

FEATURES

- Bidirectional Voltage Translator
- 2.3 V to 3.6 V on A Port and 3 V to 5.5 V on B Port
- Control Inputs V_{IH}/V_{IL} Levels Are Referenced to V_{CCA} Voltage
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

DB, DBQ, DW, NS, OR PW PACKAGE (TOP VIEW) V_{CCA} $\begin{bmatrix} 1 & 24 \\ 1 & 24 \end{bmatrix}$ V_{CCB}

DIR 2 23 🛛 NC A1 3 22 OE A2 🛛 4 21 B1 A3 🛛 5 20 B2 A4 🛛 6 19 B3 18 B4 A5 🛛 7 A6 🛛 8 17 B5 A7 | 9 16 П В6 15 B7 A8 10 GND 11 14 B8 GND [12 13 GND

NC - No internal connection

DESCRIPTION/ORDERING INFORMATION

This 8-bit (octal) noninverting bus transceiver contains two separate supply rails. The B port is designed to track V_{CCB} , which accepts voltages from 3 V to 5.5 V, and the A port is designed to track V_{CCA} , which operates at 2.3 V to 3.6 V. This allows for translation from a 3.3-V to a 5-V system environment and vice versa, from a 2.5-V to a 3.3-V system environment and vice versa.

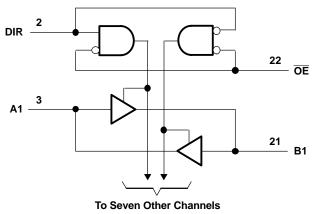
The SN74LVCC3245A is designed for asynchronous communication between data buses. The device transmits data from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable (\overline{OE}) input can be used to disable the device so the buses are effectively isolated. The control circuitry (DIR, \overline{OE}) is powered by V_{CCA}.

ORDERING INFORMATION

T _A	PACKAC	GE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC - DW	Tube of 25	SN74LVCC3245ADW	LVCC3245A
	30IC - DW	Reel of 2000	SN74LVCC3245ADWR	LV003243A
	SOP – NS	Reel of 2000	SN74LVCC3245ANSR	LVCC3245A
4000 to 0500	SSOP – DB	Reel of 2000	SN74LVCC3245ADBR	LH245A
–40°C to 85°C	SSOP (QSOP) – DBQ	Reel of 2500	SN74LVCC3245ADBQR	LVCC3245A
		Tube of 60	SN74LVCC3245APW	
	TSSOP – PW	Reel of 2000	SN74LVCC3245APWR	LH245A
		Reel of 250	SN74LVCC3245APWT	

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE (EACH TRANSCEIVER)


INP	UTS	OPERATION
OE	DIR	OPERATION
L	L	B data to A bus
L	Н	A data to B bus
Н	Х	Isolation

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

LOGIC DIAGRAM (POSITIVE LOGIC)

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CCA} V _{CCB}	Supply voltage range		-0.5	6	V
		All A ports ⁽²⁾	-0.5	V _{CCA} + 0.5	
VI	Input voltage range	All B ports ⁽³⁾	-0.5	V _{CCB} + 0.5	V
		Except I/O ports ⁽²⁾	-0.5	V _{CCA} + 0.5	
V	$O_{\rm intrust violations rongo}(3)$	All A ports	-0.5	V _{CCA} + 0.5	V
Vo	Output voltage range ⁽³⁾	All B ports	-0.5	V _{CCB} + 0.5	V
I _{IK}	Input clamp current	V ₁ < 0		-50	mA
I _{OK}	Output clamp current	V _O < 0		-50	mA
I _O	Continuous output current			±50	mA
	Continuous current through V_{CCA} , V_{CCB} , or	GND		±100	mA
		DB package		63	
		DBQ package		61	
θ_{JA}	Package thermal impedance ⁽⁴⁾	DW package		46	°C/W
		NS package		65	
		PW package		88	
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) This value is limited to 4.6 V maximum.

(3) This value is limited to 6 V maximum.

(4) The package thermal impedance is calculated in accordance with JESD 51-7.

SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

Recommended Operating Conditions⁽¹⁾

V	Supply voltage	V _{CCA}	V _{CCB}	MIN 2.3	NOM 3.3	MAX 3.6	UNIT V
V _{CCA}				2.3	3.3 5		V
V _{CCB}	Supply voltage	2.2.1/	3 V		5	5.5	V
		2.3 V		1.7 2			
V _{IHA}	High-level input voltage	2.7 V 3 V	3 V 3.6 V	2			V
		3.6 V	5.5 V	2			
		2.3 V	3.5 V	2			
		2.3 V 2.7 V	3 V 3 V	2			
V _{IHB}	High-level input voltage	2.7 V 3 V	3.6 V	2			V
		3.6 V	5.5 V	3.85			
		2.3 V	5.5 V 3 V	3.60		0.7	
V _{ILA}	Low-level input voltage	2.7 V	3 V			0.8	V
		3 V	3.6 V			0.8	
		3.6 V	5.5 V			0.8	
		2.3 V 2.7 V	3 V			0.8	
V _{ILB}	Low-level input voltage		3 V			0.8	V
		3 V	3.6 V			0.8	
		3.6 V	5.5 V			1.65	
		2.3 V	3 V	1.7			
V _{IH}	High-level input voltage (control pins) (referenced to V _{CCA})	2.7 V	3 V	2			V
	(referenced to V _{CCA})	3 V	3.6 V	2			
		3.6 V	5.5 V	2			
		2.3 V	3 V			0.7	
VIL	Low-level input voltage (control pins)	2.7 V	3 V			0.8	V
	(referenced to V _{CCA})	3 V	3.6 V			0.8	
		3.6 V	5.5 V			0.8	
VIA	Input voltage			0		V _{CCA}	V
V _{IB}	Input voltage			0		V _{CCB}	V
V _{OA}	Output voltage			0		V_{CCA}	V
V _{OB}	Output voltage			0		V _{CCB}	V
		2.3 V	3 V			-8	
I _{OHA}	High-level output current	2.7 V	3 V			-12	mA
UNA	3	3 V	3 V			-24	
		2.7 V	4.5 V			-24	
		2.3 V	3 V			-12	
I _{ОНВ}	High-level output current	2.7 V	3 V			-12	mA
Опр	5	3 V	3 V			-24	
		2.7 V	4.5 V			-24	
		2.3 V	3 V			8	
I _{OLA}	Low-level output current	2.7 V	3 V			12	mA
·OLA		3 V	3 V			24	
		2.7 V	4.5 V			24	

(1) All unused inputs of the device must be held at the associated V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

Recommended Operating Conditions (continued)

		V _{CCA}	V _{CCB}	MIN NOM	MAX	UNIT
		2.3 V	3 V		12	
		2.7 V	3 V		12	
IOLB	Low-level output current	3 V	3 V		24	mA
		2.7 V	4.5 V		24	
$\Delta t / \Delta v$	Input transition rise or fall rate				10	ns/V
T _A	Operating free-air temperature			-40	85	°C

SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PA	RAMETER	TEST CONDITIONS	V _{CCA}	V _{CCB}	MIN	TYP	MAX	UNIT
		I _{OH} = -100 μA	3 V	3 V	2.9	3		
		$I_{OH} = -8 \text{ mA}$	2.3 V	3 V	2			
N/		1. 10	2.7 V	3 V	2.2	2.5		V
V _{OHA}		$I_{OH} = -12 \text{ mA}$	3 V	3 V	2.4	2.8		V
			3 V	3 V	2.2	2.6		
		$I_{OH} = -24 \text{ mA}$	2.7 V	4.5 V	2	2.3		
		I _{OH} = -100 μA	3 V	3 V	2.9	3		
		40.54	2.3 V	3 V	2.4			
V _{ОНВ}		$I_{OH} = -12 \text{ mA}$	2.7 V	3 V	2.4	2.8		V
			3 V	3 V	2.2	2.6		
		$I_{OH} = -24 \text{ mA}$	2.7 V	4.5 V	3.2	4.2		
		I _{OL} = 100 μA	3 V	3 V			0.1	
		$I_{OL} = 8 \text{ mA}$	2.3 V	3 V			0.6	
V _{OLA}		$I_{OL} = 12 \text{ mA}$	2.7 V	3 V		0.1	0.5	V
			3 V	3 V		0.2	0.5	
		I _{OL} = 24 mA	2.7 V	4.5 V		0.2	0.5	
		I _{OL} = 100 μA	3 V	3 V			0.1	
		$I_{OL} = 12 \text{ mA}$	2.3 V	3 V			0.4	
V _{OLB}			3 V	3 V		0.2	0.5	V
		I _{OL} = 24 mA	2.7 V	4.5 V		0.2	0.5	
				3.6 V		±0.1	±1	
I _I	Control inputs	$V_{I} = V_{CCA}$ or GND	3.6 V	5.5 V		±0.1	±1	μA
I _{OZ} ⁽¹⁾	A or B ports	$V_{O} = V_{CCA/B}$ or GND, $V_{I} = V_{IL}$ or V_{IH}	3.6 V	3.6 V		±0.5	±5	μA
-		A port = V_{CCA} or GND, $I_0 = 0$	3.6 V	Open		5	50	
I _{CCA}	B to A			3.6 V		5	50	μA
		B port = V_{CCB} or GND, $I_0 = 0$	3.6 V	5.5 V		5	50	
				3.6 V		5	50	_
I _{CCB}	A to B	A port = V_{CCA} or GND, $I_0 = 0$	3.6 V	5.5 V		8	80	μA
	A port	$V_{I} = V_{CCA} - 0.6 \text{ V}$, Other inputs at V_{CCA} or GND, OE at GND and DIR at V_{CCA}	3.6 V	3.6 V		0.35	0.5	
$\Delta I_{CCA}^{(2)}$	ŌĒ	$V_{I} = V_{CCA} - 0.6 \text{ V}$, Other inputs at V_{CCA} or GND, DIR at V_{CCA}	3.6 V	3.6 V		0.35	0.5	mA
	DIR	$V_{\rm L} = V_{\rm CCA} - 0.6$ V, Other inputs at V _{CCA} or GND, OE at GND	3.6 V	3.6 V		0.35	0.5	
$\Delta I_{CCB}^{(2)}$	B port	$V_{\rm L}$ = V _{CCB} – 2.1 V, Other inputs at V _{CCB} or GND, OE at GND and DIR at GND	3.6 V	5.5 V		1	1.5	mA
Ci	Control inputs	$V_{I} = V_{CCA}$ or GND	Open	Open		4		pF
C _{io}	A or B ports	$V_{O} = V_{CCA/B}$ or GND	3.3 V	5 V		18.5		pF

(1)

For I/O ports, the parameter I_{OZ} includes the input leakage current. This is the increase in supply current for each input that is at one of the specified voltage levels, rather than 0 V or the associated V_{CC}. (2)

SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

Switching Characteristics

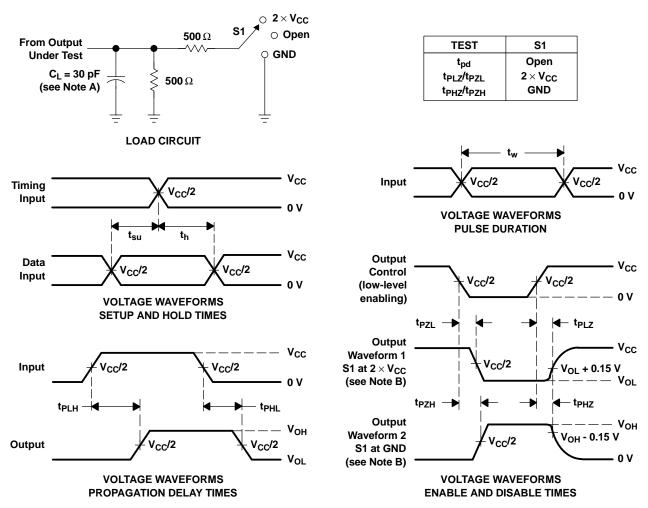
over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 4)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	± 0.2 V _{CCB} =	± 0.2 V,		7 V TO /, 5 V V	$V_{CCA} = 2.7 V TO 3.6 V, V_{CCB} = 3.3 V \pm 0.3 V$		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
t _{PHL}	А	В	1	9.4	1	6	1	7.1	ns	
t _{PLH}	A	D	1	9.1	1	5.3	1	7.2		
t _{PHL}	В	А	1	11.2	1	5.8	1	6.4	20	
t _{PLH}	D	A	1	9.9	1	7	1	7.6	ns	
t _{PZL}	OE	•	1	14.5	1	9.2	1	9.7		
t _{PZH}	UE	A	1	12.9	1	9.5	1	9.5	ns	
t _{PZL}	ŌĒ	P	1	13	1	8.1	1	9.2		
t _{PZH}	UE	В	1	12.8	1	8.4	1	9.9	ns	
t _{PLZ}	ŌĒ	•	1	7.1	1	7	1	6.6		
t _{PHZ}	UE	A	1	6.9	1	7.8	1	6.9	ns	
t _{PLZ}	ŌĒ	P	1	8.8	1	7.3	1	7.5		
t _{PHZ}	UE	В	1	8.9	1	7	1	7.9	ns	

Operating Characteristics

 $V_{CCA} = 3.3 \text{ V}, V_{CCB} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$

	PARAMETER		TEST C	ONDITIONS	TYP	UNIT
~		Outputs enabled	0 50		38	
C _{pd}	Power dissipation capacitance per transceiver	Outputs disabled	$C_{L} = 50,$	f = 10 MHz	4.5	р⊦


Power-Up Considerations⁽¹⁾

TI level-translation devices offer an opportunity for successful mixed-voltage signal design. A proper power-up sequence always should be followed to avoid excessive supply current, bus contention, oscillations, or other anomalies caused by improperly biased device pins. To guard against such power-up problems, take these precautions:

- 1. Connect ground before any supply voltage is applied.
- 2. Power up the control side of the device (V_{CCA} for all four of these devices).
- 3. Tie \overline{OE} to V_{CCA} with a pullup resistor so that it ramps with V_{CCA}.
- 4. Depending on the direction of the data path, DIR can be high or low. If DIR high is needed (A data to B bus), ramp it with V_{CCA}. Otherwise, keep DIR low.
- (1) Refer to the TI application report, Texas Instruments Voltage-Level-Translation Devices, literature number SCEA021.

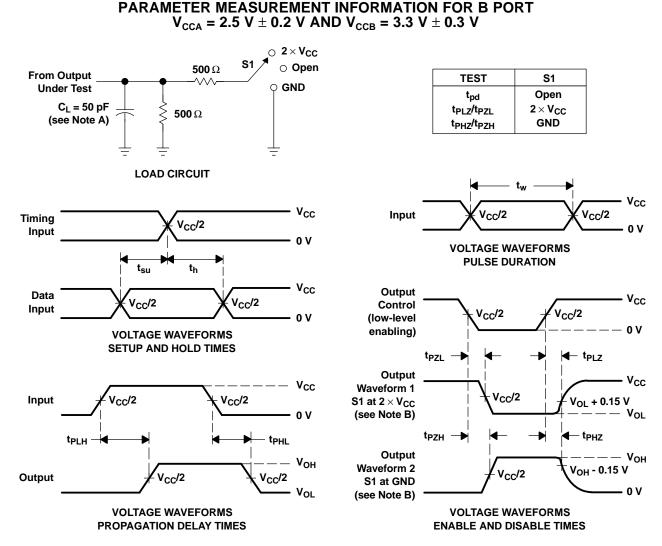
SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

NOTES: A. CL includes probe and jig capacitance.

Texas

TRUMENTS www.ti.com

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.


Figure 1. Load Circuit and Voltage Waveforms

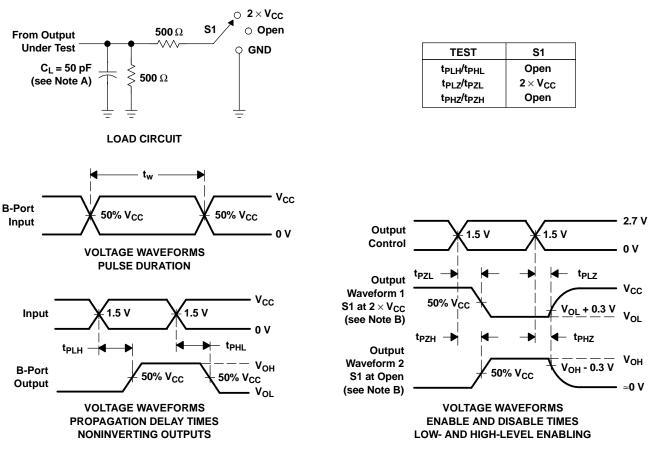
Texas

www.ti.com

SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2 ns, t_f \leq 2 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all devices.

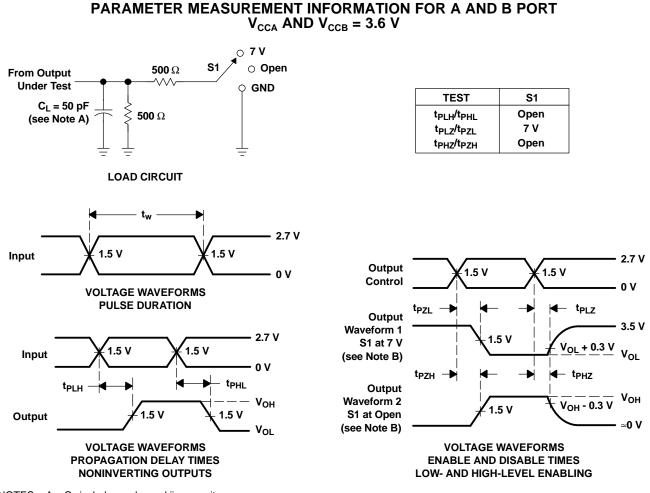

Figure 2. Load Circuit and Voltage Waveforms

TEXAS INSTRUMENTS www.ti.com

SN74LVCC3245A OCTAL BUS TRANSCEIVER WITH ADJUSTABLE OUTPUT VOLTAGE AND 3-STATE OUTPUTS

SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

PARAMETER MEASUREMENT INFORMATION FOR B PORT V_{CCA} = 3.6 V and v_{CCB} = 5.5 V



- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_Q = 50 Ω , t_r \leq 2.5 ns. t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. All parameters and waveforms are not applicable to all devices.

Figure 3. Load Circuit and Voltage Waveforms

SCAS5850-NOVEMBER 1996-REVISED MARCH 2005

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z₀ = 50 Ω , t_r \leq 2.5 ns, t_f \leq 2.5 ns.
 - D. The outputs are measured one at a time, with one transition per measurement.
 - E. All parameters and waveforms are not applicable to all devices.

Figure 4. Load Circuit and Voltage Waveforms

www.ti.com

18-Mar-2010

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
74LVCC3245ADBQRE4	ACTIVE	SSOP/ QSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
74LVCC3245ADBQRG4	ACTIVE	SSOP/ QSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN74LVCC3245ADBLE	OBSOLETE	SSOP	DB	24		TBD	Call TI	Call TI
SN74LVCC3245ADBQR	ACTIVE	SSOP/ QSOP	DBQ	24	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN74LVCC3245ADBR	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ADBRE4	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ADBRG4	ACTIVE	SSOP	DB	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ADW	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ADWE4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ADWG4	ACTIVE	SOIC	DW	24	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ADWR	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ADWRE4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ADWRG4	ACTIVE	SOIC	DW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ANSR	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ANSRE4	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245ANSRG4	ACTIVE	SO	NS	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APW	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APWE4	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APWG4	ACTIVE	TSSOP	PW	24	60	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APWLE	OBSOLETE	TSSOP	PW	24		TBD	Call TI	Call TI
SN74LVCC3245APWR	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APWRE4	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APWRG4	ACTIVE	TSSOP	PW	24	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APWT	ACTIVE	TSSOP	PW	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APWTE4	ACTIVE	TSSOP	PW	24	250	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVCC3245APWTG4	ACTIVE	TSSOP	PW	24	250	Green (RoHS &	CU NIPDAU	Level-1-260C-UNLIM
		-	-	_				

www.ti.com

18-Mar-2010

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins Package Qty	Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
					no Sb/Br)		

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

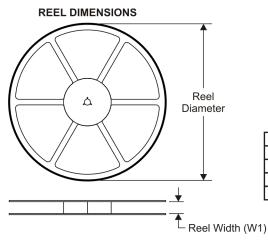
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

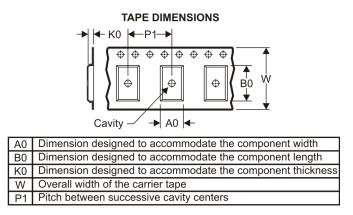
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN74LVCC3245A :

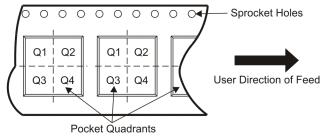
Enhanced Product: SN74LVCC3245A-EP

NOTE: Qualified Version Definitions:


• Enhanced Product - Supports Defense, Aerospace and Medical Applications

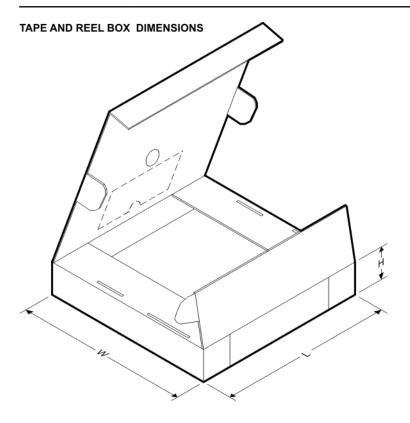

PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

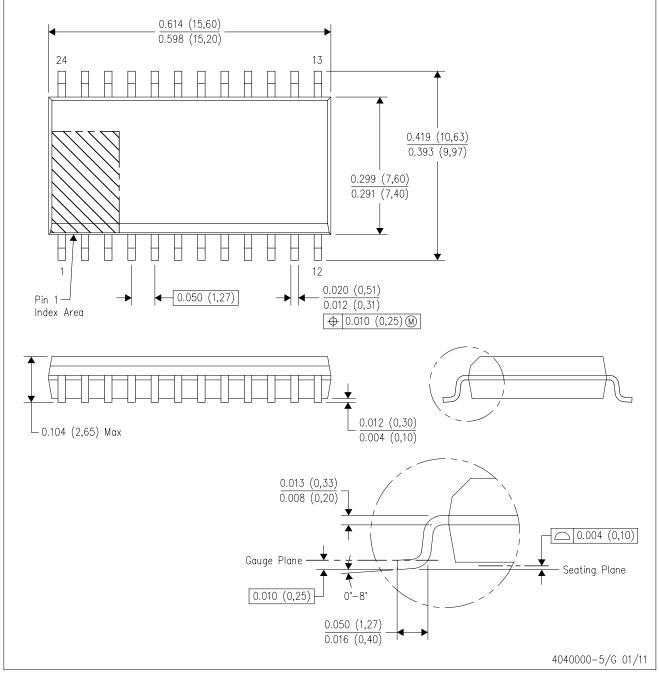

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74LVCC3245ADBQR	SSOP/ QSOP	DBQ	24	2500	330.0	16.4	6.5	9.0	2.1	8.0	16.0	Q1
SN74LVCC3245ADBR	SSOP	DB	24	2000	330.0	16.4	8.2	8.8	2.5	12.0	16.0	Q1
SN74LVCC3245ADWR	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1
SN74LVCC3245ANSR	SO	NS	24	2000	330.0	24.4	8.2	15.4	2.5	12.0	24.0	Q1
SN74LVCC3245APWR	TSSOP	PW	24	2000	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1
SN74LVCC3245APWT	TSSOP	PW	24	250	330.0	16.4	6.95	8.3	1.6	8.0	16.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

20-Jul-2010



*All dimensions are nominal

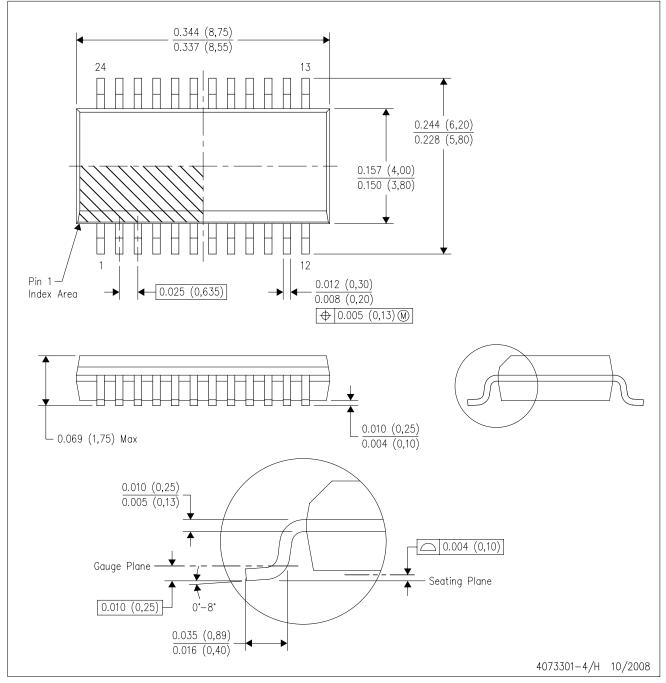
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN74LVCC3245ADBQR	SSOP/QSOP	DBQ	24	2500	346.0	346.0	33.0
SN74LVCC3245ADBR	SSOP	DB	24	2000	346.0	346.0	33.0
SN74LVCC3245ADWR	SOIC	DW	24	2000	346.0	346.0	41.0
SN74LVCC3245ANSR	SO	NS	24	2000	346.0	346.0	41.0
SN74LVCC3245APWR	TSSOP	PW	24	2000	346.0	346.0	33.0
SN74LVCC3245APWT	TSSOP	PW	24	250	346.0	346.0	33.0

DW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

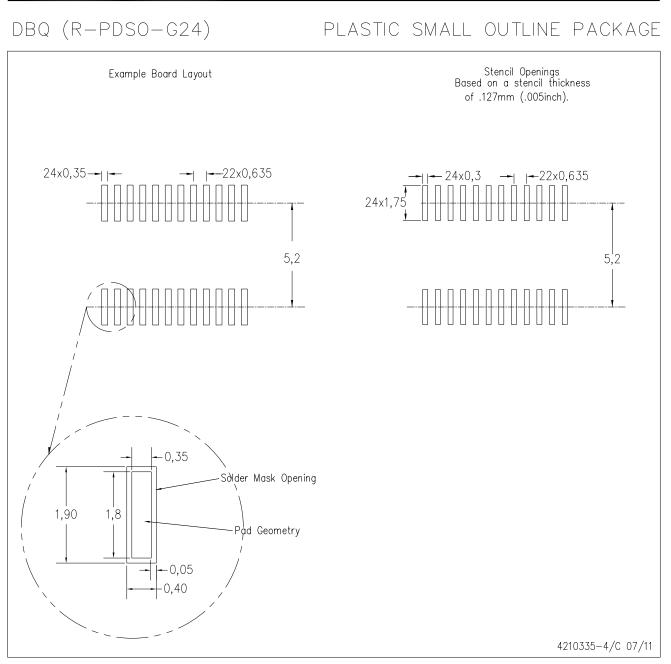
B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AD.

DBQ (R-PDSO-G24)

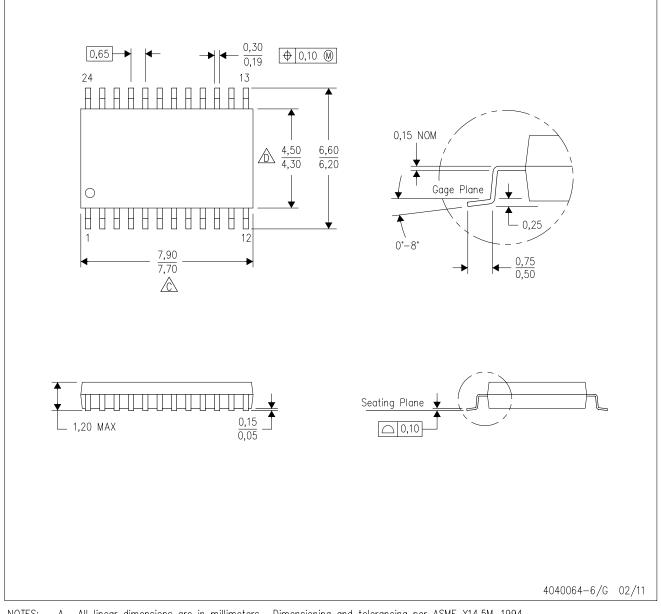
PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15) per side.

D. Falls within JEDEC MO-137 variation AE.


NOTES:

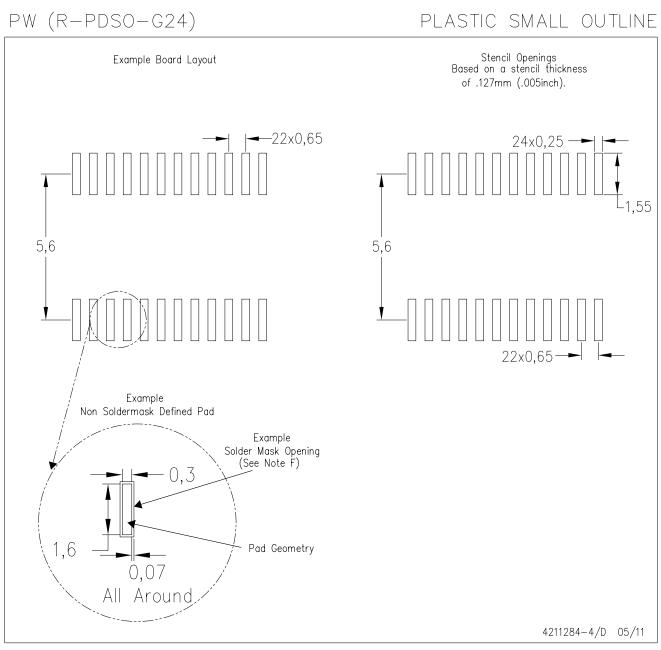
- A. All linear dimensions are in millimeters.B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.

PW (R-PDSO-G24)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication $\ensuremath{\mathsf{IPC-7351}}$ is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

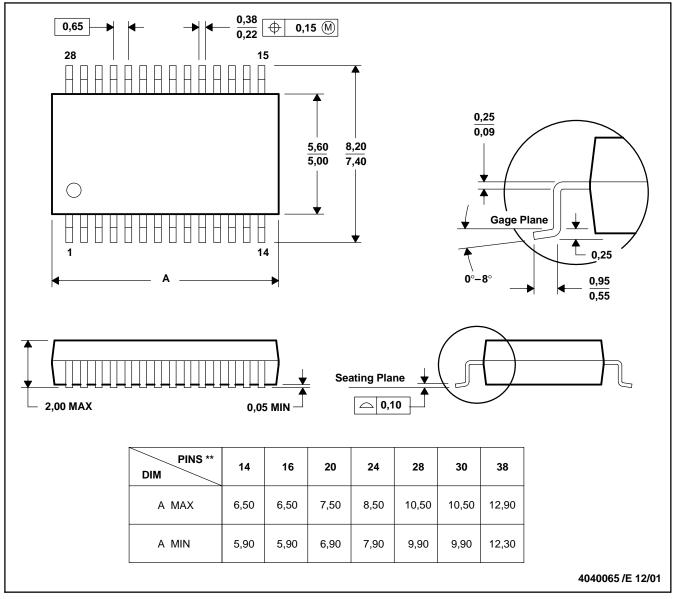
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated