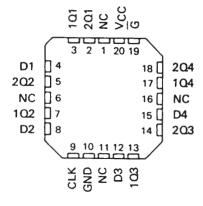

- Parallel Access
- Typical Propagation Delay Time . . . 20 ns
- Typical Power Dissipation . . . 120 mW
- Applications:

N-Bit Storage Files
Hex/BCD Serial-To-Parallel Converters

description

These octal registers are organized as two 4-bit bytes of storage. Upon application of a positive-going clock signal, the information stored in byte 1 is transferred into byte 2 as a new 4-bit byte is loaded into the byte 1 location via the four data lines. The full 8-bit word is available at the outputs after two clock cycles. Both the clock and the strobe lines are fully buffered.

logic symbol†



[†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12.

Pin numbers shown are for D, J, N, and W packages.

SN54LS396 . . . J OR W PACKAGE SN74LS396 . . . D OR N PACKAGE (TOP VIEW) 201 Vcc 101 G D1 2Q4 14 🗌 202 **4** 13 1Q4 **∏**5 102 12 **D4** 203 D2 П6 CLK 103 10 П8 GND **D3**

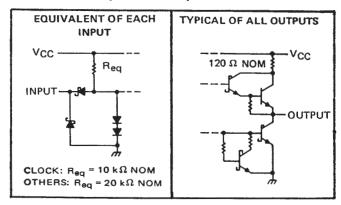
SN54LS396 . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

FUNCTION TABLE

INPUTS						OUTPUTS										
STROBE	CLOCK		DA	ГА			BY1	E 1		TE 2						
G	CLOCK	D1	D2	D3	D4	101	102	103	104	201	202	2Q3	204			
Н	X	X	X	X	Х	L	L	L	L	L	L	L	L			
L	t	а	b	С	d	а	b	С	d	1Q1 _n	102 _n	103 _n	1Q4 _n			

H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions)


 101_n , 102_n , 103_n , 104_n = the level of 101, 102, 103, and 104, respectively, before the most recent 1 transition of the clock.

t = transition from low to high level

SDLS173 - MARCH 1977 - REVISED MARCH 1988

logic diagram (positive logic) CLOCK (7) (2) D1 -(3) (1) 2Q1 (5) 102 D2 (6) (4) (10) 1Q3 D3 (9) (11) 203 (13) 104 D4 (12) (14) STROBE (15)

schematics of inputs and outputs

Pin numbers shown are for D, J, N, and W packages.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)			 						7 V
Input voltage									
Operating free-air temperature range: SN54LS									
SN74LS	396		 			 2			. 0°C to 70°C
Storage temperature range									

NOTE 1: Voltage values are with respect to network ground terminal.

recommended operating conditions

	S	SN54LS396					
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μА
Low-level output current, IOL			4			8	mA
Clock frequency, fclock	0		30	0		30	MHz
Width of clock pulse, t _W	20			20			ns
Setup time, t _{su}	20			20			ns
Hold time, th	5			5			ns
Operating free-air temperature, TA	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CO	S	N54LS3	96	S				
			1EST CO	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
VIH	High-level input voltage				2			2			V
VIL	Low-level input voltage						0.7			0.8	V
VIK	Input clamp voltage		V _{CC} = MIN,	I ₁ = -18 mA			-1.5			-1.5	V
Vон	High-level output voltage		V _{CC} = MIN, V _{IL} = MAX,	V _{IH} = 2 V, I _{OH} = -400 μA	2.5	3.4		2.7	3.4		V
VOL	Low-level output voltage		V _{CC} = MIN, V _{IH} = 2 V,	I _{OL} = 4 mA		0.25	0.4		0.25	0.4	V
-02	2011 Total Output Voltago		VIL = MAX	IOL = 8 mA					0.35	0.5	ľ
11	Input current at	Clock input	Voc = MAY	V _I = 7 V			0.2			0.2	- ^
'1	maximum input voltage	Other inputs	ACC - MINY				0.1			0.1	mA
1	High-level	Clock input	V	V. ~ 2.7.V			40			40	
ΙΗ	input current	Other inputs	VCC - MAX,	V _I = 2.7 V			20			20	μА
1	Low-level	Clock input	V A46V	.,			-0.8			0.8	
IIL	input current	Other inputs	V _{CC} = MAX,	V1 - U.4 V			-0.4			-0.4	mA
los	Short-circuit output curre	nt §	V _{CC} = MAX		-20		-100	-20		-100	mA
Icc	Supply current		V _{CC} = MAX,	See Note 2		24	40		24	40	mA

 $^{^\}dagger For \ conditions \ shown \ as \ MIN \ or \ MAX$, use the appropriate value specified under recommended operating conditions.

switching characteristics, VCC = 5 V, TA = 25°C

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low-to-high-level output from clock	C. = 15 pF		20	30	
^t PHL	Propagation delay time, high-to-low-level output from clock	C _L = 15 pF,		20	30	ns
^t PLH	Propagation delay time, low-to-high-level output from strobe	$R_L = 2 k\Omega$, See Note 3		20	30	
tPHL_	Propagation delay time, high-to-low-level output from strobe	See Mote 3		20	30	ns

NOTE 3: Load circuits and voltage waveforms are shown in Section 1.

 $[\]ddagger$ AII typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25 ^{\circ} \text{C}$.

[§] Not more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

NOTE 2: $I_{\mbox{\footnotesize{CC}}}$ is measured with 4.5 V applied to all inputs and all outputs open.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1999, Texas Instruments Incorporated