## TL594 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

SLVS052G-APRIL 1988-REVISED JANUARY 2007

#### **FEATURES**

- Complete PWM Power-Control Circuitry
- Uncommitted Outputs for 200-mA Sink or Source Current
- Output Control Selects Single-Ended or Push-Pull Operation
- Internal Circuitry Prohibits Double Pulse at Either Output
- Variable Dead Time Provides Control Over Total Range
- Internal Regulator Provides a Stable 5-V Reference Supply Trimmed to 1%
- Circuit Architecture Allows Easy Synchronization
- Undervoltage Lockout for Low-V<sub>CC</sub> Conditions

#### D, N, NS, OR PW PACKAGE (TOP VIEW) 1IN+ 2IN+ 16 1IN-2IN-2 15 **FEEDBACK** 14 REF 3 DTC 4 13 **OUTPUT CTRL** CT 5 $V_{CC}$ 12 11 D RT 6 C2 7 10 h **GND** E2 C1 8 9 E1

#### **DESCRIPTION/ORDERING INFORMATION**

The TL594 incorporates all the functions required in the construction of a pulse-width-modulation (PWM) control circuit on a single chip. Designed primarily for power-supply control, this device offers the systems engineer the flexibility to tailor the power-supply control circuitry to a specific application.

The TL594 contains two error amplifiers, an on-chip adjustable oscillator, a dead-time control (DTC) comparator, a pulse-steering control flip-flop, a 5-V regulator with a precision of 1%, an undervoltage lockout control circuit, and output control circuitry.

The error amplifiers have a common-mode voltage range of -0.3 V to  $V_{CC}-2$  V. The DTC comparator has a fixed offset that provides approximately 5% dead time. The on-chip oscillator can be bypassed by terminating RT to the reference output and providing a sawtooth input to CT, or it can be used to drive the common circuitry in synchronous multiple-rail power supplies.

The uncommitted output transistors provide either common-emitter or emitter-follower output capability. Each device provides for push-pull or single-ended output operation, with selection by means of the output-control function. The architecture of these devices prohibits the possibility of either output being pulsed twice during push-pull operation. The undervoltage lockout control circuit locks the outputs off until the internal circuitry is operational.

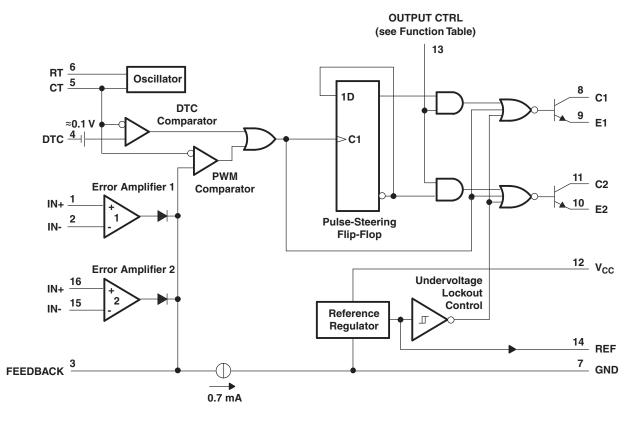
The TL594C is characterized for operation from 0°C to 70°C. The TL594I is characterized for operation from –40°C to 85°C.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



### ORDERING INFORMATION(1)


| T <sub>A</sub> | PAC        | KAGE <sup>(2)</sup> | ORDERABLE PART NUMBER | TOP-SIDE MARKING |
|----------------|------------|---------------------|-----------------------|------------------|
|                | PDIP – N   | Tube of 25          | TL594CN               | TL594CN          |
| 0°C to 70°C    | SOIC - D   | Tube of 40          | TL594CD               | - TL594C         |
|                | 30IC - D   | Reel of 2500        | TL594CDR              | 113940           |
| 0.0 10 10.0    | SOP - NS   | Reel of 2000        | TL594CNSR             | TL594            |
|                | TSSOP – PW | Tube of 90          | TL594CPW              | - T594           |
|                | 1330F – FW | Reel of 2000        | TL594CPWR             | 1594             |
|                | PDIP – N   | Tube of 25          | TL594IN               | TL594IN          |
|                | SOIC - D   | Tube of 40          | TL594ID               | TL594I           |
| –40°C to 85°C  | 30IC - D   | Reel of 2500        | TL594IDR              | 11.5941          |
| -40 C to 85 C  | SOP - NS   | Reel of 2000        | TL594INSR             | TL594I           |
|                | TSSOP – PW | Tube of 90          | TL594IPW              | - Z594           |
|                | 1330F - PW | Reel of 2000        | TL594IPWR             | Z094             |

- (1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.
- (2) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

#### **FUNCTION TABLE**

| INPUT           | OUTPUT FUNCTION                 |
|-----------------|---------------------------------|
| OUTPUT CTRL     | OUTFOILFONCTION                 |
| $V_I = 0$       | Single-ended or parallel output |
| $V_I = V_{ref}$ | Normal push-pull operation      |

#### **FUNCTIONAL BLOCK DIAGRAM**



## PULSE-WIDTH-MODULATION CONTROL CIRCUIT

SLVS052G-APRIL 1988-REVISED JANUARY 2007

### ABSOLUTE MAXIMUM RATINGS(1)

over operating free-air temperature range (unless otherwise noted)

|                  |                                        |                       | VALUE | UNIT  |
|------------------|----------------------------------------|-----------------------|-------|-------|
| $V_{CC}$         | Supply voltage <sup>(2)</sup>          |                       | 41    | V     |
|                  | Amplifier input voltage                | V <sub>CC</sub> + 0.3 | V     |       |
|                  | Collector output voltage               | 41                    | V     |       |
|                  | Collector output current               |                       | 250   | mA    |
|                  |                                        | D package             | 73    |       |
| 0                | Deckers thermal impedance (3)(4)       | N package             | 67    | °C/W  |
| $\theta_{JA}$    | Package thermal impedance (3)(4)       | NS package            | 64    | *C/VV |
|                  |                                        | PW package            | 108   |       |
| TJ               | Operating virtual junction temperature | 150                   | °C    |       |
| T <sub>stg</sub> | Storage temperature range              | -65 to 150            | °C    |       |

<sup>(1)</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

#### **RECOMMENDED OPERATING CONDITIONS**

|                  |                                            |        |   | MIN | MAX                 | UNIT |
|------------------|--------------------------------------------|--------|---|-----|---------------------|------|
| $V_{CC}$         | Supply voltage                             |        |   | 7   | 40                  | V    |
| VI               | Amplifier input voltage                    |        |   |     | V <sub>CC</sub> – 2 | V    |
| Vo               | Collector output voltage                   |        |   |     | 40                  | V    |
|                  | Collector output current (each transistor) |        |   |     | 200                 | mA   |
|                  | Current into FEEDBACK terminal             |        |   |     | 0.3                 | mA   |
| C <sub>T</sub>   | Timing capacitor                           |        |   |     | 10000               | nF   |
| R <sub>T</sub>   | Timing resistor                            |        |   | 1.8 | 500                 | kΩ   |
| f <sub>osc</sub> | Oscillator frequency                       |        | 1 | 300 | kHz                 |      |
| T <sub>A</sub>   | Operating free air temperature             | TL594C |   | 0   | 70                  | °C   |
|                  | Operating free-air temperature             | TL594I |   | -40 | 85                  |      |

All voltage values, except differential voltages, are with respect to the network ground terminal. Maximum power dissipation is a function of  $T_J(max)$ ,  $\theta_{JA}$ , and  $T_A$ . The maximum allowable power dissipation at any allowable ambient temperature is  $P_D = (T_J(max) - T_A)/\theta_{JA}$ . Operating at the absolute maximum  $T_J$  of 150°C can affect reliability. The package thermal impedance is calculated in accordance with JESD 51-7.

# TL594 PULSE-WIDTH-MODULATION CONTROL CIRCUIT

SLVS052G-APRIL 1988-REVISED JANUARY 2007



#### **ELECTRICAL CHARACTERISTICS**

V<sub>CC</sub> = 15 V, over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                                          | TEST CONDITIONS <sup>(1)</sup>                                                                           | MIN                           | TYP <sup>(2)</sup> | MAX  | UNIT   |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------|--------------------|------|--------|
| Reference Section                                  |                                                                                                          |                               |                    |      |        |
| Output voltage (REF)                               | I <sub>O</sub> = 1 mA, T <sub>A</sub> = 25°C                                                             | 4.95                          | 5                  | 5.05 | V      |
| Input regulation                                   | V <sub>CC</sub> = 7 V to 40 V, T <sub>A</sub> = 25°C                                                     |                               | 2                  | 25   | mV     |
| Output regulation                                  | I <sub>O</sub> = 1 mA to 10 mA, T <sub>A</sub> = 25°C                                                    |                               | 14                 | 35   | mV     |
| Output-voltage change with temperature             | $\Delta T_A = MIN \text{ to MAX}$                                                                        |                               | 2                  | 10   | mV/V   |
| Short-circuit output current <sup>(3)</sup>        | V <sub>ref</sub> = 0                                                                                     | 10                            | 35                 | 50   | mA     |
| Amplifier Section (see Figure 1)                   |                                                                                                          | <u>'</u>                      |                    |      |        |
| Input offset voltage, error amplifier              | FEEDBACK = 2.5 V                                                                                         |                               | 2                  | 10   | mV     |
| Input offset current                               | FEEDBACK = 2.5 V                                                                                         |                               | 25                 | 250  | nA     |
| Input bias current                                 | FEEDBACK = 2.5 V                                                                                         |                               | 0.2                | 1    | μΑ     |
| Common-mode input voltage range, error amplifier   | V <sub>CC</sub> = 7 V to 40 V                                                                            | 0.3 to<br>V <sub>CC</sub> – 2 |                    |      | V      |
| Open-loop voltage amplification, error amplifier   | $\Delta V_{O} = 3 \text{ V}, R_{L} = 2 \text{ k}\Omega, V_{O} = 0.5 \text{ V} \text{ to } 3.5 \text{ V}$ | 70                            | 95                 |      | dB     |
| Unity-gain bandwidth                               | $V_O = 0.5 \text{ V to } 3.5 \text{ V}, R_L = 2 \text{ k}\Omega$                                         |                               | 800                |      | kHz    |
| Common-mode rejection ratio, error amplifier       | V <sub>CC</sub> = 40 V, T <sub>A</sub> = 25°C                                                            | 65                            | 80                 |      | dB     |
| Output sink current, FEEDBACK                      | $V_{ID} = -15 \text{ mV to } -5 \text{ V}, \text{ FEEDBACK} = 0.5 \text{ V}$                             | 0.3                           | 0.7                |      | mA     |
| Output source current, FEEDBACK                    | V <sub>ID</sub> = 15 mV to 5 V, FEEDBACK = 3.5 V                                                         | -2                            |                    |      | mA     |
| Oscillator Section, $C_T = 0.01 \mu F$ , $R_T = 1$ | <b>2</b> k $\Omega$ (see Figure 2)                                                                       | <u>'</u>                      |                    |      |        |
| Frequency                                          |                                                                                                          |                               | 10                 |      | kHz    |
| Standard deviation of frequency <sup>(4)</sup>     | All values of V <sub>CC</sub> , C <sub>T</sub> , R <sub>T</sub> , and T <sub>A</sub> constant            |                               | 100                |      | Hz/kHz |
| Frequency change with voltage                      | $V_{CC} = 7 \text{ V to } 40 \text{ V}, T_A = 25^{\circ}\text{C}$                                        |                               | 1                  |      | Hz/kHz |
| Frequency change with temperature (5)              | $\Delta T_A = MIN \text{ to MAX}$                                                                        |                               |                    | 50   | Hz/kHz |
| Dead-Time Control Section (see Figure              | 2)                                                                                                       |                               |                    |      |        |
| Input bias current                                 | V <sub>I</sub> = 0 to 5.25 V                                                                             |                               | -2                 | -10  | μΑ     |
| Maximum duty cycle, each output                    | DTC = 0 V                                                                                                | 0.45                          |                    |      |        |
| Input threshold voltage                            | Zero duty cycle                                                                                          |                               | 3                  | 3.3  | V      |
| input tilleshold voltage                           | Maximum duty cycle                                                                                       | 0                             |                    |      | V      |
| Output Section                                     |                                                                                                          |                               |                    |      |        |
|                                                    | $V_C = 40 \text{ V}, V_E = 0 \text{ V}, V_{CC} = 40 \text{ V}$                                           |                               | 2                  | 100  |        |
| Collector off-state current                        | DTC and OUTPUT CTRL = 0 V, $V_C$ = 15 V, $V_E$ = 0 V, $V_{CC}$ = 1 V to 3 V                              |                               | 4                  | 200  | μΑ     |
| Emitter off-state current                          | $V_{CC} = V_{C} = 40 \text{ V}, V_{E} = 0$                                                               |                               |                    | -100 | μΑ     |
| Collector omittor caturation valtage               | Common emitter, $V_E = 0$ , $I_C = 200 \text{ mA}$                                                       |                               | 1.1                | 1.3  | V      |
| Collector-emitter saturation voltage               | Emitter follower, $V_C = 15 \text{ V}$ , $I_E = -200 \text{ mA}$                                         |                               | 1.5                | 2.5  | v      |
| Output control input current                       | $V_{I} = V_{ref}$                                                                                        |                               |                    | 3.5  | mA     |

- (1) For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.
- (2) All typical values, except for parameter changes with temperature, are at  $T_A = 25$ °C.
- (3) Duration of the short circuit should not exceed one second.
- (4) Standard deviation is a measure of the statistical distribution about the mean, as derived from the formula:

$$\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x_n - \overline{X})^2}{N - 1}}$$

(5) Temperature coefficient of timing capacitor and timing resistor is not taken into account.



#### **ELECTRICAL CHARACTERISTICS (continued)**

V<sub>CC</sub> = 15 V, over recommended operating free-air temperature range (unless otherwise noted)

| PARAMETER                                   | TEST CONDITIONS                      | MIN                    | TYP <sup>(2)</sup> | MAX | UNIT |    |  |
|---------------------------------------------|--------------------------------------|------------------------|--------------------|-----|------|----|--|
| PWM Comparator Section (see Figure 2        |                                      |                        |                    |     |      |    |  |
| Input threshold voltage, FEEDBACK           | Zero duty cycle                      |                        | 4                  | 4.5 | V    |    |  |
| Input sink current, FEEDBACK                | FEEDBACK = 0.5 V                     |                        | 0.3                | 0.7 |      | mA |  |
| Undervoltage Lockout Section (see Figure 2) |                                      |                        |                    |     |      |    |  |
| Throphold voltage                           | T <sub>A</sub> = 25°C                |                        |                    | 6   | V    |    |  |
| Threshold voltage                           | $\Delta T_A = MIN \text{ to MAX}$    | 3.5                    |                    | 6.9 | V    |    |  |
| Hysteresis (6)                              |                                      | 100                    |                    |     | mV   |    |  |
| Overall Device                              |                                      |                        |                    |     |      |    |  |
| Standby aupply autrent                      | R <sub>T</sub> at V <sub>ref</sub> , | V <sub>CC</sub> = 15 V |                    | 9   | 15   | mΛ |  |
| Standby supply current                      | All other inputs and outputs open    | V <sub>CC</sub> = 40 V |                    | 11  | 18   | mA |  |
| Average supply current                      | DTC = 2 V, See Figure 2              |                        | 12.4               |     | mA   |    |  |

<sup>(6)</sup> Hysteresis is the difference between the positive-going input threshold voltage and the negative-going input threshold voltage.

#### **SWITCHING CHARACTERISTICS**

 $V_{CC}$  = 15 V,  $T_A$  = 25°C, over recommended operating conditions (unless otherwise noted)

| PARAMETER                | TEST CONDITIONS                               | MIN | TYP | MAX | UNIT |
|--------------------------|-----------------------------------------------|-----|-----|-----|------|
| Output-voltage rise time | Common emitter configuration (con Figure 2)   |     | 100 | 200 | ns   |
| Output-voltage fall time | Common-emitter configuration (see Figure 3)   |     | 30  | 100 | ns   |
| Output-voltage rise time | Emitter follower configuration (see Figure 4) |     | 200 | 400 | ns   |
| Output-voltage fall time | Emitter-follower configuration (see Figure 4) |     | 45  | 100 | ns   |

#### PARAMETER MEASUREMENT INFORMATION

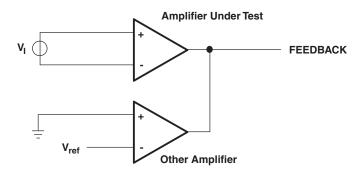
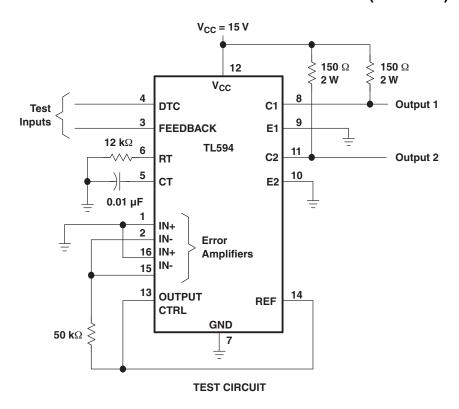




Figure 1. Amplifier-Characteristics Test Circuit



#### PARAMETER MEASUREMENT INFORMATION (continued)



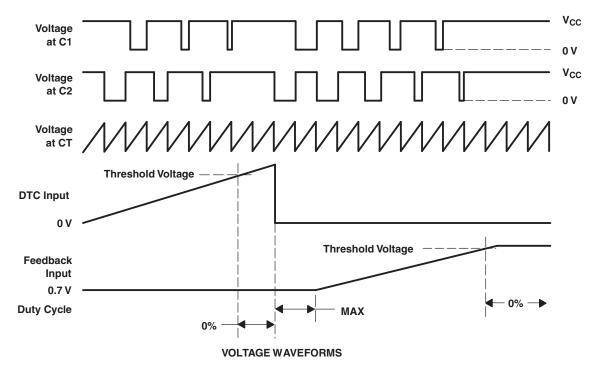



Figure 2. Operational Test Circuit and Waveforms



#### PARAMETER MEASUREMENT INFORMATION (continued)

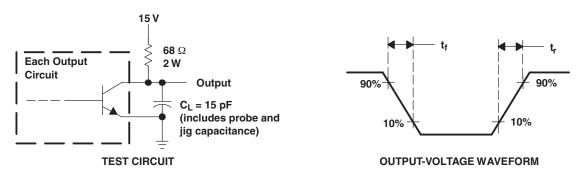



Figure 3. Common-Emitter Configuration

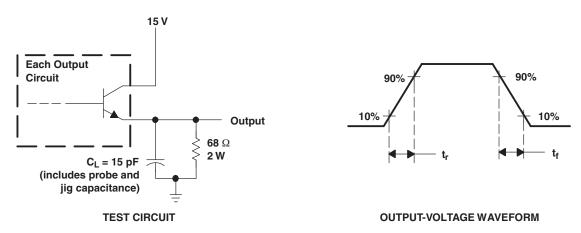
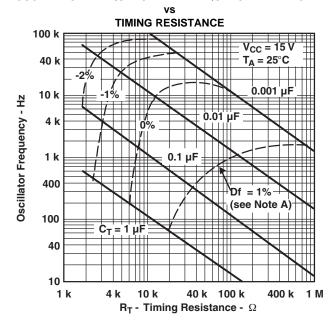
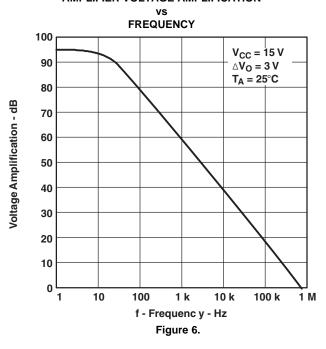




Figure 4. Emitter-Follower Configuration




#### TYPICAL CHARACTERISTICS

OSCILLATOR FREQUENCY AND FREQUENCY VARIATION(A)



A. Frequency variation ( $\Delta f$ ) is the change in oscillator frequency that occurs over the full temperature range. Figure 5.

#### **AMPLIFIER VOLTAGE AMPLIFICATION**



SLVS052G-APRIL 1988-REVISED JANUARY 2007

#### **APPLICATION INFORMATION**

#### **How to Set Dead Time**

The primary function of the dead-time control is to control the minimum off time of the output of the TL594. The dead-time control input provides control from 5% to 100% dead time. The TL594 can be tailored to the specific power transistor switches that are used, to ensure that the output transistors never experience a common on-time. The bias circuit for the basic function is shown in Figure 7.

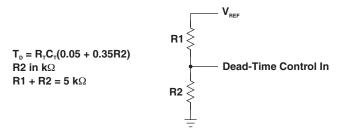



Figure 7. Setting Dead Time







#### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | e Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------|
| TL594CD          | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CDE4        | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CDR         | ACTIVE                | SOIC            | D                  | 16   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CDRE4       | ACTIVE                | SOIC            | D                  | 16   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CN          | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type           |
| TL594CNE4        | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type           |
| TL594CNSR        | ACTIVE                | SO              | NS                 | 16   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CNSRE4      | ACTIVE                | SO              | NS                 | 16   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CPW         | ACTIVE                | TSSOP           | PW                 | 16   | 90             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CPWE4       | ACTIVE                | TSSOP           | PW                 | 16   | 90             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CPWG4       | ACTIVE                | TSSOP           | PW                 | 16   | 90             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CPWR        | ACTIVE                | TSSOP           | PW                 | 16   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CPWRE4      | ACTIVE                | TSSOP           | PW                 | 16   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594CPWRG4      | ACTIVE                | TSSOP           | PW                 | 16   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594ID          | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IDE4        | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IDR         | ACTIVE                | SOIC            | D                  | 16   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IDRE4       | ACTIVE                | SOIC            | D                  | 16   | 2500           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IN          | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type           |
| TL594INE4        | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS)         | CU NIPDAU        | N / A for Pkg Type           |
| TL594INSR        | ACTIVE                | SO              | NS                 | 16   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594INSRG4      | ACTIVE                | SO              | NS                 | 16   | 2000           | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IPW         | ACTIVE                | TSSOP           | PW                 | 16   | 90             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IPWE4       | ACTIVE                | TSSOP           | PW                 | 16   | 90             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IPWG4       | ACTIVE                | TSSOP           | PW                 | 16   | 90             | Green (RoHS & no Sb/Br)   | CU NIPDAU        | Level-1-260C-UNLIM           |



#### PACKAGE OPTION ADDENDUM

25-Jan-2007

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins P | Package<br>Qty | Eco Plan <sup>(2)</sup> | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|--------|----------------|-------------------------|------------------|------------------------------|
| TL594IPWR        | ACTIVE                | TSSOP           | PW                 | 16     | 2000           | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IPWRE4      | ACTIVE                | TSSOP           | PW                 | 16     | 2000           | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| TL594IPWRG4      | ACTIVE                | TSSOP           | PW                 | 16     | 2000           | Green (RoHS & no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check <a href="http://www.ti.com/productcontent">http://www.ti.com/productcontent</a> for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

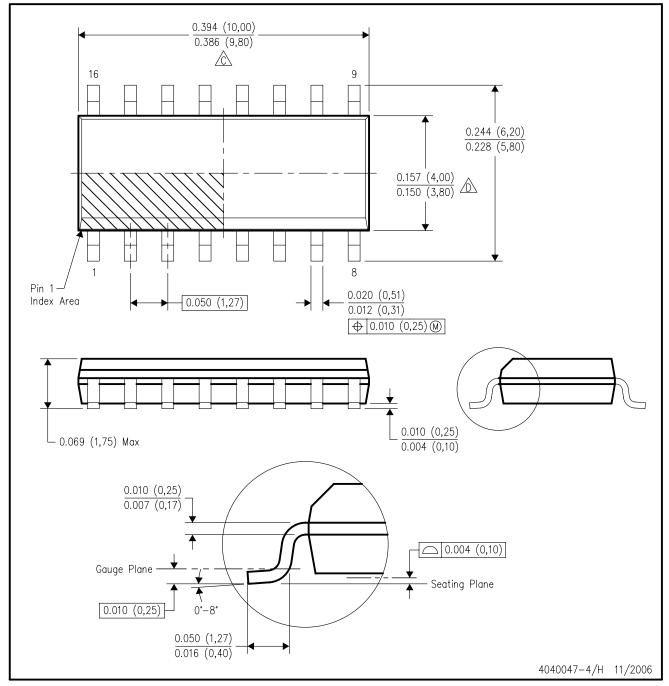
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## N (R-PDIP-T\*\*)

### PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN




NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.



## D (R-PDSO-G16)

## PLASTIC SMALL-OUTLINE PACKAGE



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.



#### **MECHANICAL DATA**

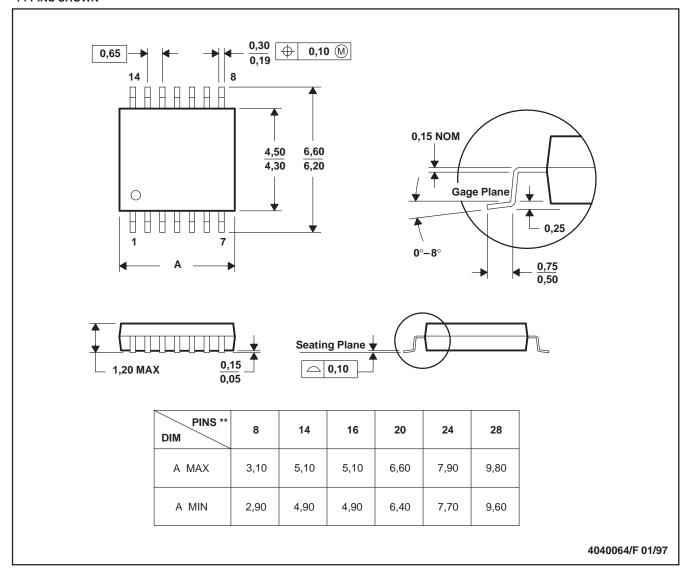
### NS (R-PDSO-G\*\*)

## 14-PINS SHOWN

#### PLASTIC SMALL-OUTLINE PACKAGE



NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.



#### PW (R-PDSO-G\*\*)

#### 14 PINS SHOWN

#### PLASTIC SMALL-OUTLINE PACKAGE



NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products           |                        | Applications       |                           |
|--------------------|------------------------|--------------------|---------------------------|
| Amplifiers         | amplifier.ti.com       | Audio              | www.ti.com/audio          |
| Data Converters    | dataconverter.ti.com   | Automotive         | www.ti.com/automotive     |
| DSP                | dsp.ti.com             | Broadband          | www.ti.com/broadband      |
| Interface          | interface.ti.com       | Digital Control    | www.ti.com/digitalcontrol |
| Logic              | logic.ti.com           | Military           | www.ti.com/military       |
| Power Mgmt         | power.ti.com           | Optical Networking | www.ti.com/opticalnetwork |
| Microcontrollers   | microcontroller.ti.com | Security           | www.ti.com/security       |
| Low Power Wireless | www.ti.com/lpw         | Telephony          | www.ti.com/telephony      |
|                    |                        | Video & Imaging    | www.ti.com/video          |
|                    |                        | Wireless           | www.ti.com/wireless       |

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265