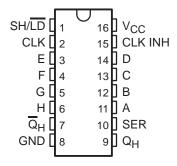
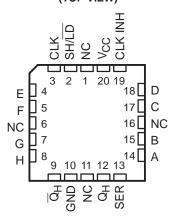
- EPIC™ (Enhanced-Performance Implanted CMOS) 2-µ Process
- Typical V_{OLP} (Output Ground Bounce)
 < 0.8 V at V_{CC}, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 < 2 V at V_{CC}, T_A = 25°C
- ESD Protection Exceeds 2000 V Per MIL-STD-883C, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0)
- Latch-Up Performance Exceeds 250 mA Per JEDEC Standard JESD-17
- Package Options Include Plastic Small-Outline (D), Shrink Small-Outline (DB), Thin Shrink Small-Outline (PW), Ceramic Flat (W) Packages, Chip Carriers (FK), and (J) 300-mil DIPs


description

The 'LV165 parallel-load, 8-bit shift registers are designed for 2.7-V to 5.5-V V_{CC} operation.


When the device is clocked, data is shifted toward the serial output Q_H . Parallel-in access to each stage is provided by eight individual direct data inputs that are enabled by a low level at the SH/\overline{LD} input. The 'LV165 feature a clock inhibit function and a complemented serial output \overline{Q}_H .

Clocking is accomplished by a low-to-high transition of the clock (CLK) input while SH/\overline{LD} is

SN54LV165 . . . J OR W PACKAGE SN74LV165 . . . D, DB, OR PW PACKAGE (TOP VIEW)

SN54LV165 . . . FK PACKAGE (TOP VIEW)

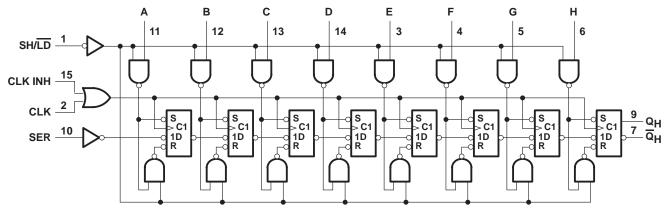
NC - No internal connection

held high and clock inhibit (CLK INH) is held low. The functions of the CLK and CLK INH inputs are interchangeable. Since a low CLK input and a low-to-high transition of CLK INH accomplishes clocking, CLK INH should be changed to the high level only while CLK is high. Parallel loading is inhibited when SH/LD is held high. The parallel inputs to the register are enabled while SH/LD is held low independently of the levels of CLK, CLK INH, or SER.

The SN54LV165 is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74LV165 is characterized for operation from –40°C to 85°C.

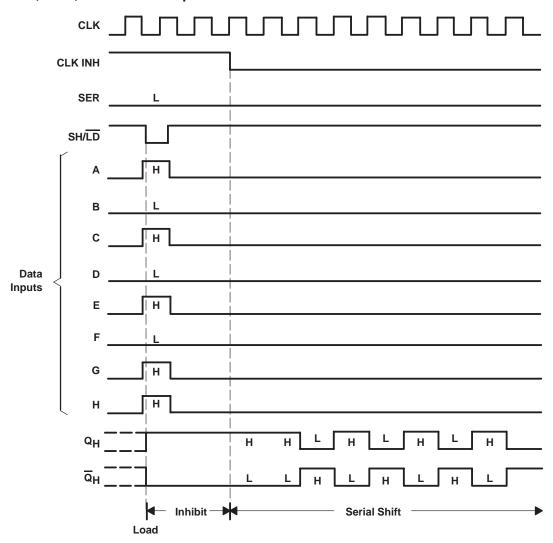
FUNCTION TABLE

	INPUTS		OPERATION
SH/LD	CLK	CLK INH	OPERATION
L	Х	Х	Parallel load
Н	Н	Χ	Q_0
Н	X	Н	Q_0
Н	L	\uparrow	Shift
Н	\uparrow	L	Shift



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

EPIC is a trademark of Texas Instruments Incorporated.



logic diagram (positive logic)

Pin numbers shown are for D, DB, J, PW, and W packages.

typical shift, load, and inhibit sequences

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)	0.5 V to V _{CC} + 0.5 V
Output voltage range, VO (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, I_{IK} ($V_I < 0$ or $V_I > V_{CC}$)	$\dots \dots \pm 20 \text{ mA}$
Output clamp current, I _{OK} (V _O < 0 or V _O > V _{CC})	$\pm 50 \text{ mA}$
Continuous output current, $I_O(V_O = 0 \text{ to } V_{CC})$	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
Continuous current through V _{CC} or GND	\pm 50 mA
Maximum power dissipation at T _A = 55°C (in still air) (see Note 3)): D package 1.30 W
	DB package 0.55 W
	PW package 0.5 W
Storage temperature range, T _{Stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 7 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

recommended operating conditions (see Note 4)

			SN54L	.V165	SN74L	UNIT	
			MIN	MAX	MIN	MAX	UNII
Vcc	Supply voltage		2.7	5.5	2.7	5.5	V
V	High level input veltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		2		V
VIH	High-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	3.15		3.15		V
VIL	Low level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		0.8	V
	Low-level input voltage	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$		1.65		1.65	ľ
٧ı	Input voltage		0	Vcc	0	VCC	V
Vo	Output voltage		0	VCC	0	VCC	V
lou	High lovel output ourrent	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	20	-6		-6	mA
ЮН	High-level output current	$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	PO .	-12		-12	IIIA
la.	Low lovel output outpost	V _{CC} = 2.7 V to 3.6 V	V	6		6	mA
IOL	Low-level output current $V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$			12		12	mA
Δt/Δν	Input transition rise or fall rate		0	100	0	100	ns/V
TA	Operating free-air temperature		-55	125	-40	85	°C

NOTE 4: Unused inputs must be held high or low to prevent them from floating.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS	,, ₊	SN54LV165	SN74LV165	UNIT
PARAMETER	TEST CONDITIONS	v _{cc} †	MIN TYP MAX	MIN TYP MAX	UNIT
	$I_{OH} = -100 \mu\text{A}$	MIN to MAX	V _{CC} -0.2	V _{CC} -0.2	
Voн	$I_{OH} = -6 \text{ mA}$	3 V	2.4	2.4	V
	$I_{OH} = -12 \text{ mA}$	4.5 V	3.6	3.6	
	I _{OL} = 100 μA	MIN to MAX	0.2	0.2	
VoL	I _{OL} = 6 mA	3 V	0.4	0.4	V
	I _{OL} = 12 mA	4.5 V	0.55	0.55	
1.	V _I = V _{CC} or GND	3.6 V	±1	±1	μΑ
l _I	V = VCC or GIVD	5.5 V	<u> </u>	±1	μΑ
loo	$V_1 = V_{CC}$ or GND, $I_0 = 0$	3.6 V	20	20	
Icc	$V_I = V_{CC}$ or GND, $I_O = 0$	5.5 V	20	20	μA
ΔICC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GND	3 V to 3.6 V	500	500	μА
Ci	V _I = V _{CC} or GND	3.3 V	2.5	2.5	pF
	AL = ACC OL CLAD	5 V	3	3	ρr

[†] For conditions shown as MIN or MAX, use the appropriate values under recommended operating conditions.

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

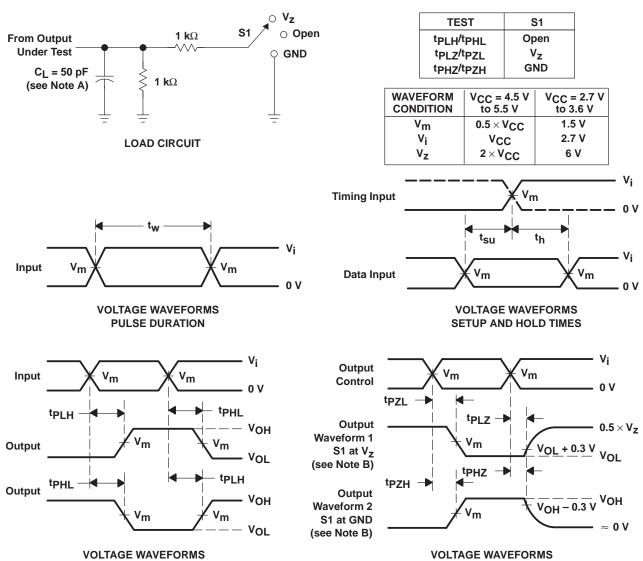
			V _{CC} = 5.5 V ± 0.5 V		V _{CC} = 3.3 V ± 0.3 V				UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
fclock	Clock frequency		0	50	0	40	0	30	MHz	
	Pulse duration	CLK high or low	14		18		22		ns	
t _W		SH/LD low	14		18		22			
		SH/LD high before CLK↑	10		13		Ú 17			
 .	Setup time	SER before CLK↑	8	*OD	11	201	14			
t _{su}		CLK INH before CLK↑	10	6, 0	12	6/4	15		ns	
		Data before SH/LD↑	8	Α.	12	X	17			
+.	Hold time	SER data after CLK↑	6		6		5		ne	
th	Hola time	Parallel data after SH/LD↑	6		6		5		ns	

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

			SN74LV165						
			V _{CC} = 5.5 V ± 0.5 V		V _{CC} = 3.3 V ± 0.3 V		V _{CC} = 2.7 V		UNIT
			MIN	MAX	MIN	MAX	MIN	MAX	
fclock	Clock frequency		0	50	0	40	0	30	MHz
	Pulse duration	CLK high or low	14		18		22		ns
t _W		SH/LD low	14		18		22		
		SH/LD high before CLK↑	10		13		17		
 .	Cation time	SER before CLK↑	8		11		14		
t _{su}	Setup time	CLK INH before CLK↑	10		12		15		ns
		Data before SH/LD↑	8		12		17		
+.	Hold time	SER data after CLK↑	6		6		5		ne
^t h	Hold time	Parallel data after SH/LD↑	6	·	6		5		ns

switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

						SN54L	.V165					
PARAMETER	FROM (INPUT)	TO (OUTPUT)	_	V _{CC} =	5.5 V ±	0.5 V	V _{CC} =	3.3 V ±	0.3 V	V _{CC} =	2.7 V	UNIT
	(IIII O1)		MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX		
f _{max}			50	90		40	75		30		MHz	
	CLK			20	24	14:5	20	38	CM .	47		
^t pd	SH/LD	Q_H or \overline{Q}_H		19	24	E.VIII	19	36	3/1	44	ns	
	Н			15	20		15	29		36		


switching characteristics over recommended operating free-air temperature range, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

						SN74L	.V165				
PARAMETER	FROM (INPUT)	TO (OUTPUT)	VCC =	5.5 V ±	0.5 V	VCC =	3.3 V \pm	0.3 V	VCC =	2.7 V	UNIT
	(INI O1)		MIN	TYP	MAX	MIN	TYP	MAX	MIN	MAX	
f _{max}			50	90		40	75		30		MHz
	CLK			20	24		20	38		47	
^t pd	SH/LD	Q_H or \overline{Q}_H		19	24		19	36		44	ns
	Н			15	20		15	29		36	

operating characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	VCC	TYP	UNIT
Compa	Power discipation capacitance	C _I = 50 pF, f = 10 MHz	3.3 V	33	,,,
Cpd	Power dissipation capacitance	C[= 50 pr, 1 = 10 MH2	5 V	57	pF

PARAMETER MEASUREMENT INFORMATION

PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \ \Omega$, $t_f \leq 2.5 \ ns$, $t_f \leq 2.5 \ ns$.
- D. The outputs are measured one at a time with one transition per measurement.
- E. tpLz and tpHz are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.

Figure 1. Load Circuit and Voltage Waveforms

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated