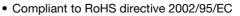


Vishay Semiconductors

COMPLIANT

Fast Thyristor/Diode and Thyristor/Thyristor (MAGN-A-PAK Power Modules), 200 A



MAGN-A-PAK

PRODUCT SUMMARY			
I _{T(AV)}	200 A		
Туре	Modules - Thyristor, Fast		

FEATURES

- · Fast turn-off thyristor
- Fast recovery diode
- High surge capability
- · Electrically isolated baseplate
- 3500 V_{RMS} isolating voltage
- Industrial standard package
- UL approved file E78996

• Designed and qualified for industrial level

DESCRIPTION

This series of MAGN-A-PAK modules are intended for applications such as self-commutated inverters, DC choppers, electronic welders, induction heating and others where fast switching characteristics are required.

MAJOR RATING	S AND CHARACTERISTICS		
SYMBOL	CHARACTERISTICS	VALUES	UNITS
1		200	A
I _{T(AV)}	T _C	85	°C
I _{T(RMS)}		444	
1	50 Hz	7600	Α
I _{TSM}	60 Hz	8000	
l ² t	50 Hz	290	kA ² s
1-1	60 Hz	265	KA-S
l²√t		2900	kA²√s
t _q		20/25	
t _{rr}		2	μs
V _{DRM} /V _{RRM}		800/1200	V
T _J	Range	- 40 to 125	°C

ELECTRICAL SPECIFICATIONS

VOLTAGE RATINGS							
TYPE NUMBER	VOLTAGE CODE	V _{RRM} /V _{DRM} , MAXIMUM REPETITIVE PEAK REVERSE AND OFF-STATE BLOCKING VOLTAGE V	V _{RSM} , MAXIMUM NON-REPETITIVE PEAK REVERSE VOLTAGE V	I _{RRM} /I _{DRM} AT T _J = 125 °C mA			
VSK.F200-	08	800	800	50			
V3N.F200-	12	1200	1200	50			

Document Number: 94422 Revision: 19-Jul-10

Vishay Semiconductors Fast Thyristor/Diode and Thyristor/Thyristor (MAGN-A-PAK Power Modules), 200 A

CURRENT CARRYING CAPABILITY							
FREQUENCY	180° el		180° €	I _{TM}	100 µ	I _{TM}	UNITS
50 Hz	380	560	630	850	2460	3180	
400 Hz	460	690	710	1060	1570	2080	
2500 Hz	310	450	530	760	630	860	Α
5000 Hz	250	360	410	560	410	560	
10 000 Hz	180	280	300	410	-	-	
Recovery voltage V _r	50	50	50	50	50	50	V
Voltage before turn-on V _d	80 %	V _{DRM}	80 %	V_{DRM}	80 %	V_{DRM}	V
Rise of on-state current dl/dt	50	50	-	-	-	-	A/µs
Case temperature	85	60	85	60	85	60	°C
Equivalent values for RC circuit	10/0	0.47	10/	0.47	10/	0.47	Ω/μF

PARAMETER	SYMBOL	TEST CONDITIONS			VALUES	UNITS
Maximum average on-state current		180° conduction, half sine wave		200	Α	
at case temperature	I _{T(AV)}	180 Conduction	ii, iiaii siile wave		85	°C
Maximum RMS on-state current	I _{T(RMS)}	As AC switch			444	
		t = 10 ms	No voltage		7600	
Maximum peak, one-cycle		t = 8.3 ms	reapplied		8000	Α
non-repetitive on-state, surge current	I _{TSM}	t = 10 ms	100 % V _{RRM}		6400	
		t = 8.3 ms	reapplied	Sinusoidal	6700	
		t = 10 ms No voltage	half wave, initial T _{.I} = 125 °C	290		
Maximum I ² t for fusing	l ² t	t = 8.3 ms	reapplied		265	kA ² s
		t = 10 ms	100 % V _{RRM}		205	
		t = 8.3 ms	reapplied		187	
Maximum I²√t for fusing	l²√t	t = 0.1 ms to 10	ms, no voltage re	eapplied	2900	kA²√s
Low level value or threshold voltage	V _{T(TO)1}	(16.7 % x π x I _T , T _J = T _J maximu	$_{(AV)} < I < \pi \times I_{T(AV)},$ m		1.18	V
High level value of threshold voltage	V _{T(TO)2}	$(I > \pi \times I_{T(AV)} < I$	$<\pi \times I_{T(AV)}$, $T_{J} = T$	J maximum	1.25	
Low level value on-state slope resistance	r _{t1}	(16.7 % x π x $I_{T(AV)}$ < I < π x $I_{T(AV)}$), $I_{J} = I_{J}$ maximum			0.74	mΩ
High level value on-state slope resistance	r _{t2}	$(I > \pi \times I_{T(AV)} < I < \pi \times I_{T(AV)}), T_J = T_J \text{ maximum}$		0.70		
Maximum on-state voltage drop	V_{TM}	$I_{pk} = 600 \text{ A}, T_J = T_J \text{ maximum}, t_p = 10 \text{ ms sine pulse}$		1.73	V	
Maximum holding current	I _H	$T_J = 25 ^{\circ}\text{C}, I_T >$	30 A		600	να Λ
Maximum latching current	ΙL	T _{.1} = 25 °C, V _A =	= 12 V, Ra = 6 Ω, I	g = 1A	1000	mA

