48 20E

37 2A4

36 🛮 3A1

DGG, DGV, OR DL PACKAGE

(TOP VIEW)

10E

- **Member of the Texas Instruments** Widebus™ Family
- Operates From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.1 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce) <0.8 V at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$
- Typical V_{OHV} (Output V_{OH} Undershoot) >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Ioff Supports Partial-Power-Down Mode Operation
- **Supports Mixed-Mode Signal Operation On** All Ports (5-V Input/Output Voltage With 3.3-V V_{CC})
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 1000-V Charged-Device Model (C101)

description/ordering information

This 16-bit buffer/driver is designed for 1.65-V to 3.6-V V_{CC} operation.

The SN74LVC16244A is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters.

The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (OE) inputs.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of this device as a translator in a mixed 3.3-V/5-V system environment.

1Y1 🛮 2 47 1 1A1 1Y2 II 3 46 1 1A2 45 GND GND 4 1Y3 🛮 44 1 1A3 1Y4 **[**] 6 43 1 1A4 42 V_{CC} V_{CC} \Box 2Y1 18 41 2A1 2Y2 🛮 9 40 2A2 GND 10 39 GND 38**∏** 2A3 2Y3 11

2Y4 112

13

3Y1 🛮

3Ү2 Г 35 T 3A2 14 GND 15 34 GND 33 A3 3Y3 **∏** 16 3Y4 [17 32 3A4 v_{cc} [18 31 V_{CC} 30 **[**] 4A1 4Y1 **1**19

4Υ2 **Π** 29 4A2 20 GND II 21 28 | GND 4Y3 🛮 22 27 4A3 4Y4 [23 26 4A4 4OE 25 3OE 24

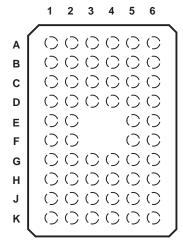
ORDERING INFORMATION

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	0000 01	Tube	SN74LVC16244ADL	11/0400444
	SSOP – DL	Tape and reel	SN74LVC16244ADLR	LVC16244A
40004 0500	TSSOP – DGG	Tape and reel	SN74LVC16244ADGGR	LVC16244A
-40°C to 85°C	TVSOP - DGV	Tape and reel	SN74LVC16244ADGVR	LD244A
	VFBGA – GQL	Tana and saal	SN74LVC16244AGQLR	LD244A
	VFBGA – ZQL (Pb-free)	Tape and reel	SN74LVC16244AZQLR	LDZ 44A

[†]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.


ISTRUMENTS

description/ordering information (continued)

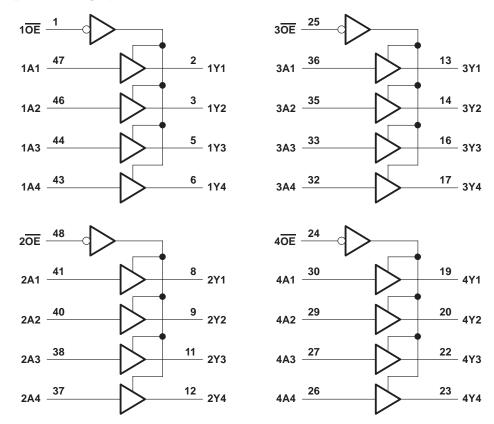
This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

GQL OR ZQL PACKAGE (TOP VIEW)

terminal assignments

	1	2	3	4	5	6
Α	10E	NC	NC	NC	NC	2OE
В	1Y2	1Y1	GND	GND	1A1	1A2
С	1Y4	1Y3	Vcc	Vcc	1A3	1A4
D	2Y2	2Y1	GND	GND	2A1	2A2
Ε	2Y4	2Y3			2A3	2A4
F	3Y1	3Y2			3A2	3A1
G	3Y3	3Y4	GND	GND	3A4	3A3
Н	4Y1	4Y2	VCC	VCC	4A2	4A1
J	4Y3	4Y4	GND	GND	4A4	4A3
K	40E	NC	NC	NC	NC	3OE


NC - No internal connection

FUNCTION TABLE (each 4-bit buffer)

INP	UTS	OUTPUT
OE	Α	Υ
L	Н	Н
L	L	L
Н	Χ	Z

logic diagram (positive logic)

Pin numbers shown are for the DGG, DGV, and DL packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}		
Input voltage range, V _I (see Note 1)		–0.5 V to 6.5 V
Voltage range applied to any output in the high-i	impedance or power-off state, VO	
(see Note 1)		–0.5 V to 6.5 V
Voltage range applied to any output in the high of	. 0	
(see Notes 1 and 2)		$0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I _{IK} (V _I < 0)		
Output clamp current, I _{OK} (V _O < 0)		–50 mA
Continuous output current, IO		±50 mA
Continuous current through each V _{CC} or GND		±100 mA
Package thermal impedance, θ_{JA} (see Note 3):	DGG package	70°C/W
	DGV package	58°C/W
	DL package	
	GQL/ZQL package	42°C/W
Storage temperature range, T _{stg}		–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of $V_{\hbox{CC}}$ is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SN74LVC16244A 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS SCES061M - DECEMBER 1995 - REVISED NOVEMBER 2003

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT
V	Complementaria	Operating	1.65	3.6	
VCC	V _{CC} Supply voltage	Data retention only	1.5		V
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _{CC}		
V_{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		
		V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$	
VIL	Low-level input voltage	V _{CC} = 2.3 V to 2.7 V		0.7	V
		V _{CC} = 2.7 V to 3.6 V		0.8	
٧ı	Input voltage	·	0	5.5	V
		High or low state	0	VCC	
VO	Output voltage	3-state	0	5.5	V
	High-level output current	V _{CC} = 1.65 V		-4	
		V _{CC} = 2.3 V		-8	
ЮН		V _{CC} = 2.7 V		-12	mA
		V _{CC} = 3 V		-24	
		V _{CC} = 1.65 V		4	
		V _{CC} = 2.3 V		8	
IOL I	Low-level output current	V _{CC} = 2.7 V		12	mA
		V _{CC} = 3 V		24	
Δt/Δν	Input transition rise or fall rate	·		10	ns/V
TA	Operating free-air temperature		-40	85	°C

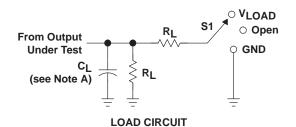
NOTE 4: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CO	VCC	MIN	TYP [†]	MAX	UNIT	
	I _{OH} = -100 μA	1.65 V to 3.6 V	V _{CC} -0.2				
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.2			
.,,	I _{OH} = -8 mA		2.3 V	1.7			V
VOH	10 1		2.7 V	2.2			V
	$I_{OH} = -12 \text{ mA}$		3 V	2.4			
	I _{OH} = -24 mA		3 V	2.2			
	I _{OL} = 100 μA		1.65 V to 3.6 V			0.2	
	I _{OL} = 4 mA	1.65 V			0.45	V	
VOL	I _{OL} = 8 mA	2.3 V			0.7		
	I _{OL} = 12 mA	2.7 V			0.4		
	I _{OL} = 24 mA		3 V			0.55	
lį	V _I = 0 to 5.5 V		3.6 V			±5	μΑ
l _{off}	V_I or $V_O = 5.5 V$		0			±10	μΑ
loz	V _O = 0 to 5.5 V		3.6 V			±10	μΑ
_	$V_I = V_{CC}$ or GND					20	
Icc	$3.6 \text{ V} \le \text{V}_{\text{I}} \le 5.5 \text{ V}^{\ddagger}$	IO = 0	3.6 V			20	μΑ
ΔlCC	One input at V _{CC} – 0.6 V,	Other inputs at V _{CC} or GND	2.7 V to 3.6 V			500	μА
C _i	$V_I = V_{CC}$ or GND		3.3 V		5.5		pF
Co	$V_O = V_{CC}$ or GND		3.3 V		6		pF

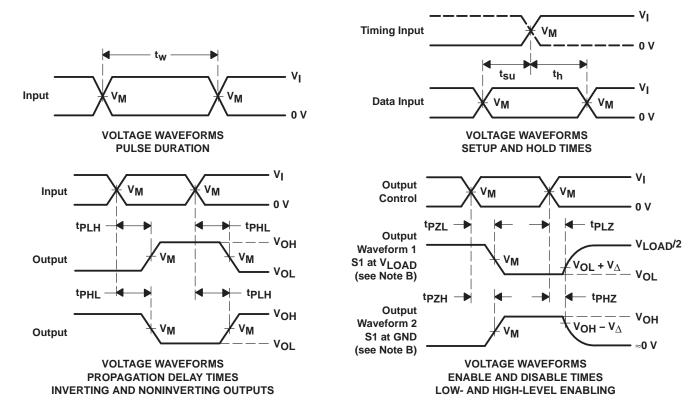
[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. ‡ This applies in the disabled state only.

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)


PARAMETER	FROM TO		V _{CC} = 1.8 V		V _{CC} = 2.7 V		V _{CC} = 3.3 V ± 0.3 V		UNIT		
	(INPUT)	(OUTPUT)	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
^t pd	Α	Υ	1.5	6.6	1	3.9	1	4.7	1.1	4.1	ns
t _{en}	ŌĒ	Υ	1.5	7.5	1	4.7	1	5.8	1	4.6	ns
^t dis	ŌĒ	Υ	1.5	10.3	1	5.3	1	6.2	1.8	5.8	ns
t _{sk(o)}										1	ns

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER			TEST	V _{CC} = 1.8 V	V _{CC} = 2.5 V	VCC = 3.3 V	LINUT	
PARAMETER		CONDITIONS	TYP	TYP	TYP	UNIT		
<u> </u>	Power dissipation capacitance	Outputs enabled	f = 10 MHz	33	35	39	pF	
C _{pd}	per buffer/driver	Outputs disabled	1 = 10 MH2	2	3	4	рг	



PARAMETER MEASUREMENT INFORMATION

TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	V _{LOAD}
tPHZ/tPZH	GND

.,	INPUTS		.,	V	•	-	.,
VCC	٧ _I	t _r /t _f	VM	VLOAD	CL	RL	V_Δ
1.8 V ± 0.15 V	VCC	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	VCC	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

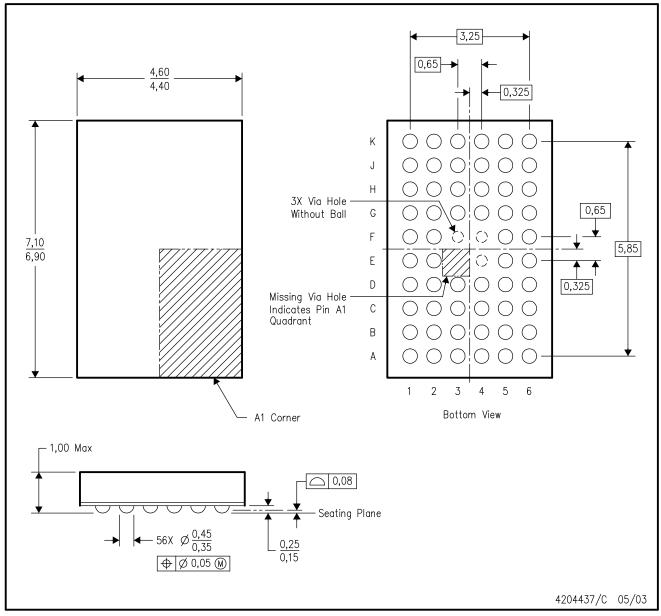

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
 - D. The outputs are measured one at a time with one transition per measurement.
 - E. tpLz and tpHz are the same as tdis.
 - F. tpz and tpzH are the same as ten.
 - G. tpLH and tpHL are the same as tpd.
 - H. All parameters and waveforms are not applicable to all devices.

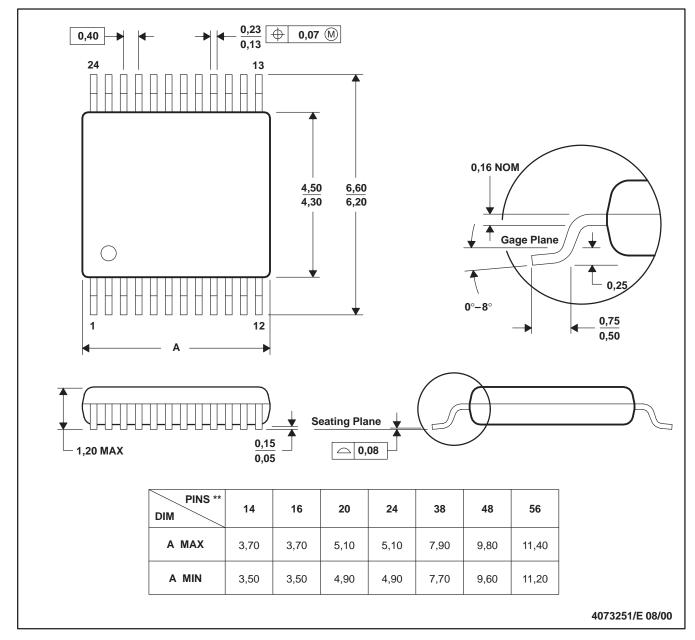
Figure 1. Load Circuit and Voltage Waveforms

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. MicroStar Junior™ BGA configuration.
- D. Falls within JEDEC MO-225 variation BA.
- E. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).


MicroStar Junior is a trademark of Texas Instruments.

DGV (R-PDSO-G**)

24 PINS SHOWN

PLASTIC SMALL-OUTLINE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.

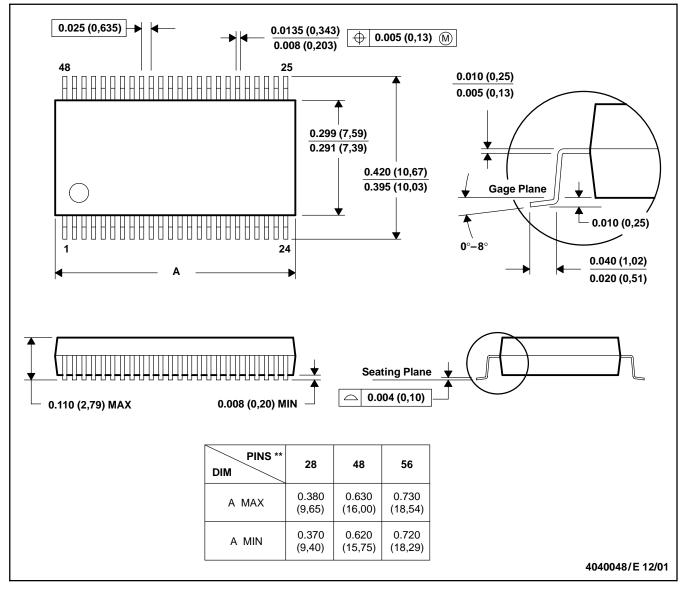
D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194

GQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. MicroStar Junior™ BGA configuration.
- D. Falls within JEDEC MO-225 variation BA.
- E. This package is tin-lead (SnPb). Refer to the 56 ZQL package (drawing 4204437) for lead-free.


MicroStar Junior is a trademark of Texas Instruments.

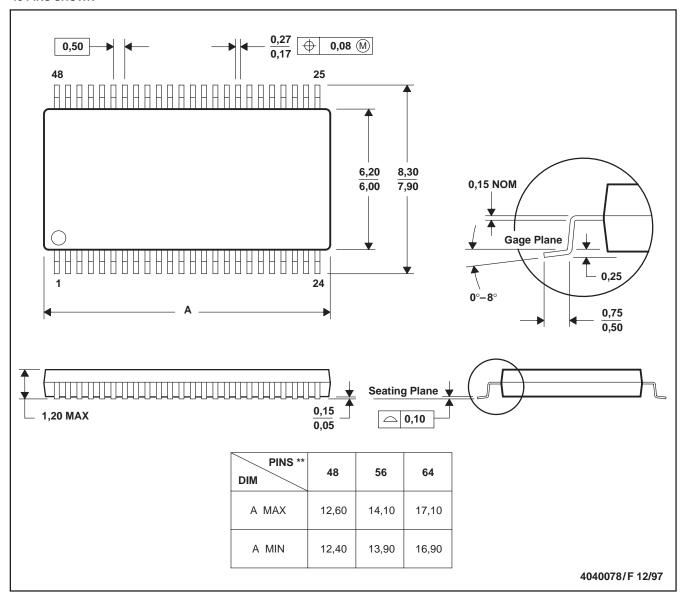
DL (R-PDSO-G**)

48 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MO-118

DGG (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated