B	1000	5000	10 000	-	-		
2 E	3	7.5	4.6	0C	1000	5000	10 000	-	-		
2.5 mm	3.8	8.5	4.6	0D	1000	5000	10 000	-	-		
	4.6	9	4.6	0E	1000	5000	10 000	-	-		
	5.5	10	4.6	OF .	1000	5000	10 000	-			
	2.5	6.5	7.2	1A	2000	5000	10 000	-	-		
	3	7.5	7.2	1B	1000	5000	_	-	-		
	3.5	8.5	7.2	1C	1000	5000	_	_	-		
	4.5 4.5	6 9.5	7.2 7.2	1D	1000 1000	6000	-	_	_		
				1E 1F		4000	_	_	_		
_	5	10 7	7.2 7.2	1G	1000 1000	3500	-	_	_		
5 mm	5.5 5.5	11.5	7.2 7.2	1H	500	4000 2500	_	_	_		
	6.5	8	7.2 7.2	;;;;	1000	2500	_	_	_		
	7.2	8.5	7.2	ij	500	2500	_	_	_		
	7.2	13	7.2	1K	500	2000	_	_	_		
	8.5	10	7.2	l il l	500	2000	_	_	_		
	8.5	14	7.2	im	500	1500	_	_	_		
	11	16	7.2	1M	250	1000	_	_			
	2.5	7	10	2A	1000	5000					
	3	8.5	10	2B	1000	5000	_	_	_		
	4	9	10	2C	1000	4000	_	_	_		
7.5 mm	4.5	9.5	10.3	2D	1000	3500	_	_	_		
	5	10.5	10.3	2E	1000	3000	_	_	_		
	5.7	12.5	10.3	2F	500	2000	_	_	_		
	7.2	12.5	10.3	2G	500	1500	_	_	_		
	3	9	13	3A	1000	3000	_	-	-		
	4	8.5	13.5	FA	500	3000	-	-	_		
	4	9	13	3C	1000	3000	-	-	_		
	4	9.5	13	3D	1000	3000	_	-	-		
10 mm	5	10	13.5	FB	500	2000	-	-	-		
	5	11	13	3F	1000	3000	-	-	-		
	6	12	13	3G	800	2400	_	-	-		
	6	12.5	13	3H	800	2400	_	=	-		
	8	12	13	31	500	2000	-	-	_		
	5	11	18	4B	800	2400	-	-	-		
	5	13	19	FC	200	1000		-	-		
	6	12.5	18	4C	500	2000	-	-	-		
	6	14	19	FD	250	1000		-	-		
	7	14	18	4D	400	1600	-	-	-		
15	7	15	19	FE	250	1000		-	-		
15 mm	8	15	18	4H	400	1200	-	-	-		
	8	17	19	FF	100	500		-	-		
	9	14	18	4F	400	1200	-	-	-		
	9	16	18	4J	300	900	-	-	_		
	10	18	19	FG	100	500	-	-	-		
	11	14	18	4M	300	1000	-	-	-		
	5	14	26.5	5A	300	1200	-	-	-		
	6	15	26.5	5B	250	1000	-	-	-		
	7	16.5	26.5	5D	190	760	-	- 11 <i>C</i>	- (00		
	8	20	28	FH	-	-	-	115	690		
22.5 mm	8.5	18.5	26.5	5F	-	-	-	220	880 540		
	10	22	28	FI	-	-	_	90	540 680		
	10.5	19	26.5	5G	_	_	_	170	680 680		
	10.5 11	20.5 21	26.5 26.5	5H 5I	_	_	_	170 170	680 680		
	12		26.5	FJ	_	_	_		450		
	9	24 19	31.5	6A	_	_	_ _	75 160	640		
	11	21	31.5	6B	_ _	_	_	136	544		
	13	24	31.5	6D	_			112	448		
	13	25	33	FK	_		_	56	336		
7.5	15	26	31.5	6F	_	_	_	96	384		
27.5 mm	15	26	33	FL	_	_	_	48	288		
	17	29	31.5	6G	_	_	_	88	176		
	17	34.5	31.5	61	_	_	_	88	176		
	20	32	33	FM	_	_	_	36	216		
	20	39.5	31.5	6J	_	_	_	36	144		
	9	19	41.5	7A	_	_	_	60	480		
	11	22	41.5	7B	_	_	_	51	408		
	13	24	41.5	7C	_	_	_	84	252		
97 F		26	41.5	7D	_	_	_	/')	144		
37.5 mm	15	26 29	41.5 41.5	7D 7E	_	-	-	72 66	144 132		
37.5 mm	15	26 29 32	41.5	7D 7E 7F	- - -	- - -	- - -	66	132		
37.5 mm	15 17	29		7E	- - -	- - -	- - - -	7/2 66 54 27			

Packing Units for Taped Capacitors with Radial Leads

					RO	LL	REEL			AMMO																								
PCM		Si	ze				ø3		Ø 5		1	× 340	490 >																					
TOVI					H16.5	H18.5	H16.5	H18.5	H16.5	H18.5	H16.5		H16.5	H18.5																				
	W	H	L	Codes	N	0	F	<u>l</u>	Н	J	Α		В	D																				
	2.5 3	7 7.5	4.6 4.6	0B 0C	22 20		25 23		-	- -		00 00	-	-																				
2.5 mm	3.8	8.5	4.6	0D	15		18		-	-		00	-	-																				
	4.6	9	4.6	0E	12		15		-	-		00	-	-																				
	5.5	10	4.6	OF 1A		00	12		-			00	-																					
	2.5 3	6.5 7.5	7.2 7.2	1B	22 20		25 23		-	- -		00 00	-																					
	3.5	8.5	7.2	ic	16		20		-	-		00	-	-																				
	4.5	6	7.2	1D	13		15		-	-		00	-	-																				
	4.5 5	9.5 10	7.2 7.2	1E 1F	13 110		15 14		-	- -		00 00	-	-																				
5 mm	5.5	7	7.2	1G	10		12		-	-		00	-	-																				
J 111111	5.5	11.5	7.2	1H	10		12		-	-		00	-	-																				
	6.5 7.2	8 8.5	7.2 7.2	11 1 J		00 00	10 10			-		00 00	-	-																				
	7.2	13	7.2	1K		00		50	_	_		00		_																				
	8.5	10	7.2	1L		00		00	-	-		00	-	-																				
	8.5 11	14 16	7.2 7.2	1M 1N		00 00		00 00		- -		00	-	-																				
	2.5	7	10	2A			25		44			00																						
	3	8.5	10	2B	_		22	00	43	00	23	00	41	50																				
7.5 mm	4	9	10	2C	-	-	1700		32			00	3100																					
7.5 mm	4.5 5	9.5 10.5	10.3 10.3	2D 2E	-		1500 1300		2900 2500		1400 1300		2800																					
	5.7	12.5	10.3	2F	_	-		1000		2200		1100		_																				
	7.2	12.5	10.3	2G	-	-	900		900		900		900		900								900				900		000 1800		10		-	
	3 4	9 8.5	13 13.5	3A FA	-]](00	22	00 00		-	19 14																					
	4	9	13.5	3C	_			00		00	-	- -	14																					
10	4	9.5	13	3D	-		9	900		1600		-		00																				
10 mm	5 5	10 11	13.5 13	FB 3F	-			00 00		00	<u> </u>		12 12	00																				
	6	12	13	3G	-		550		1300 1100		_		10																					
	6	12.5	13	3H	-		550		1100		-		10	00																				
	8	12	13	31	-			00		00	-	_		40																				
	5 5	11 13	18 19	4B FC	-			00 00		00 00	-	-	11. 12																					
	6	12.5	18	4C	-			00	10		-	_	10	00																				
	6	14	19	FD	-	-		00		00	-	-	10	00																				
	7	14 15	18 19	4D FE	-			50 50		00	-	- -		50 50																				
15 mm	8	15	18	4H	-			00		00	-	_		40																				
	8	17	19	FF	-	-		00		00	-	-		40																				
	9	14 16	18 18	4F 4J	_	-	350 350		700 700				650 650																					
	10	18	19	FG	-			00		50		-		90																				
	11	14	18	4M	-		3	00	6	00	-		-	40																				
	5	14	26.5 26.5	5A	-		-			00		-		70 40																				
	6 7	15 16.5	26.5	5B 5D	-		-			00	-			40 50																				
	8	20	28	FH	-		-		5	00	-	-	4	80																				
22.5 mm	8.5 10	18.5 22	26.5 28	5F	-		-	-		80	-	-		50 80																				
	10.5	19	26.5	FI 5G	-		-	-		20 00	_		380 360																					
	10.5	20.5	26.5	5H	-		-		4	00	-	-	3	60																				
]]	21	26.5	51	-		-		380 350		-		350																					
	12	24 19	28 31.5	FJ 6A	-				460/		-			10 20																				
27 5	11	21	31.5	6B	-		_		380/			_		20 50																				
27.5 mm	13	24	31.5	6D	-		-	-	3	00	-	-	2	90																				
	15	26	31.5	6F	-		-	-	2	70	-	-	2	50																				

^{*} for 2-inch transport pitches.

Samples and pre-production needs 1 packing unit minimum.

Moulded versions.

Rights reserved to amend design data without prior notification.

WIMA Part Number System

A WIMA part number consists of 18 digits and is composed as follows:

Field 1 - 4: Type description

Field 5 - 6: Rated voltage

Field 7 - 10: Capacitance

Field 11 - 12: Size and PCM

Field 13 - 14: Special features (e.g. Snubber versions)

Field 15: Capacitance tolerance

Packing Packing Field 16:

Field 17 - 18: Lead length (untaped)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
M	K	S	2	С	0	2	1	0	0	1	Α	0	0	М	S	S	D
	MK	S 2		63 \	/DC		0.0	l µF		2.5×6	.5×7.2		-	20%	bulk	6	-2
						•				•							

Type description:	Rated voltage:	Capacitance:	Size:	Tolerance:
SMD-PET = SMDT	16 VDC = A0	22 pF = 0022	$4.8 \times 3.3 \times 3$ Size $1812 = X1$	20% = M
SMD-PEN = SMDN	2.5 VDC = A1	47 pF = 0047	$4.8 \times 3.3 \times 4$ Size $1812 = X2$	10% = K
SMD-PPS = SMDI	4 VDC = A2	100 pF = 0100	$5.7 \times 5.1 \times 3.5$ Size $2220 = Y1$	5% = J
FKP 02 = FKP0	14 VDC = A3	150 pF = 0150	$5.7 \times 5.1 \times 4.5$ Size $2220 = Y2$	2.5% = H
MKS 02 = MKS0	28 VDC = A4	220 pF = 0220	$7.2 \times 6.1 \times 3$ Size $2824 = T1$	1% = E
FKS 2 = FKS2	40 VDC = A5	330 pF = 0330	$7.2 \times 6.1 \times 5$ Size $2824 = T2$	
FKM 2 = FKM2	5 VDC = A6	470 pF = 0470	$10.2 \times 7.6 \times 5$ Size $4030 = K1$	
FKP 2 = FKP2	50 VDC = B0	680 pF = 0680	$12.7 \times 10.2 \times 6$ Size $5040 = V1$	
MKS 2 = MKS2	63 VDC = C0	1000 pF = 1100	$15.3 \times 13.7 \times 7$ Size $6054 = Q1$	Packing:
MKP 2 = MKP2	100 VDC = D0	1500 pF = 1150	$2.5 \times 7 \times 4.6 \text{ PCM} 2.5 = 0B$	$AMMO H16.5 340 \times 340 = A$
MKI 2 = MKI2	160 VDC = E0	2200 pF = 1220	$3 \times 7.5 \times 4.6 \text{ PCM } 2.5 = 0 \text{C}$	AMMO H16.5 $490 \times 370 = B$
FKS 3 = FKS3	250 VDC = FO	3300 pF = 1330	$2.5 \times 6.5 \times 7.2 \text{ PCM} 5 = 1 \text{A}$	AMMO H18.5 $340 \times 340 = C$
FKM 3 = FKM3	400 VDC = G0	4700 pF = 1470	$3 \times 7.5 \times 7.2 \text{ PCM} 5 = 1B$	AMMO H18.5 $490 \times 370 = D$
FKP 3 = FKP3	450 VDC = H0	6800 pF = 1680	$2.5 \times 7 \times 10 \text{ PCM } 7.5 = 2A$	REEL H16.5 360 = F
MKS 4 = MKS4	600 VDC = 10	$0.01 \mu F = 2100$	$3 \times 8.5 \times 10 \text{ PCM } 7.5 = 2B$	REEL H16.5 500 = H
MKM 4 = MKM4	630 VDC = J0	$0.022 \mu F = 2220$	$3 \times 9 \times 13 \text{ PCM } 10 = 3A$	REEL H18.5 360 = I
MKP 4 = MKP4	700 VDC = KO	$0.047 \mu F = 2470$	$4 \times 9 \times 13 \text{ PCM } 10 = 3C$	REEL H18.5 500 = J
MKP 10 = MKP1	800 VDC = 10	$0.1 \mu F = 3100$	$5 \times 11 \times 18 \text{ PCM } 15 = 4B$	ROLL H16.5 $= N$
FKP 4 = FKP4	850 VDC = M0	$0.22 \mu F = 3220$	$6 \times 12.5 \times 18 \text{ PCM } 15 = 4 \text{ C}$	ROLL H18.5 = O
FKP 1 = FKP1	900 VDC = N0	$0.47 \mu F = 3470$	$5 \times 14 \times 26.5 \text{ PCM } 22.5 = 5A$	BLISTER W12 180 $= P$
MKP-X2 = MKX2	1000 VDC = 01	$1 \mu F = 4100$	$6 \times 15 \times 26.5 \text{ PCM } 22.5 = 5B$	BLISTER W12 330 $= Q$
MKP-X2 R = MKXR	1100 VDC = P0	$2.2 \mu F = 4220$	$9 \times 19 \times 31.5 \text{ PCM } 27.5 = 6A$	BLISTER W16 330 $=$ R
MKP-Y2 = MKY2	1200 VDC = Q0	$4.7 \mu F = 4470$	$11 \times 21 \times 31.5 \text{ PCM } 27.5 = 6B$	BLISTER W24 330 $=$ T
MP 3-X2 = MPX2	1250 VDC = R0	$10 \mu F = 5100$	$9 \times 19 \times 41.5 \text{ PCM} 37.5 = 7A$	Bulk Mini = M
MP 3-X1 = MPX1	1500 VDC = S0	$22 \mu F = 5220$	$11 \times 22 \times 41.5 \text{ PCM} 37.5 = 7B$	Bulk Standard = S
MP 3-Y2 = MPY2	1600 VDC = T0	$ 47 \mu F = 5470$	$94 \times 49 \times 182 \text{ DCH}_{-} = \text{H0}$	Bulk Maxi = G
MP 3R-Y2 = MPRY	2000 VDC = U0	$100 \mu F = 6100$	$94 \times 77 \times 182 \text{ DCH}_{-} = \text{H1}$	TPS Mini = X
Snubber MKP = SNMP	2500 VDC = V0	$220 \mu F = 6220$		TPS Standard $= Y$
Snubber FKP = SNFP	3000 VDC = W0	1 F = A010		
GTO MKP = GTOM	4000 VDC = X0	2.5 F = A025		
DC-LINK MKP 4 = DCP4	6000 VDC = Y0	50 F = A500	Special features:	
DC-LINK MKP C = DCPC	250 VAC = 0W	100 F = B100	Standard = 00	Lead length (untaped)
$DC-LINK HC = DCH_$	275 VAC = 1 W	110 F = B110	Version A1 = 1A	$3.5 \pm 0.5 = C9$
SuperCap C = SCSC	300 VAC = 2W	600 F = B600	Version A1.1.1 = 1B	6-2 = SD
SuperCap MC = SCMC	400 VAC = 3W	1200 F = C120	Version A1.2 = 1C	16-1 = P4
SuperCap R = SCSR	440 VAC = 4W			
SuperCap MR = SCMR	500 VAC = 5W			

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.