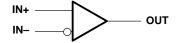

SLCS128E - APRIL 1996 - REVISED MAY 2003

- Low-Voltage and Single-Supply Operation
   V<sub>CC</sub> = 2 V to 7 V
- Common-Mode Voltage Range Includes
   Ground
- Fast Response Time . . . 0.7 μs Typ
- Low Supply Current . . . 80 μA Typ and 150 μA Max
- Fully Specified at 3-V and 5-V Supply Voltages



## description/ordering informaton

The TLV1391 is a differential comparator built using a Texas Instruments low-voltage, high-speed bipolar process. These devices have been developed specifically for low-voltage, single-supply applications. Their enhanced performance makes them excellent replacements for the LM393 in the improved 3-V and 5-V system designs.

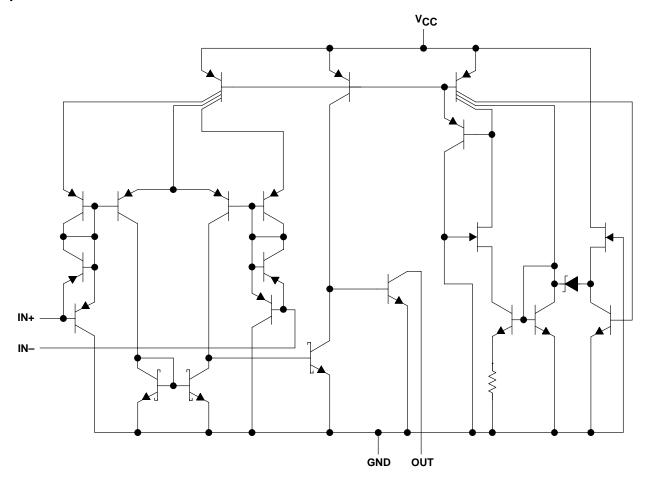

The TLV1391, with its typical supply current of only  $80 \,\mu\text{A}$ , is ideal for low-power systems. Response time also has been improved to  $0.7 \,\mu\text{s}$ .

#### ORDERING INFORMATION

| TA            | PACKAGE <sup>†</sup> |              | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |
|---------------|----------------------|--------------|--------------------------|---------------------|
| −0°C to 70°C  | SOT-23-5 (DBV)       | Reel of 3000 | TLV1391CDBVR             | VABC                |
| -0 C to 70 C  | 301-23-3 (DBV)       | Reel of 250  | TLV1391CDBVT             | VADC                |
| -40°C to 85°C | COT 22 5 (DD)/)      | Reel of 3000 | TLV1391IDBVR             | VABI                |
| -40 C 10 85°C | SOT-23-5 (DBV)       | Reel of 250  | TLV1391IDBVT             | VADI                |

<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

#### symbol (each comparator)






Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



## equivalent schematic



| COMPONENT COUNT |    |  |  |
|-----------------|----|--|--|
| Transistors     | 26 |  |  |
| Resistors       | 1  |  |  |
| Diodes          | 4  |  |  |
| Epi-FET         | 1  |  |  |



# SINGLE DIFFERENTIAL COMPARATORS

SLCS128E - APRIL 1996 - REVISED MAY 2003

### absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

| Supply voltage, V <sub>CC</sub> (see Note 1)                 |                           |
|--------------------------------------------------------------|---------------------------|
| Differential input voltage, V <sub>ID</sub> (see Note 2)     |                           |
| Input voltage range, V <sub>I</sub> (any input)              | –0.3 V to V <sub>CC</sub> |
| Output voltage, V <sub>O</sub>                               |                           |
| Output current, IO (each output)                             | 20 mA                     |
| Duration of short-circuit current to GND (see Note 3)        | Unlimited                 |
| Package thermal impedance, $\theta_{JA}$ (see Note 4 and 5)  | 206°C/W                   |
| Operating virtual junction temperature, T <sub>J</sub>       | 150°C                     |
| Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds | 260°C                     |
| Storage temperature range, T <sub>stg</sub>                  |                           |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the network GND.
  - 2. Differential voltages are at the noninverting input with respect to the inverting input.

  - Short circuits from the outputs to V<sub>CC</sub> can cause excessive heating and eventual destruction of the chip.
     Maximum power dissipation is a function of T<sub>J</sub>(max), θ<sub>JA</sub>, and T<sub>A</sub>. The maximum allowable power dissipation at any allowable ambient temperature is  $P_D = (T_J(max) - T_A)/\theta_{JA}$ . Operating at the absolute maximum  $T_J$  of 150°C can impact reliability.
  - 5. The package thermal impedance is calculated in accordance with JESD 51-7.

## recommended operating conditions

|     |                                |          | MIN | MAX | UNIT |
|-----|--------------------------------|----------|-----|-----|------|
| Vcc | Supply voltage                 |          | 2   | 7   | V    |
| т.  | porating free air temperature  | TLV1391C | 0   | 70  | °C   |
| 'A  | Operating free-air temperature |          | -40 | 85  | C    |



## TLV1391 SINGLE DIFFERENTIAL COMPARATORS

SLCS128E - APRIL 1996 - REVISED MAY 2003

## electrical characteristics, $V_{CC} = 3 V$

|                 | PARAMETER                        | TEST                          | CONDITIONS                 | TA                           | MIN                          | TYP  | MAX  | UNIT |
|-----------------|----------------------------------|-------------------------------|----------------------------|------------------------------|------------------------------|------|------|------|
| Via Input offs  | Input offset voltage             | Vo = 1.4.V                    | \/ \/ (min)                | 25°C                         |                              | 1.5  | 5    | mV   |
| VIO             | input onset voltage              | VO = 1.4 V,                   | VIC = VICR(min)            | Full range                   |                              |      | 9    | IIIV |
|                 | Common, mode input voltage range | nmon-mode input voltage range | 25°C                       | 0 to<br>V <sub>CC</sub> -1.5 | 0 to<br>V <sub>CC</sub> -1.2 |      | ٧    |      |
| VICR            | Common-mode input voltage range  |                               |                            | Full range                   | 0 to<br>V <sub>CC</sub> -2   |      |      | V    |
| V <sub>OL</sub> | Low-level output voltage         | $V_{ID} = -1 V$ ,             | $I_{OL} = 500 \mu\text{A}$ | Full range                   |                              | 120  | 300  | mV   |
| lio.            | Input offset current             | V <sub>O</sub> = 1.4 V        | 25°C                       |                              | 5                            | 50   | nA   |      |
| ΙΟ              | input onset current              |                               | Full range                 |                              |                              | 150  |      |      |
| 1.5             | Input bigg ourrent               | V- 14V                        | 25°C                       |                              | -40                          | -250 | nA   |      |
| lВ              | Input bias current               | V <sub>O</sub> = 1.4 V        |                            | Full range                   |                              |      | -400 | IIA  |
| la              | High-level output current        | $V_{ID} = 1 V$ ,              | V <sub>OH</sub> = 3 V      | 25°C                         |                              | 0.1  |      | nA   |
| ЮН              | nign-ievel output current        | $V_{ID} = 1 V$ ,              | V <sub>OH</sub> = 5 V      | Full range                   |                              |      | 100  | TIA  |
| loL             | Low-level output current         | $V_{ID} = -1 V$ ,             | V <sub>OL</sub> = 1.5 V    | 25°C                         | 500                          |      |      | μΑ   |
| 1 12-1-1        | High level cupply current        | V V                           |                            | 25°C                         |                              | 80   | 125  |      |
| ICC(H)          | High-level supply current        | AO = AOH                      |                            | Full range                   |                              |      | 150  | μΑ   |
| loo#\           | Low lovel supply surrent         |                               | 25°C                       |                              | 80                           | 125  | μΑ   |      |
| ICC(L)          | Low-level supply current         | VO = VOL                      |                            | Full range                   |                              |      |      | 150  |

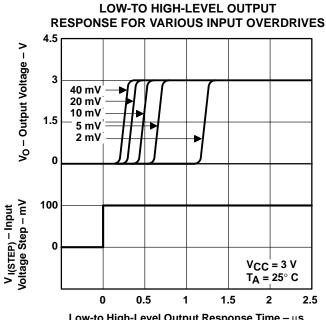
## switching characteristics, V<sub>CC</sub> = 3 V, C<sub>L</sub> = 15 pF $^{\dagger}$ , T<sub>A</sub> = 25 $^{\circ}$ C

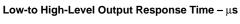
| PARAMETER     | TEST CONDITIONS                                                    | TYP | UNIT |
|---------------|--------------------------------------------------------------------|-----|------|
| Response time | 100-mV input step with 5-mV overdrive, $R_L = 5.1 \text{ k}\Omega$ | 0.7 | μs   |

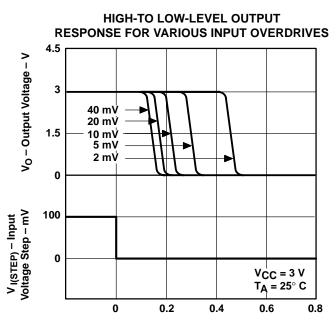
<sup>†</sup>C<sub>L</sub> includes the probe and jig capacitance.



## electrical characteristics, $V_{CC} = 5 V$


|                         | PARAMETER                                     |                        | CONDITIONS                                          | TA         | MIN                          | TYP                          | MAX | UNIT |
|-------------------------|-----------------------------------------------|------------------------|-----------------------------------------------------|------------|------------------------------|------------------------------|-----|------|
| Via Input offeet voltes | Input offset voltage                          | Vo = 1.4.V             | \(\lambda_{\text{in}} = \lambda_{\text{in}} \rangle | 25°C       |                              | 1.5                          | 5   | mV   |
| VIO                     | Input offset voltage                          | VO = 1.4 V,            | VIC = VICR(min)                                     | Full range |                              |                              | 9   | IIIV |
| \/.o.=                  |                                               |                        |                                                     | 25°C       | 0 to<br>V <sub>CC</sub> -1.5 | 0 to<br>V <sub>CC</sub> -1.2 |     | ٧    |
| VICR                    | Common-mode input voltage range               |                        |                                                     | Full range | 0 to<br>V <sub>CC</sub> -2   |                              |     | v    |
| VOL                     | Low-level output voltage                      | $V_{ID} = -1 V$ ,      | $I_{OL} = 500 \mu\text{A}$                          | Full range |                              | 120                          | 300 | mV   |
| li o                    | Input offset current                          | V <sub>O</sub> = 1.4 V |                                                     | 25°C       |                              | 5                            | 50  | nA   |
| 110                     | Input offset current                          |                        |                                                     | Full range |                              |                              | 150 |      |
| 1.5                     | Input bigg current                            | V= 44V                 | 25°C                                                |            | -40                          | -250                         | nA  |      |
| IB                      | Input bias current                            | V <sub>O</sub> = 1.4 V |                                                     | Full range |                              |                              |     | -400 |
| 1                       | High lovel custout current                    | V <sub>ID</sub> = 1 V, | V <sub>OH</sub> = 3 V                               | 25°C       |                              | 0.1                          |     | ~^   |
| ЮН                      | High-level output current V <sub>ID</sub> = 1 |                        | V <sub>OH</sub> = 5 V                               | Full range |                              |                              | 100 | nA   |
| loL                     | Low-level output current                      | $V_{ID} = -1 V$ ,      | V <sub>OL</sub> = 1.5 V                             | 25°C       | 600                          |                              |     | μΑ   |
| la a n n                | High lovel comply comment                     | ., .,                  |                                                     | 25°C       |                              | 100                          | 150 | 4    |
| ICC(H)                  | High-level supply current                     | AO = AOH               |                                                     | Full range |                              |                              | 175 | μΑ   |
| la a n i                | Low-level supply current                      | ., ,,                  |                                                     | 25°C       |                              | 100                          | 150 |      |
| ICC(L)                  |                                               | VO = VOL               |                                                     | Full range |                              |                              | 175 | μΑ   |


