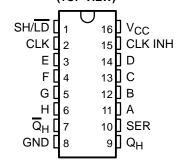
# SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

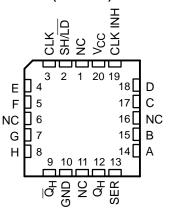
The SN54165 and SN74165 devices are obsolete and are no longer supplied.

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

- Complementary Outputs
- Direct Overriding Load (Data) Inputs
- Gated Clock Inputs
- Parallel-to-Serial Data Conversion


| TYPE    | TYPICAL MAXIMUM<br>CLOCK FREQUENCY | TYPICAL POWER DISSIPATION |
|---------|------------------------------------|---------------------------|
| '165    | 26 MHz                             | 210 mW                    |
| 'LS165A | 35 MHz                             | 90 mW                     |

### description


The '165 and 'LS165A are 8-bit serial shift registers that shift the data in the direction of  $Q_A$  toward  $Q_H$  when clocked. Parallel-in access to each stage is made available by eight individual, direct data inputs that are enabled by a low level at the shift/load (SH/ $\overline{LD}$ ) input. These registers also feature gated clock (CLK) inputs and complementary outputs from the eighth bit. All inputs are diode-clamped to minimize transmission-line effects, thereby simplifying system design.

Clocking is accomplished through a two-input positive-NOR gate, permitting one input to be used as a clock-inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with SH/LD high enables the other clock input. Clock inhibit (CLK INH) should be changed to the high level only while CLK is high. Parallel loading is inhibited as long as SH/LD is high. Data at the parallel inputs are loaded directly into the register while SH/LD is low, independently of the levels of CLK, CLK INH, or serial (SER) inputs.

SN54165, SN54LS165A . . . J OR W PACKAGE SN74165 . . . N PACKAGE SN74LS165A . . . D, N, OR NS PACKAGE (TOP VIEW)



# SN54LS165A . . . FK PACKAGE (TOP VIEW)



NC - No internal connection



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

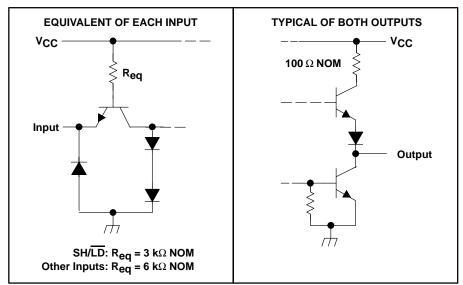


The SN54165 and SN74165 devices are obsolete and are no longer supplied.

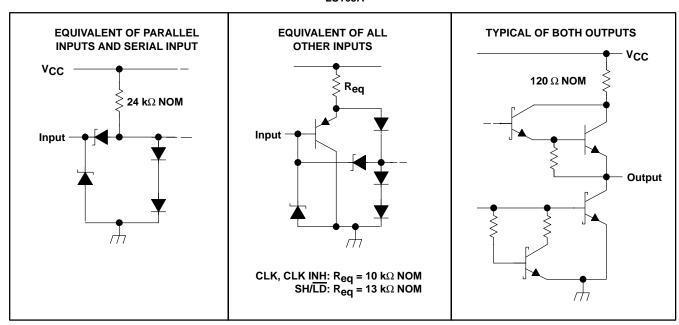
SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

### **ORDERING INFORMATION**

| TA             | PAC       | KAGE <sup>†</sup> | ORDERABLE<br>PART NUMBER | TOP-SIDE<br>MARKING |
|----------------|-----------|-------------------|--------------------------|---------------------|
|                | PDIP – N  | Tube              | SN74LS165AN              | SN74LS165AN         |
| 0°C to 70°C    | SOIC - D  | Tube              | SN74LS165AD              | LS165A              |
|                | 30IC - D  | Tape and reel     | SN74LS165ADR             | L3103A              |
|                | SOP - NS  | Tape and reel     | SN74LS165ANSR            | 74LS165A            |
|                | CDIP – J  | Tube              | SN54LS165AJ              | SN54LS165AJ         |
| _55°C to 125°C | CDIF - J  | Tube              | SNJ54LS165AJ             | SNJ54LS165AJ        |
| -55 C to 125 C | CFP – W   | Tube              | SNJ54LS165AW             | SNJ54LS165AW        |
|                | LCCC - FK | Tube              | SNJ54LS165AFK            | SNJ54LS165AFK       |

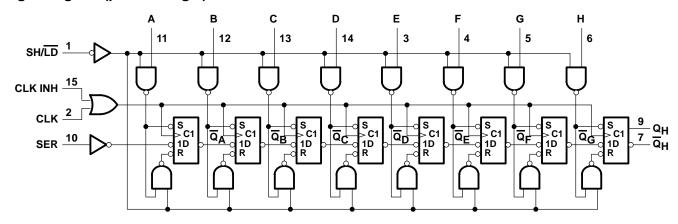

<sup>†</sup> Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

### **FUNCTION TABLE**


|       |         | INPUTS     | l   | RNAL<br>PUTS | OUTPUT          |                  |                 |
|-------|---------|------------|-----|--------------|-----------------|------------------|-----------------|
| SH/LD | CLK INH | CLK        | SER | PARALLEL QA  |                 | $\overline{Q}_B$ | QH              |
| L     | Х       | Χ          | Χ   | ah           | а               | b                | h               |
| Н     | L       | L          | Χ   | Х            | Q <sub>A0</sub> | $Q_{B0}$         | Q <sub>H0</sub> |
| Н     | L       | $\uparrow$ | Н   | Х            | Н               | $Q_{An}$         | $Q_{Gn}$        |
| Н     | L       | $\uparrow$ | L   | Х            | L               | $Q_{An}$         | Q <sub>Gn</sub> |
| Н     | Н       | Χ          | Χ   | X            | Q <sub>A0</sub> | $Q_{B0}$         | Q <sub>H0</sub> |

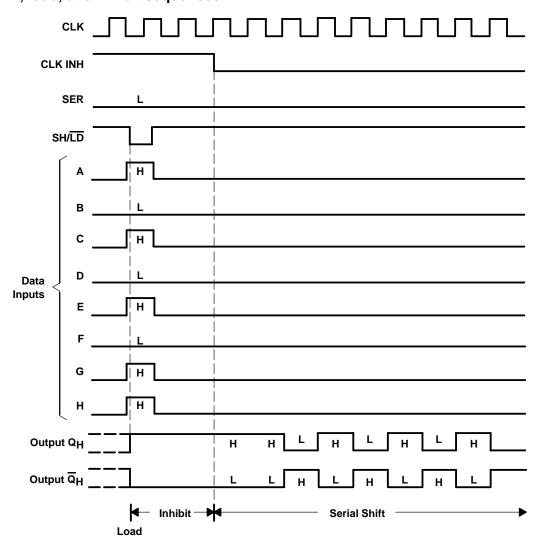
# schematics of inputs and outputs

'165




#### 'LS165A




SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

# logic diagram (positive logic)



Pin numbers shown are for D, J, N, NS, and W packages.

# typical shift, load, and inhibit sequences



# SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

The SN54165 and SN74165 devices are obsolete and are no longer supplied.

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

# absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

| Supply voltage, V <sub>CC</sub> (see Note 1)  |                       |        |
|-----------------------------------------------|-----------------------|--------|
| Input voltage, V <sub>I</sub> : SN54165, SN74 | 165                   | 5.5 V  |
| SN54LS165A, S                                 | N74LS165A             | 7 V    |
| Interemitter voltage (see Note 2)             |                       | 5.5 V  |
| Package thermal impedance θ <sub>JA</sub> (se | ee Note 3): D package |        |
| -                                             | N package             | 67°C/W |
|                                               | NS package            | 64°C/W |
| Storage temperature range, T <sub>sta</sub>   |                       |        |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.
  - 2. This is the voltage between two emitters of a multiple-emitter transistor. This rating applies for the '165 to the SH/LD input in conjunction with the CLK INH input.
  - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

# recommended operating conditions

|                    |                                          | SN54165 |     |      | 9    | SN74165 |      |      |
|--------------------|------------------------------------------|---------|-----|------|------|---------|------|------|
|                    |                                          | MIN     | NOM | MAX  | MIN  | NOM     | MAX  | UNIT |
| Vcc                | Supply voltage                           | 4.5     | 5   | 5.5  | 4.75 | 5       | 5.25 | V    |
| IOH                | High-level output current                |         |     | -800 |      |         | -800 | μΑ   |
| loL                | Low-level output current                 |         |     | 16   |      |         | 16   | mA   |
| f <sub>clock</sub> | Clock frequency                          | 0       |     | 20   | 0    |         | 20   | MHz  |
| tw(clock)          | Width of clock input pulse               | 25      |     |      | 25   |         |      | ns   |
| tw(load)           | Width of load input pulse                | 15      |     |      | 15   |         |      | ns   |
| t <sub>su</sub>    | Clock-enable setup time (see Figure 1)   | 30      |     |      | 30   |         |      | ns   |
| t <sub>su</sub>    | Parallel input setup time (see Figure 1) | 10      |     |      | 10   |         |      | ns   |
| t <sub>su</sub>    | Serial input setup time (see Figure 1)   | 20      |     |      | 20   |         |      | ns   |
| t <sub>su</sub>    | Shift setup time (see Figure 1)          | 45      |     |      | 45   |         |      | ns   |
| t <sub>h</sub>     | Hold time at any input                   | 0       |     |      | 0    |         |      | ns   |
| T <sub>A</sub>     | Operating free-air temperature           | -55     |     | 125  | 0    |         | 70   | °C   |



SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

|                                          | 242445752                             |                                      |                                                   | t                       | ,   | SN54165 |      | ,   | SN74165 | i    | UNIT |
|------------------------------------------|---------------------------------------|--------------------------------------|---------------------------------------------------|-------------------------|-----|---------|------|-----|---------|------|------|
|                                          | PARAMETER                             |                                      | I IESI CO                                         | NDITIONS†               | MIN | TYP‡    | MAX  | MIN | TYP‡    | MAX  | UNII |
| VIH                                      | High-level input voltage              |                                      |                                                   |                         | 2   |         |      | 2   |         |      | V    |
| VIL                                      | Low-level input voltage               |                                      |                                                   |                         |     |         | 0.8  |     |         | 0.8  | V    |
| VIK                                      | Input clamp voltage                   |                                      | $V_{CC} = MIN,$                                   | I <sub>I</sub> = -12 mA |     |         | -1.5 |     |         | -1.5 | V    |
| VOH                                      | VOH High-level output voltage         |                                      | $V_{CC} = MIN,$<br>$V_{IL} = 0.8 V,$              |                         | 2.4 | 3.4     |      | 2.4 | 3.4     |      | V    |
| V <sub>OL</sub> Low-level output voltage |                                       | $V_{CC} = MIN,$<br>$V_{IL} = 0.8 V,$ | V <sub>IH</sub> = 2 V,<br>I <sub>OL</sub> = 16 mA |                         | 0.2 | 0.4     |      | 0.2 | 0.4     | V    |      |
| ΙĮ                                       | Input current at maximum              | n input voltage                      | $V_{CC} = MAX$ ,                                  | V <sub>I</sub> = 5.5 V  |     |         | 1    |     |         | 1    | mA   |
| 1                                        | High lovel input current              | SH/LD                                | Vaa Max                                           | V: 2.4.V                |     |         | 80   |     |         | 80   |      |
| 'IH                                      | High-level input current              | Other inputs                         | $V_{CC} = MAX,$                                   | V  = 2.4 V              |     |         | 40   |     |         | 40   | μΑ   |
| 1                                        | , , , , , , , , , , , , , , , , , , , |                                      | VMAY                                              | V: - 0.4 V              |     |         | -3.2 |     |         | -3.2 | m A  |
| I <sub>IL</sub> Low-level input current  |                                       | Other inputs                         | $V_{CC} = MAX,$                                   | V <sub>1</sub> = 0.4 V  |     |         | -1.6 |     |         | -1.6 | mA   |
| IOS Short-circuit output current§        |                                       | $V_{CC} = MAX$                       |                                                   | -20                     |     | -55     | -18  |     | -55     | mA   |      |
| I <sub>CC</sub> Supply current           |                                       | $V_{CC} = MAX$ ,                     | See Note 4                                        |                         | 42  | 63      |      | 42  | 63      | mA   |      |

NOTE 4: With the outputs open, CLK INH and CLK at 4.5 V, and a clock pulse applied to SH/LD, I<sub>CC</sub> is measured first with the parallel inputs at 4.5 V, then with the parallel inputs grounded.

# SN54165 and SN74165 switching characteristics, $V_{CC} = 5 \text{ V}$ , $T_A = 25^{\circ}\text{C}$ (see Figure 1)

| PARAMETER¶       | FROM<br>(INPUT) | TO<br>(OUTPUT)              | TEST CONDITIONS                          | MIN | TYP | MAX | UNIT    |
|------------------|-----------------|-----------------------------|------------------------------------------|-----|-----|-----|---------|
| f <sub>max</sub> |                 |                             |                                          | 20  | 26  |     | MHz     |
| <sup>t</sup> PLH | LD              | Any                         | $C_L = 15  pF,  R_L = 400  \Omega$       |     | 21  | 31  | ns      |
| <sup>t</sup> PHL | LD              | Arry                        | OL = 13 pr, KL = 400 s2                  |     | 27  | 40  | 115     |
| <sup>t</sup> PLH | CLK             | Any                         | $C_L = 15 \text{ pF, } R_L = 400 \Omega$ |     | 16  | 24  | ns      |
| <sup>t</sup> PHL | OLK             | Ally                        | OL = 13 pr , 11 = 400 sz                 |     | 21  | 31  |         |
| <sup>t</sup> PLH | Н               | 0                           | $C_L = 15 \text{ pF, } R_L = 400 \Omega$ |     | 11  | 17  | nc      |
| <sup>t</sup> PHL | 11              | Q <sub>H</sub>              | OL = 13 pr, KL = 400 \$2                 |     | 24  | 36  | ns      |
| <sup>t</sup> PLH | н               | $\overline{\mathtt{Q}}_{H}$ | $C_L$ = 15 pF, $R_L$ = 400 $\Omega$      |     | 18  | 27  | no      |
| <sup>t</sup> PHL | 17              | ¥H                          |                                          |     | 18  | 27  | ns<br>7 |

<sup>¶</sup> f<sub>max</sub> = maximum clock frequency, t<sub>PLH</sub> = propagation delay time, low-to-high-level output, t<sub>PHL</sub> = propagation delay time, high-to-low-level output

<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.

<sup>‡</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

<sup>§</sup> Not more than one output should be shorted at a time.

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

# recommended operating conditions

|                       |                                           |            | SN54LS165A |     | 5A   | SN   | 74LS165 | δA   |      |
|-----------------------|-------------------------------------------|------------|------------|-----|------|------|---------|------|------|
|                       |                                           |            | MIN        | NOM | MAX  | MIN  | NOM     | MAX  | UNIT |
| Vcc                   | Supply voltage                            |            | 4.5        | 5   | 5.5  | 4.75 | 5       | 5.25 | V    |
| VIH                   | High-level input voltage                  |            | 2          |     |      | 2    |         |      | V    |
| V <sub>IL</sub>       | Low-level input voltage                   |            |            |     | 0.7  |      |         | 0.8  | V    |
| IOH                   | High-level output current                 |            |            |     | -0.4 |      |         | -0.4 | mA   |
| l <sub>OL</sub>       | Low-level output current                  |            |            |     | 4    |      |         | 8    | mA   |
| fclock                | Clock frequency                           |            | 0          |     | 25   | 0    |         | 25   | MHz  |
|                       | Width of clock input pulse (see Figure 2) | Clock high | 15         |     |      | 15   |         |      | ns   |
| <sup>t</sup> w(clock) |                                           | Clock low  | 25         |     |      | 25   |         |      | 113  |
| + 4                   | Width of load input pulse                 | Clock high | 25         |     |      | 25   |         |      | ns   |
| <sup>t</sup> w(load)  | whath of load input pulse                 | Clock low  | 17         |     |      | 17   |         |      | 115  |
| t <sub>su</sub>       | Clock-enable setup time (see Figure 2)    |            | 30         |     |      | 30   |         |      | ns   |
| t <sub>su</sub>       | Parallel input setup time (see Figure 2)  |            | 10         |     |      | 10   |         |      | ns   |
| t <sub>su</sub>       | Serial input setup time (see Figure 2)    |            | 20         |     |      | 20   |         |      | ns   |
| t <sub>su</sub>       | Shift setup time (see Figure 2)           |            | 45         |     |      | 45   |         |      | ns   |
| <sup>t</sup> h        | Hold time at any input                    |            | 0          |     |      | 0    |         |      | ns   |
| T <sub>A</sub>        | Operating free-air temperature            |            | -55        | _   | 125  | 0    |         | 70   | °C   |

# electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

| DADAMETER         |                        | TEST CONDITIONS†         |                  |                            |     | 154LS16 | 5A   | SN  | 74LS16 | 5A   |      |
|-------------------|------------------------|--------------------------|------------------|----------------------------|-----|---------|------|-----|--------|------|------|
| PARAMETER         |                        | 1651 0                   | ONDITIONS        |                            | MIN | TYP‡    | MAX  | MIN | TYP‡   | MAX  | UNIT |
| VIK               | $V_{CC} = MIN,$        | $I_{I} = -18 \text{ mA}$ |                  |                            |     |         | -1.5 |     |        | -1.5 | V    |
| Voн               | $V_{CC} = MIN,$        | V <sub>IH</sub> = 2 V,   | $V_{IL} = MAX$ , | $I_{OH} = -0.4 \text{ mA}$ | 2.5 | 3.5     |      | 2.7 | 3.5    |      | V    |
| Voi               | V <sub>CC</sub> = MIN, | \/ 2\/                   | \/ MAY           | I <sub>OL</sub> = 4 mA     |     | 0.25    | 0.4  |     | 0.25   | 0.4  | V    |
| VOL               | AGG = IMIIA'           | ν IH = 2 ν,              | VIC = IVIAX      | I <sub>OL</sub> = 8 mA     |     |         |      |     | 0.35   | 0.5  | V    |
| lį                | $V_{CC} = MAX$ ,       | V <sub>I</sub> = 7 V     |                  |                            |     |         | 0.1  |     |        | 0.1  | mA   |
| ΙΗ                | $V_{CC} = MAX$ ,       | V <sub>I</sub> = 2.7 V   |                  |                            |     |         | 20   |     |        | 20   | μΑ   |
| IIL               | $V_{CC} = MAX$ ,       | V <sub>I</sub> = 0.4 V   |                  |                            |     |         | -0.4 |     |        | -0.4 | mA   |
| I <sub>OS</sub> § | $V_{CC} = MAX$         |                          |                  | •                          | -20 |         | -100 | -20 |        | -100 | mA   |
| ICC               | $V_{CC} = MAX$ ,       | See Note 4               |                  |                            |     | 18      | 30   |     | 18     | 30   | mA   |

NOTE 4. With the outputs open, CLK INH and CLK at 4.5 V, and a clock pulse applied to SH/LD, I<sub>CC</sub> is measured first with the parallel inputs at 4.5 V, then with the parallel inputs grounded.



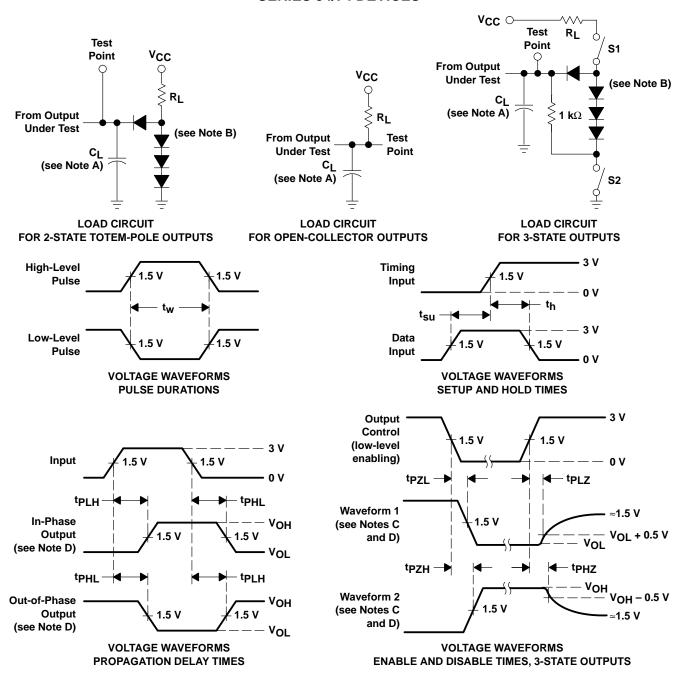
<sup>†</sup> For conditions shown as MIN or MAX, use the appropriate values specified under recommended operating conditions.

<sup>‡</sup> All typical values are at  $V_{CC} = 5 \text{ V}$ ,  $T_A = 25^{\circ}\text{C}$ .

<sup>§</sup> Not more than one output should be shorted at a time, and the duration of the short-circuit should not exceed one second.

# SN54165, SN54LS165A, SN74165, SN74LS165A PARALLEL-LOAD 8-BIT SHIFT REGISTERS

SDLS062D - OCTOBER 1976 - REVISED FEBRUARY 2002

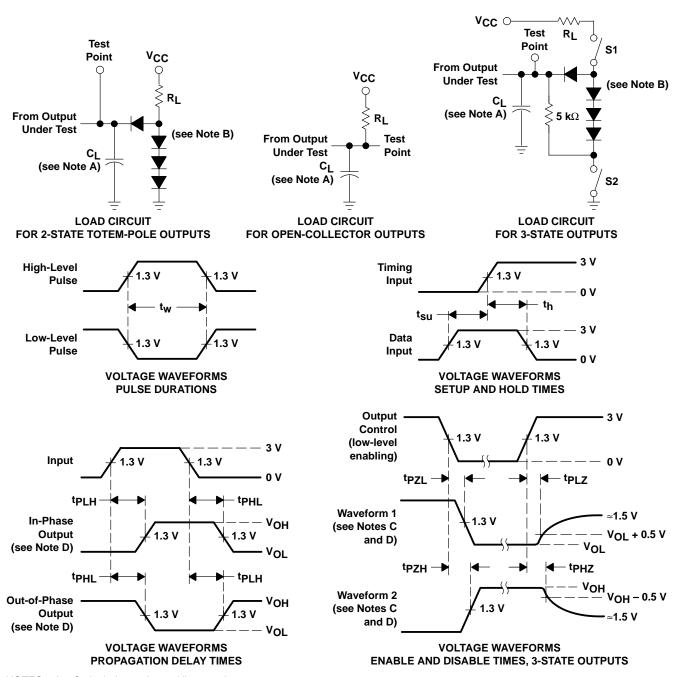

The SN54165 and SN74165 devices are obsolete and are no longer supplied.

# SN54LS165A and SN74LS165A switching characteristics, $V_{CC}$ = 5 V, $T_A$ = 25°C (see Figure 2)

| PARAMETER†       | FROM<br>(INPUT) | TO<br>(OUTPUT)   | TEST CONDITIONS                                                    | MIN | TYP | MAX | UNIT |
|------------------|-----------------|------------------|--------------------------------------------------------------------|-----|-----|-----|------|
| f <sub>max</sub> |                 |                  |                                                                    | 25  | 35  |     | MHz  |
| t <sub>PLH</sub> | <u>ID</u>       | Any              | $R_L = 2 k\Omega$ , $C_L = 15 pF$                                  |     | 21  | 35  | ns   |
| t <sub>PHL</sub> | LD              | Arry             | N_ = 2 ks2, G_ = 15 pr                                             |     | 26  | 35  | 110  |
| <sup>t</sup> PLH | CLK             | Any              | $R_{\parallel} = 2 \text{ k}\Omega, C_{\parallel} = 15 \text{ pF}$ |     | 14  | 25  | ns   |
| t <sub>PHL</sub> | OLK             | Ally             | N <sub>L</sub> = 2 N <sub>2</sub> 2, O <sub>L</sub> = 10 pi        |     | 16  | 25  |      |
| <sup>t</sup> PLH | Н               | 0                | $R_L = 2 k\Omega$ , $C_L = 15 pF$                                  |     | 13  | 25  | nc   |
| <sup>t</sup> PHL | 11              | Q <sub>H</sub>   | N <sub>L</sub> = 2 κ <sub>22</sub> , G <sub>L</sub> = 15 pr        |     | 24  | 30  | ns   |
| <sup>t</sup> PLH | Н               | <u></u>          | D. 240 C. 45 pF                                                    |     | 19  | 30  |      |
| t <sub>PHL</sub> | П               | $\overline{Q}_H$ | $R_L = 2 k\Omega$ , $C_L = 15 pF$                                  |     | 17  | 25  | ns   |

<sup>†</sup> f<sub>max</sub> = maximum clock frequency, t<sub>PLH</sub> = propagation delay time, low-to-high-level output, t<sub>PHL</sub> = propagation delay time, high-to-low-level output

# PARAMETER MEASUREMENT INFORMATION **SERIES 54/74 DEVICES**




- NOTES: A. C<sub>L</sub> includes probe and jig capacitance.
  - B. All diodes are 1N3064 or equivalent.
  - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - D. S1 and S2 are closed for tpLH, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
  - E. All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz,  $Z_0 \approx 50 \Omega$ ;  $t_f$  and  $t_f \leq$  7 ns for Series 54/74 devices and  $t_r$  and  $t_f \le 2.5$  ns for Series 54S/74S devices.
  - F. The outputs are measured one at a time with one input transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms



# PARAMETER MEASUREMENT INFORMATION **SERIES 54LS/74LS DEVICES**



- NOTES: A. CL includes probe and jig capacitance.
  - B. All diodes are 1N3064 or equivalent.
  - C. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
  - D. S1 and S2 are closed for tpLH, tpHL, tpHZ, and tpLZ; S1 is open and S2 is closed for tpZH; S1 is closed and S2 is open for tpZL.
  - E. Phase relationships between inputs and outputs have been chosen arbitrarily for these examples.
  - All input pulses are supplied by generators having the following characteristics: PRR  $\leq$  1 MHz,  $Z_O \approx 50 \ \Omega$ ,  $t_r \leq 1.5 \ ns$ ,  $t_f \leq 2.6 \ ns$ .
  - The outputs are measured one at a time with one input transition per measurement.

Figure 2. Load Circuits and Voltage Waveforms



PACKAGE OPTION ADDENDUM

www.ti.com 15-Oct-2009

### **PACKAGING INFORMATION**

| Orderable Device | Status <sup>(1)</sup> | Package<br>Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan <sup>(2)</sup>    | Lead/Ball Finish | MSL Peak Temp <sup>(3)</sup> |
|------------------|-----------------------|-----------------|--------------------|------|----------------|----------------------------|------------------|------------------------------|
| 5962-7700601VEA  | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |
| 5962-7700601VFA  | ACTIVE                | CFP             | W                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |
| 7700601EA        | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |
| 7700601FA        | ACTIVE                | CFP             | W                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |
| JM38510/30608B2A | ACTIVE                | LCCC            | FK                 | 20   | 1              | TBD                        | POST-PLATE       | N / A for Pkg Type           |
| JM38510/30608BEA | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |
| JM38510/30608BFA | ACTIVE                | CFP             | W                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |
| SN54LS165AJ      | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |
| SN74165N         | OBSOLETE              | PDIP            | N                  | 16   |                | TBD                        | Call TI          | Call TI                      |
| SN74LS165AD      | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LS165ADE4    | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LS165ADG4    | ACTIVE                | SOIC            | D                  | 16   | 40             | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LS165ADR     | ACTIVE                | SOIC            | D                  | 16   | 2500           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LS165ADRE4   | ACTIVE                | SOIC            | D                  | 16   | 2500           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LS165ADRG4   | ACTIVE                | SOIC            | D                  | 16   | 2500           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LS165AJ      | OBSOLETE              | CDIP            | J                  | 16   |                | TBD                        | Call TI          | Call TI                      |
| SN74LS165AN      | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type           |
| SN74LS165AN3     | OBSOLETE              | PDIP            | N                  | 16   |                | TBD                        | Call TI          | Call TI                      |
| SN74LS165ANE4    | ACTIVE                | PDIP            | N                  | 16   | 25             | Pb-Free<br>(RoHS)          | CU NIPDAU        | N / A for Pkg Type           |
| SN74LS165ANSR    | ACTIVE                | SO              | NS                 | 16   | 2000           | Green (RoHS &<br>no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM           |
| SN74LS165ANSRG4  | ACTIVE                | SO              | NS                 | 16   | 2000           | Green (RoHS & no Sb/Br)    | CU NIPDAU        | Level-1-260C-UNLIM           |
| SNJ54LS165AFK    | ACTIVE                | LCCC            | FK                 | 20   | 1              | TBD                        | POST-PLATE       | N / A for Pkg Type           |
| SNJ54LS165AJ     | ACTIVE                | CDIP            | J                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |
| SNJ54LS165AW     | ACTIVE                | CFP             | W                  | 16   | 1              | TBD                        | A42              | N / A for Pkg Type           |

<sup>&</sup>lt;sup>(1)</sup> The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

**NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

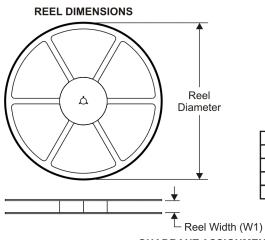


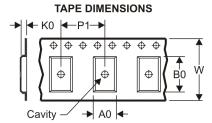
### PACKAGE OPTION ADDENDUM

www.ti.com 15-Oct-2009

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

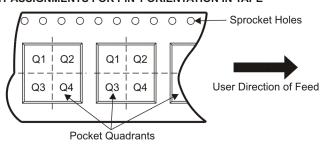
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)


(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

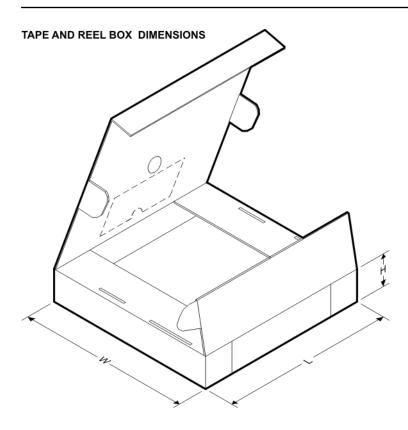



## TAPE AND REEL INFORMATION





|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
| B0 | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



## \*All dimensions are nominal

| Device        | Package<br>Type | Package<br>Drawing |    |      | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0 (mm) | B0 (mm) | K0 (mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|---------------|-----------------|--------------------|----|------|--------------------------|--------------------------|---------|---------|---------|------------|-----------|------------------|
| SN74LS165ADR  | SOIC            | D                  | 16 | 2500 | 330.0                    | 16.4                     | 6.5     | 10.3    | 2.1     | 8.0        | 16.0      | Q1               |
| SN74LS165ANSR | SO              | NS                 | 16 | 2000 | 330.0                    | 16.4                     | 8.2     | 10.5    | 2.5     | 12.0       | 16.0      | Q1               |





\*All dimensions are nominal

| Device        | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---------------|--------------|-----------------|------|------|-------------|------------|-------------|
| SN74LS165ADR  | SOIC         | D               | 16   | 2500 | 333.2       | 345.9      | 28.6        |
| SN74LS165ANSR | SO           | NS              | 16   | 2000 | 346.0       | 346.0      | 33.0        |

#### **IMPORTANT NOTICE**

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

**Applications Products Amplifiers** amplifier.ti.com Audio www.ti.com/audio Data Converters Automotive www.ti.com/automotive dataconverter.ti.com DLP® Products Broadband www.dlp.com www.ti.com/broadband DSP Digital Control dsp.ti.com www.ti.com/digitalcontrol Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Military Interface www.ti.com/military interface.ti.com Optical Networking Logic logic.ti.com www.ti.com/opticalnetwork Power Mgmt power.ti.com Security www.ti.com/security Telephony Microcontrollers microcontroller.ti.com www.ti.com/telephony Video & Imaging www.ti-rfid.com www.ti.com/video RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2009, Texas Instruments Incorporated