SWITCHING						
PARAMETER	SYMBOL	TEST CONDITIONS		VALUES		
PANAMETEN	STIVIBUL			J	UNITS	
Maximum non-repetitive rate of rise	dl/dt	dI/dt Gate drive 20 V, 20 Ω , $t_r \le 1$ ms, $V_D = 80$ % V_{DRM} , $T_J = 25$ °C		800		
Maximum recovery time	t _{rr}	$I_{TM} = 350 \text{ A}, \text{ dI/dt} = -25 \text{ A/}\mu\text{s}, \text{ V}_{R} = 50 \text{ V}, \text{ T}_{J} = 25 ^{\circ}\text{C}$	2	2		
Maximum turn-off time	t _q	I_{TM} = 750 A; T_J = T_J maximum; dl/dt = - 25 A/ μ s; V_R = 50 V; dV/dt = 400 V/ μ s linear to 80 % V_{DRM}	20	25	μs	

BLOCKING					
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS	
Maximum critical rate of rise of off-state voltage	dV/dt	T _J = 125 °C, exponential to 67 % V _{DRM}	1000	V/µs	
RMS insulation voltage	V _{INS}	50 Hz, circuit to base, T _J = 25 °C, t = 1 s	3000	V	
Maximum peak reverse and off-state leakage current	I _{RRM} , I _{DRM}	T _J = 125 °C, rated V _{DRM} /V _{RRM} applied	50	mA	

TRIGGERING				
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum peak gate power	P_{GM}	f = 50 Hz, d% = 50	60	W
Maximum peak average gate power	P _{G(AV)}	T _J = 125 °C, f = 50 Hz, d% = 50	10	VV
Maximum peak positive gate current	I _{GM}	T = 105 °C + < 5 mg	10	Α
Maximum peak negative gate voltage	-V _{GT}	$T_J = 125 ^{\circ}\text{C}, t_p \le 5 \text{ms}$	5	V
Maximum DC gate current required to trigger	I _{GT}	T 05 °C V 10 V Do 6	200	mA
DC gate voltage required to trigger	V _{GT}	T _J = 25 °C, V _{ak} 12 V, Ra = 6	3	V
DC gate current not to trigger	I _{GD}	T. = 125 °C reted V applied	20	mA
DC gate voltage not to trigger	V_{GD}	T _J = 125 °C, rated V _{DRM} applied	0.25	V

THERMAL AND MECHANICA	L SPECIFIC	ATIONS		
PARAMETER	SYMBOL	TEST CONDITIONS	VALUES	UNITS
Maximum junction operating temperature range	TJ		- 40 to 125	°C
Storage temperature range	T _{Stg}		- 40 to 150	
Maximum thermal resistance, junction to case per junction	R _{thJC}	DC operation	0.125	K/W
Maximum thermal resistance, case to heatsink per module	R _{thC-hs}	Mounting surface flat, smooth and greased	0.025	
MAP to heat Mounting torque ± 10 % busbar to N		A mounting compound is recommended. The torque should be rechecked after a period of 3 hours to allow for the spread of the compound. Use of cable lugs is not recommended, busbar should be	4 to 6 (35 to 53)	N · m (lbf · in)
Approximate weight		used and restrained during tightening. Threads must	500	g
Approximate weight		be lubricated with a compound.	17.8	OZ.
Case style			MAGN-	-A-PAK

Document Number: 94422 Revision: 19-Jul-10

Vishay Semiconductors Fast Thyristor/Diode and Thyristor/Thyristor (MAGN-A-PAK Power Modules), 200 A

△R _{thJC} CONDUCTION			
CONDUCTIONS ANGLE	SINUSOIDAL CONDUCTION	RECTANGULAR CONDUCTION	UNITS
180°	0.009	0.006	
120°	0.10	0.011	
90°	0.014	0.015	K/W
60°	0.020	0.020	
30°	0.32	0.033	

Note

Table shows the increment of thermal resistance R_{thJC} when devices operate at different conduction angles than DC

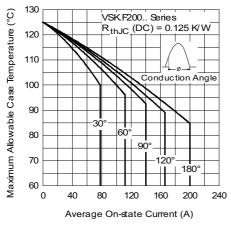


Fig. 1 - Current Ratings Characteristics

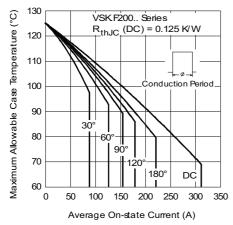


Fig. 2 - Current Ratings Characteristics

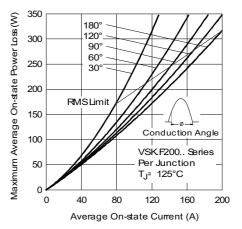


Fig. 3 - On-State Power Loss Characteristics

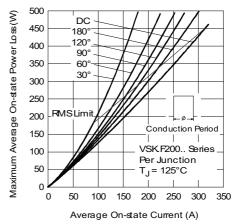


Fig. 4 - On-State Power Loss Characteristics

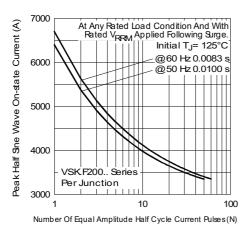


Fig. 5 - Maximum Non-Repetitive Surge Current

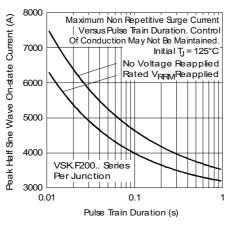


Fig. 6 - Maximum Non-Repetitive Surge Current

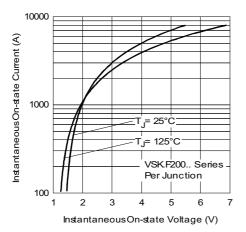


Fig. 7 - On-State Voltage Drop Characteristics

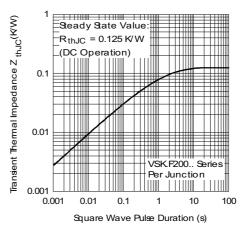


Fig. 8 - Thermal Impedance ZthJC Characteristics

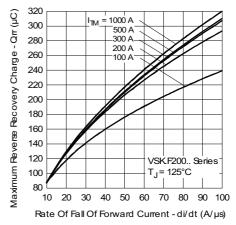


Fig. 9 - Reverse Recovery Charge Characteristics

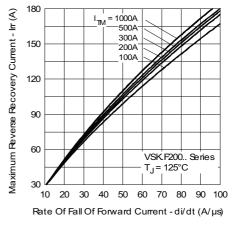
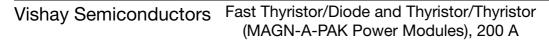
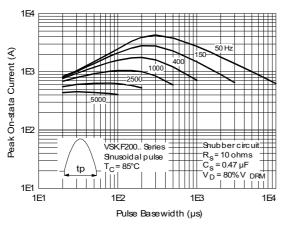




Fig. 10 - Reverse Recovery Current Characteristics

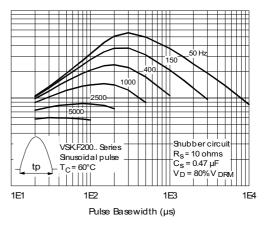
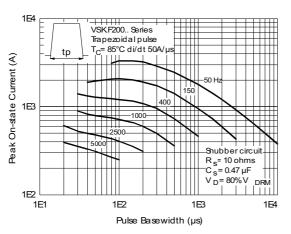



Fig. 11 - Frequency Characteristics

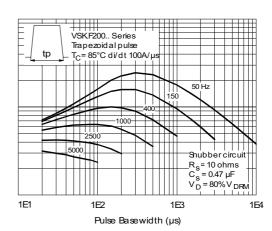
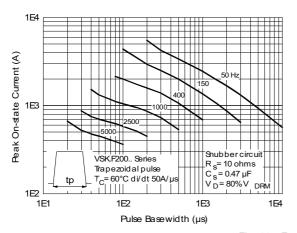



Fig. 12 - Frequency Characteristics

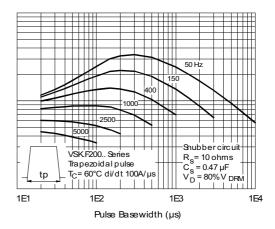
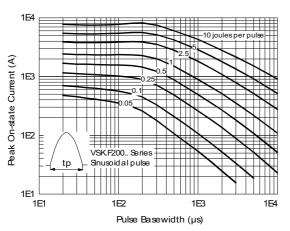



Fig. 13 - Frequency Characteristics

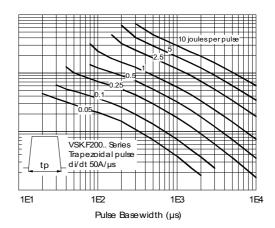
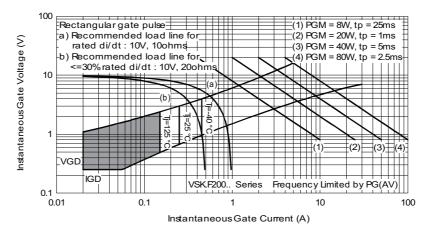
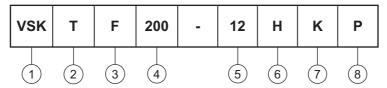


Fig. 14 - Maximum On-State Energy Power Loss Characteristics




Fig. 15 - Gate Characteristics

ORDERING INFORMATION TABLE

Device code

1 - Module type

2 - Circuit configuration (see circuit configuration table)

3 - Fast SCR

- Current rating: I_{T(AV)} x 10 rounded

5 - Voltage code x 100 = V_{RRM} (see Voltage Ratings table)

6 - dV/dt code: H ≤ 400 V/μs

7 - t_α code: K ≤ 20 μs

 $J \le 25 \ \mu s$

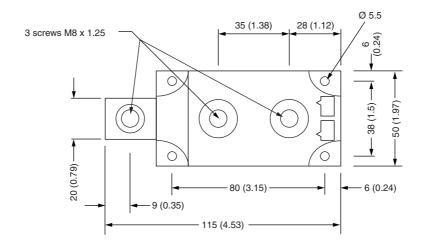
8 - Lead (Pb)-free

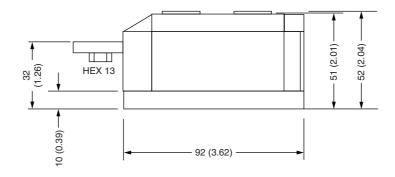
Note

• To order the optional hardware go to www.vishay.com/doc?95172

CIRCUIT CONFIGURATION	CIRCUIT CONFIGURATION				
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
Two SCRs common cathodes	U	VSKUF +			
SCR/diode common cathodes	К	VSKKF			
Two SCRs common anodes	V	VSKVF GE GE GE GE GE GE F GE GE GE			

CIRCUIT CONFIGURATION					
CIRCUIT DESCRIPTION	CIRCUIT CONFIGURATION CODE	CIRCUIT DRAWING			
SCR/diode common anodes	N	VSKNF			
SCR/diode doubler circuit, negative control	L	VSKLF			
Two SCRs doubler circuit	Т	VSKTF			
SCR/diode doubler circuit, positive control	н	VSKHF			


LINKS TO RELATED DOCUMENTS	
Dimensions	www.vishay.com/doc?95086



Vishay Semiconductors

MAGN-A-PAK

DIMENSIONS in millimeters (inches)

Notes

- Dimensions are nominal
- Full engineering drawings are available on request
- UL identification number for gate and cathode wire: UL 1385
- UL identification number for package: UL 94 V-0

Document Number: 95086 Revision: 03-Aug-07

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 1 Document Number: 91000