## switching characteristics, $V_{CC}$ = 5 V, $C_L$ = 15 pF $^\dagger$ , $T_A$ = 25 $^\circ$ C


| PARAMETER       | TEST CONDITIONS                        |                             |      | UNIT |
|-----------------|----------------------------------------|-----------------------------|------|------|
| Response time   | 100-mV input step with 5-mV overdrive, | $R_L = 5.1 \text{ k}\Omega$ | 0.65 |      |
| iveshouse fille | TTL-level input step,                  | $R_L = 5.1 \text{ k}\Omega$ | 0.18 | μs   |

<sup>†</sup> C<sub>L</sub> includes the probe and jig capacitance.

#### TYPICAL CHARACTERISTICS







High-to Low-Level Output Response Time –  $\mu \text{s}$ 

Figure 2

# LOW-TO HIGH-LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES 7.5

Figure 1

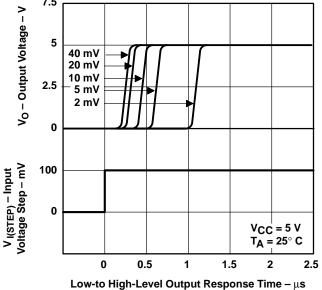



Figure 3

## HIGH-TO LOW-LEVEL OUTPUT RESPONSE FOR VARIOUS INPUT OVERDRIVES



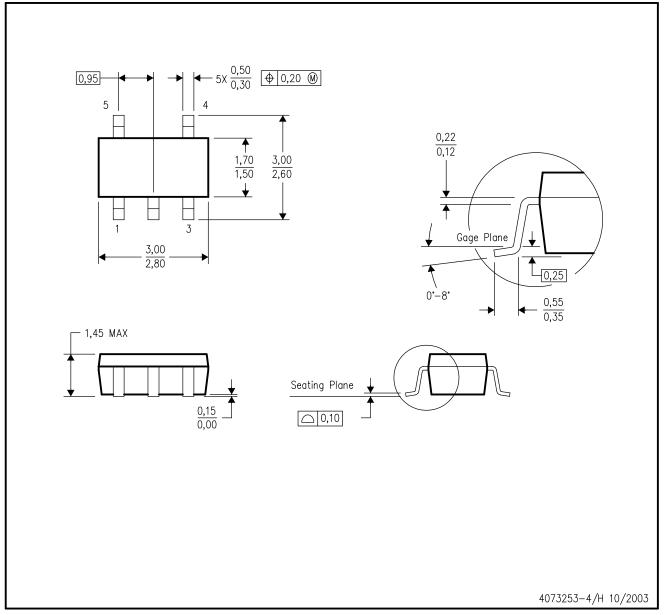

High-to Low-Level Output Response Time –  $\mu \text{s}$ 

Figure 4



## DBV (R-PDSO-G5)

## PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- All linear dimensions are in millimeters.
- This drawing is subject to change without notice.
- C. Body dimensions do not include mold fla D. Falls within JEDEC MO—178 Variation AA. Body dimensions do not include mold flash or protrusion.



#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products         |                        | Applications       |                           |
|------------------|------------------------|--------------------|---------------------------|
| Amplifiers       | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters  | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP              | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface        | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic            | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt       | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers | microcontroller.ti.com | Security           | www.ti.com/security       |
|                  |                        | Telephony          | www.ti.com/telephony      |
|                  |                        | Video & Imaging    | www.ti.com/video          |
|                  |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated