SCAS596M - OCTOBER 1997 - REVISED FEBRUARY 2004

- Operate From 1.65 V to 3.6 V
- Specified From -40°C to 85°C, -40°C to 125°C, and -55°C to 125°C
- Inputs and Open-Drain Outputs Accept Voltages up to 5.5 V
- Max t_{pd} of 3.7 ns at 3.3 V
- I_{off} Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17

description/ordering information

These hex inverter buffers/drivers are designed for 1.65-V to 3.6-V V_{CC} operation.

The outputs of the 'LVC06A devices are open drain and can be connected to other open-drain outputs to implement active-low wired-OR or active-high wired-AND functions. The maximum sink current is 24 mA.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

ORDERING INFORMATION								
TA	PACK	AGET	ORDERABLE PART NUMBER	TOP-SIDE MARKING				
-40°C to 85°C	QFN – RGY Reel of 1000		SN74LVC06ARGYR	LC06A				
		Tube of 50	SN74LVC06AD					
	SOIC – D	Reel of 2500	SN74LVC06ADR	LVC06A				
		Reel of 250	SN74LVC06ADT					
	SOP – NS	Reel of 2000	SN74LVC06ANSR	LVC06A				
–40°C to 125°C	SSOP – DB	Reel of 2000	SN74LVC06ADBR	LC06A				
		Tube of 90	SN74LVC06APW					
	TSSOP – PW	Reel of 2000	SN74LVC06APWR	LC06A				
		Reel of 250	SN74LVC06APWT					
	TVSOP – DGV	Reel of 2000	SN74LVC06ADGVR	LC06A				
	CDIP – J	Tube of 25	SNJ54LVC06AJ	SNJ54LVC06AJ				
–55°C to 125°C	CFP – W	Tube of 150	SNJ54LVC06AW	SNJ54LVC06AW				
	LCCC – FK	Tube of 55	SNJ54LVC06AFK	SNJ54LVC06AFK				

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2004, Texas Instruments Incorporated

SCAS596M - OCTOBER 1997 - REVISED FEBRUARY 2004

description/ordering information (continued)

These devices are fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

	FUNCTION TABLE (each inverter)				
	INPUT A	OUTPUT Y			
ľ	Н	L			
	L	Н			

logic diagram, each inverter (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC} Input voltage range, V _I (see Note 1)	–0.5 V to 6.5 V
Output voltage range, V _O	
Input clamp current, I _{IK} (V _I < 0)	
Output clamp current, I _{OK} (V _O < 0)	
Continuous output current, Io	±50 mA
Continuous current through V_{CC} or GND	
Package thermal impedance, θ_{JA} (see Note 2): D package	
(see Note 2): DB package	
(see Note 2): DGV package	127°C/W
(see Note 2): NS package	
(see Note 2): PW package	113°C/W
(see Note 3): RGY package	47°C/W
Storage temperature range, T _{stg}	
Power dissipation, P_{tot} ($T_A = -40^{\circ}$ C to 125°C) (see Notes 4 and 5)	500 mW

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

3. The package thermal impedance is calculated in accordance with JESD 51-5.

4. For the D package: above 70°C the value of Ptot derates linearly with 8 mW/K.

5. For the DB, DGV, NS, and PW packages: above 60°C the value of Ptot derates linearly with 5.5 mW/K.

SCAS596M - OCTOBER 1997 - REVISED FEBRUARY 2004

recommended operating conditions (see Note 6)

			SN54LVC	06A		
			–55 TO 125°C		UNIT	
			MIN	MAX		
	Currente unalta na	Operating	1.65	3.6	V	
VCC	Supply voltage	Data retention only	1.5		V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
VIH	High-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.7	W	V	
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2	N.		
	Low-level input voltage	V _{CC} = 1.65 V to 1.95 V	0.3	5×Vcc		
VIL		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$		0.7	V	
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	γ_{Q}	0.8		
VI	Input voltage		20	5.5	V	
VO	Output voltage		0	5.5	V	
		V _{CC} = 1.65 V		4		
1		V _{CC} = 2.3 V		8		
IOL	Low-level output current	$V_{CC} = 2.7 V$		12	mA	
		V _{CC} = 3 V		24		

NOTE 6: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

recommended operating conditions (see Note 6)

			SN74LVC06A						
			T _A =	25°C	–40 TO 85°C		–40 TO 125°C		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
		Operating	1.65	3.6	1.65	3.6	1.65	3.6	
VCC	Supply voltage	Data retention only	1.5		1.5		1.5		V
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$)	$0.65 \times V_{CC}$;	$0.65 \times V_{CC}$		
VIH	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		1.7		1.7		V
	input voltage	V _{CC} = 2.7 V to 3.6 V	2		2		2		
	Low-level	V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$	
VIL		V_{CC} = 2.3 V to 2.7 V		0.7		0.7		0.7	V
	input voltage	V_{CC} = 2.7 V to 3.6 V		0.8		0.8		0.8	
VI	Input voltage		0	5.5	0	5.5	0	5.5	V
VO	Output voltage		0	5.5	0	5.5	0	5.5	V
		V _{CC} = 1.65 V		4		4		4	
	Low-level	V _{CC} = 2.3 V		8		8		8	
IOL	output current	V _{CC} = 2.7 V		12		12		12	mA
		V _{CC} = 3 V		24		24		24	

NOTE 6: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCAS596M - OCTOBER 1997 - REVISED FEBRUARY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

			SN54LVC06A		
PARAMETER	TEST CONDITIONS	Vcc	–55 TO 125°C	UNIT	
			MIN TYP MAX		
	I _{OL} = 100 μA	1.65 V to 3.6 V	0.2		
	I _{OL} = 4 mA	1.65 V	0.45		
VOL	I _{OL} = 8 mA	2.3 V	0.7	V	
	I _{OL} = 12 mA	2.7 V	0.4		
	I _{OL} = 24 mA	3 V	0.55		
Ц	V _I = 5.5 V or GND	3.6 V	2 ±5	μA	
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	3.6 V	0 10	μA	
ΔICC	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	2.7 V to 3.6 V	500	μΑ	
Ci	V _I = V _{CC} or GND	3.3 V	5†	pF	

 $^{+}T_{A} = 25^{\circ}C$

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

					SN	74LVC0	6A			
PARAMETER	TEST CONDITIONS	Vcc	T _A = 25°C		–40 TO 85°C		–40 TO 125°C		UNIT	
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
	I _{OL} = 100 μA	1.65 V to 3.6 V			0.1		0.2		0.3	
	$I_{OL} = 4 \text{ mA}$	1.65 V			0.24		0.45		0.6	
VOL	I _{OL} = 8 mA	2.3 V			0.3		0.7		0.75	V
	I _{OL} = 12 mA	2.7 V	0.4		0.4		0.6			
	I _{OL} = 24 mA	3 V			0.55		0.55		0.8	
l	$V_I = 5.5 V \text{ or GND}$	3.6 V			±1		±5		±20	μA
loff	$V_{I} \text{ or } V_{O} = 5.5 \text{ V}$	0			±1		±10		±20	μA
ICC	$V_{I} = V_{CC} \text{ or } GND, \qquad I_{O} = 0$	3.6 V			1		10		40	μA
ΔICC	One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	2.7 V to 3.6 V			500		500		5000	μA
Ci	$V_I = V_{CC}$ or GND	3.3 V		5						pF

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		FROM TO (INPUT) (OUTPUT)			SN54LVC06A	
	PARAMETER				TO (OUTPUT)	Vcc
					MIN MAX	
		A		$1.8~V\pm0.15~V$	1.4 5.6	
	4 .		X	$2.5~V\pm0.2~V$	1 3.1	
	^t pd		Ŷ	2.7 V	3.9	ns
				$3.3~V\pm0.3~V$	1 3.7	

SN54LVC06A, SN74LVC06A **HEX INVERTER BUFFERS/DRIVERS** WITH OPEN-DRAIN OUTPUTS SCAS596M – OCTOBER 1997 – REVISED FEBRUARY 2004

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

						SN	74LVC06	6A					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	Vcc	T,	₄ = 25°C	;	-40 TC	85°C	-40 TO	125°C	UNIT		
		(0011 01)		MIN	TYP	MAX	MIN	MAX	MIN	MAX			
				1	$1.8~V\pm0.15~V$	1.4	3	5.1	1.4	5.6	1.4	7.6	
	•	V	$2.5~V\pm0.2~V$	1	1.9	2.8	1	3.1	1	4			
^t pd	A	A Y	2.7 V	1	2.4	3.7	1	3.9	1	5	ns		
			$3.3~V\pm0.3~V$	1	2.2	3.5	1	3.7	1	5			

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	VCC	ТҮР	UNIT
	Power dissipation capacitance per buffer/driver		1.8 V	2.1	
Cpd		f = 10 MHz	2.5 V	2.3	pF
			3.3 V	2.5	

SCAS596M - OCTOBER 1997 - REVISED FEBRUARY 2004

NOTES: A. Cl includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω .
- D. The outputs are measured one at a time, with one transition per measurement.
- E. Since this device has open-drain outputs, tPLZ and tPZL are the same as tpd.
- F. t_{PZL} is measured at V_M.
- G. tpLZ is measured at $V_{OL} + V_{\Delta}$.
- H. All parameters and waveforms are not applicable to all devices.

PLASTIC SMALL-OUTLINE

MPDS006C - FEBRUARY 1996 - REVISED AUGUST 2000

DGV (R-PDSO-G**)

24 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
- D. Falls within JEDEC: 24/48 Pins MO-153

14/16/20/56 Pins – MO-194

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. QFN (Quad Flatpack No-Lead) package configuration.

The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads.

E. Package complies to JEDEC MO-241 variation BA.

MSOI002B - JANUARY 1995 - REVISED SEPTEMBER 2001

PLASTIC SMALL-OUTLINE PACKAGE

D (R-PDSO-G**) 8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012

PLASTIC SMALL-OUTLINE PACKAGE

0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated