
SDLS185

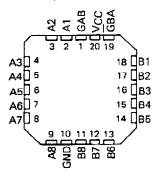
D2537, AUGUST 1979-REVISED MARCH 1988

- Bidirectional Bus Transceivers in High-Density 20-Pin Packages
- Local Bus-Latch Capability
- Hysteresis at Bus Inputs Improves Noise Margins
- · Choice of True or Inverting Logic
- Choice of 3-State or Open-Collector Outputs

DEVICE	OUTPUT	LOGIC
'LS620	3-State	Inverting
'L\$621	Open-Collector	True
11 0622	2 \$1010	Truo

SN54LS620, SN54LS621, SN54LS622...J PACKAGE SN74LS620, SN74LS621, SN74LS623...DW OR N PACKAGE (TOP VIEW)

description


These octal bus transceivers are designed for asynchronous two-way communication between data buses. The control function implementation allows for maximum flexibility in timing.

These devices allow data transmission from the A bus to the B bus or from the B bus to the A bus depending upon the logic levels at the enable inputs ($\overline{G}BA$ and GAB).

The enable inputs can be used to disable the device so that the buses are effectively isolated.

The dual-enable configuration gives the 'LS620, 'LS621, and 'LS623 the capability to store data by simultaneous enabling of $\overline{G}BA$ and GAB. Each output reinforces its input in this transceiver configuration. Thus, when both control inputs are enabled and all other data sources to the two sets of bus lines are at high impedance, both sets of bus lines (16 in all) will remain at their last states. The 8-bit codes appearing on the two sets of buses will be identical for the 'LS621 and 'LS623 devices or complementary for the 'LS620.

SN54LS620, SN54LS621, SN54LS622 . . . FK PACKAGE (TOP VIEW)

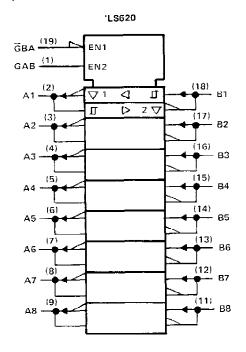
FUNCTION TABLE

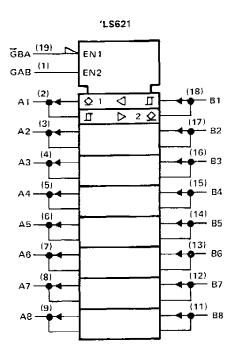
ENABLE	INPUTS	OPERA	ATION
ĞΒΑ	GAB	'LS620	'LS621, 'LS623
L	L	B data to A bus	B data to A bus
Н	H	A data to B bus	A data to B bus
н	L	Isolation	Isolation
		B data to A bus,	B data to A bus,
L	H	A data to B bus	'LS621, 'LS623 B data to A bus A data to B bus Isolation

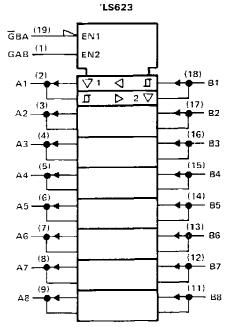
H = high level, L = low level

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1) .		 	 	 	7 V
Input voltage		 	 	 	7 V
Off-state output voltage					
Operating free-air temperature range:	SN54LS1	 	 	 	_55°C to 125°C
	SN74LS'	 	 	 . 	0°C to 70°C
Storage temperature range					

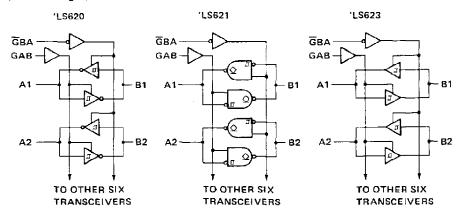

NOTE 1: Voltage values are with respect to network ground terminal.

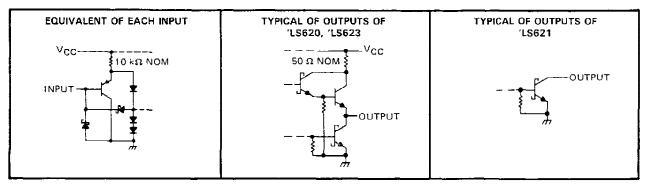

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



SN54LS620, SN54LS621, SN74LS620, SN74LS621, SN74LS623 OCTAL BUS TRANSCEIVERS

logic symbols†





[†] These symbols are in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for DW, J, and N packages.

logic diagrams (positive logic)

schematics of inputs and outputs

SN54LS620, SN74LS620, SN74LS623 OCTAL BUS TRANSCEIVERS WITH 3-STATE OUTPUTS

recommended operating conditions

PARAMETER	SI	N54LS6	20		N74LS6 N74LS6		TINU
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, VCC (see Note 1)	4.5	5	5.5	4.75	5	5.25	
High-level output current, IOH			-12			-15	mА
Low-level output current, IOL			12			24	mΑ
Operating free-air temperature, To	-55		125	0		70	°C

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS [†]	sr	154LS6	20		N74LS6 N74LS6		UNIT
ł					MIN	TYP∓	MAX	MIN	TYP‡	MAX	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.5			0.6	V
VIK	Input clamp voltage		V _{CC} = MIN,	l ₁ = −18 mA			-1.5			-1.5	<u> </u>
	Hysteresis ($V_{T+} - V_{T-}$) A or	B input	V _{CC} = MIN		0.1	0.4		0.2	0.4		
.,		· · · · · ·	VCC = MIN,	I _{OH} = -3 mA	2.4	3.4		2.4	3.4		v
∨он	High-level output voltage		V _{IH} = 2 V, V _{IL} = V _{IL} max	I _{OH} = MAX	2			2			
			VCC = MIN,	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	v
VOL	Low-level output voltage		V _{IH} = 2 V, V _{IL} = V _{IL} max	IQL = 24 mA		-			0.35	0.5	
lozh	Off-state output current,		V _{CC} = MAX,	Gat 2 V,			20			20	μА
10217	high-level voltage applied		V _O = 2.7 V		ļ						ļ
IDZL	Off-state output current, low-level voltage applied		V _{CC} = MAX, V _O = 0.4 V	Gat2 V,			-400			400	μА
	Input current at	A or B	1	V₁ = 5.5 V			0.1			0.1	
14	maximum input voltage	GBA or GAB	VCC = MAX,	V ₁ = 7 V			0.1			0.1	mA
UH.	High-level input current		V _{CC} = MAX,	V = 2.7 V			20			20	μA
TiL	Law-level input current		V _{CC} = MAX,	V _I = 0.4 V			-0.4			-0.4	mA
los	Short-circuit output current §		VCC = MAX		-40		-225	-40		-225	mA
		Outputs high				48	70		48	70	↓
Icc	Total supply current	Outputs low	$V_{CC} = MAX$,	Outputs open		62	90		62	90	mA
		Outputs at Hi-Z				64	95	<u> </u>	64	95	

For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.

switching characteristics at VCC = 5 V, TA = 25°C

	PARAMETER		PARAMETER		TO TEST CONDITIONS		'LS620			SN74LS623			UNIT
		(INPUT) (OUTPUT)			MIN	TYP	MAX	MIN	TYP	MAX	<u> </u>		
	Propagation delay time,	Α	В			6	10		8	15	ns		
₹₽LH	low-to-high-level output	В	Α	0 - 46 - 5		6	10		8	15	1113		
	Propagation delay time,	A	В	C _L = 45 pF,		8	15		11	15	ns		
t₽HĻ	high-to-low-level output	В	Α	D 007.0		8	15		11	15	113		
		бва	А	R _L = 667 Ω,		31	40		31	40	ns		
†PZL	Output enable time to low level	GAB	В	D 11 . 5		31	40		31	40	1115		
•		GBA	А	See Note 2		23	40		26	40			
^t PZH	Output enable time to high level	GAB	В			23	40		26	40	ns		
	O 4 15 . 15	ĞВА	А	C - E - C		15	25		15	25	ns		
^t PLZ	Output disable time from low level	GAB	В	CL=5pF,		15	25		15	25] ""		
		Ğва	A	$\mathbf{A_L} = 667 \Omega$		15	25		15	25			
^t PHZ	Output disable time from high level	GAB	В	See Note 2		15	25		15	25	ns _		

 t_{PLH} = Propagation delay time, low-to-high-level output

tpZL = Output enable time to low level tpHZ = Output disable time from high level

tpLZ = Output disable time from low level

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

[§] Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second.

tpHL = Propagation delay time, high-to-low-level output tpZH = Output enable time to high level

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

recommended operating conditions

PARAMETER	s	N54LS6	521	s	N74LS	621	UNIT
	MIN	NOM	MAX	MIN		MAX	Ĩ
Supply voltage, V _{CC} (see Note 1)	4.5	5	5.5	4.75	5	5.25	V
High-level output voltage, V _{OH}			5.5			5.5	V
Low-level output current, IOL			12			24	mA
Operating free-air temperature, TA	-55		125	0		70	·c

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CON	DITIONS [‡]	SN54LS621			SN74LS621			דואט
					MIN TYP		MAX	MIN	ТҮР≑	MAX	
V_{IH}	High-level input voltage				2			2			V
VIL	Low-level input voltage	· <u> </u>					0.5			0.6	V
Vικ	înput clamp voltage		VCC = MIN,	I _I = -18 mA			1.5			-1.5	V
	Hysteresis (V _{T+} - V _{T-}) A	or B input	V _{CC} = MIN		0.1	0.4		0.2	0.4		V
Іон	High-level output current		V _{CC} = MIN, V _{IL} = V _{IL} max,	•••			100			100	μА
VoL	Low-level output voltage	ow-level output voltage		I _{OL} = 12 mA		0.25	0.4		0,25	0.4	\ v
			V _{IL} ≈ V _{IL} max	IOL = 24 mA					0.35	0.5	
ı.	Input current at	A or B	11 1141	5.5 V			0.1			0.1	^
Ц	maximum input voltage	GAB or GBA	$V_{CC} = MAX$,	V1 = 7 V		-	0.1			0.1	mA
¹1H	High-level input current		V _{CC} = MAX,	V ₁ = 2.7 V			20			20	μА
IL	Low-level input current	-	VCC = MAX,	V _I = 0.4 V			-0.4			-0.4	: mA
lcc	Total supply current	Outputs high	VCC = MAX,	Outputs open		48	70		48	70	mA
	rotal supply current	Outputs low	ACC - MAY	Outpots open		62	90		62	90] '''

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25 \,^{\circ}\text{C}$

	PARAMETER	FROM	то	TEST CONDITIONS		UNIT			
	PARAMETER	(INPUT) (OUTPUT)		TEST CONDITIONS	MIN	TYP	MAX	UNIT	
tPLH	Propagation delay time,	А	В			17	25		
	low-to-high-level output	В	А	C _L = 45 pF, R _L = 667 Ω, See Note 2	7		17	25	ns
	Propagation delay time,	A	В			16	25	ns	
1PHL	high-to-law-level output	В	Α			16	25		
•	Output disable time	Ğва	А			23	40		
[†] PLH	from law level	GAB	В			25	40	ns	
	Output enable time	GBA	Α			34	50		
tPHL.	from high level	GAB	В			37	50	пъ	

 $t_{\mbox{\scriptsize PLH}} = \mbox{\scriptsize Propagation delay time, low-to-high-level output}$

tpHL = Propagation delay time, high-to-low-level output

NOTE 2: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ All typical values are at V_{CC} = 5 V, T_A = 25°C.

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated