- Available in the Texas Instruments NanoStar™ and NanoFree™ Packages - Low Static-Power Consumption; $I_{CC} = 0.9 \mu A Max$ - Low Dynamic-Power Consumption; $C_{pd} = 3 pF Typ at 3.3 V$ - Low Input Capacitance; C_i = 1.5 pF Typ - Low Noise Overshoot and Undershoot <10% of V_{CC} - Ioff Supports Partial-Power-Down Mode Operation - **Input Hysteresis Allows Slow Input Transition and Better Switching Noise** Immunity at the Input $(V_{hvs} = 250 \text{ mV Typ at } 3.3 \text{ V})$ **DBV OR DCK PACKAGE** (TOP VIEW) 5 🛮 V_{CC} DΓ ськ Г 2 GND [3 - Wide Operating V_{CC} Range of 0.8 V to 3.6 V - **Optimized for 3.3-V Operation** - 3.6-V I/O Tolerant to Support Mixed-Mode Signal Operation - $t_{nd} = 3.6 \text{ ns Max at } 3.3 \text{ V}$ - Suitable for Point-to-Point Applications - Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II - **ESD Performance Tested Per JESD 22** - 2000-V Human-Body Model (A114-B, Class II) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) - ESD Protection Exceeds ±5000 V With **Human-Body Model** #### description/ordering information The AUP family is TI's premier solution to the industry's low power needs in battery-powered portable applications. This family ensures a very low static and dynamic power consumption across the entire V_{CC} range of 0.8 V to 3.6 V, resulting in an increased battery life. This product also maintains excellent signal integrity (see Figures 1 and 2). Figure 1. AUP - The Lowest-Power Family Figure 2. Excellent Signal Integrity This is a single positive-edge-triggered D-type flip-flop. When data at the data (D) input meets the setup time requirement, the data is transferred to the Q output on the positive-going edge of the clock pulse. Clock triggering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold-time interval, data at the D input can be changed without affecting the levels at the outputs. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. NanoStar and NanoFree are trademarks of Texas Instruments. SCES592 - JULY 2004 ### description/ordering information (continued) NanoStar™ and NanoFree™ package technology is a major breakthrough in IC packaging concepts, using the die as the package. This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. #### **ORDERING INFORMATION** | TA | PACKAGET | | ORDERABLE
PART NUMBER | TOP-SIDE
MARKING‡ | |---------------|--|--------------|--------------------------|----------------------| | | NanoStar™ – WCSP (DSBGA)
0.23-mm Large Bump – YEP | D I . (0000 | SN74AUP1G79YEPR | 1.004 | | | NanoFree™ – WCSP (DSBGA)
0.23-mm Large Bump – YZP (Pb-free) | Reel of 3000 | SN74AUP1G79YZPR | HW_ | | -40°C to 85°C | SOT (SOT-23) – DBV | Reel of 3000 | SN74AUP1G79DBVR | 1170 | | | | Reel of 250 | SN74AUP1G79DBVT | H79_ | | | SOT (SC 70) DCK | Reel of 3000 | SN74AUP1G79DCKR | 1.1547 | | | SOT (SC-70) | Reel of 250 | SN74AUP1G79DCKT | HW_ | [†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. #### **FUNCTION TABLE** | INPU | ITS | OUTPUT | |--------|-----|--------| | CLK | D | Q | | 1 | Н | Н | | 1 | L | L | | L or H | Χ | Q_0 | #### logic diagram (positive logic) DBV/DCK: The actual top-side marking has one additional character that designates the assembly/test site. YEP/YZP: The actual top-side marking has three preceding characters to denote year, month, and sequence code, and one following character to designate the assembly/test site. Pin 1 identifier indicates solder-bump composition (1 = SnPb, • = Pb-free). SCES592 - JULY 2004 ### NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. 2. The package thermal impedance is calculated in accordance with JESD 51-7. [†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. SCES592 - JULY 2004 ### recommended operating conditions (see Note 3) | | | | MIN | MAX | UNIT | |-------------------|------------------------------------|--|------------------------|------------------------|------| | VCC | Supply voltage | | 0.8 | 3.6 | V | | | | V _{CC} = 0.8 V | VCC | | | | ., | LPak Java Canada adha na | V _{CC} = 1.1 V to 1.95 V | 0.65 × V _{CC} | |] ,, | | V_{IH} | High-level input voltage | V _{CC} = 2.3 V to 2.7 V | 1.6 | | V | | | | V _{CC} = 3 V to 3.6 V | 2 | | | | | | V _{CC} = 0.8 V | | 0 | | | ., | | V _{CC} = 1.1 V to 1.95 V | | 0.35 × V _{CC} |] ,, | | V_{IL} | Low-level input voltage | $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$ | | 0.7 | V | | | | V _{CC} = 3 V to 3.6 V | | 0.9 | | | ٧ _I | Input voltage | | 0 | 3.6 | V | | ٧o | Output voltage | | 0 | VCC | V | | | | V _{CC} = 0.8 V | | -20 | μΑ | | | | V _{CC} = 1.1 V | | -1.1 | | | . + | LPak lavel admid someof | V _{CC} = 1.4 V | | -1.7 | | | lOH [†] | High-level output current | V _{CC} = 1.65 | | -1.9 | mA | | | | V _{CC} = 2.3 V | | -3.1 | | | | | V _{CC} = 3 V | | -4 | | | | | V _{CC} = 0.8 V | | 20 | μΑ | | | | V _{CC} = 1.1 V | | 1.1 | | | . + | | V _{CC} = 1.4 V | | 1.7 | | | lo _L † | Low-level output current | V _{CC} = 1.65 V | | 1.9 | mA | | | | V _{CC} = 2.3 V | | 3.1 | | | | | V _{CC} = 3 V | | 4 | | | Δt/Δν | Input transition rise or fall rate | V _{CC} = 0.8 V to 3.6 V | | 200 | ns/V | | TA | Operating free-air temperature | · | -40 | 85 | °C | [†] Defined by the signal integrity requirements and design-goal priorities NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004. SCES592 - JULY 2004 # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | | | | T, | A = 25°C | T _A = -40°C | C TO 85°C | | |------------------------|--------------------------|---|----------------|------------------------|---------------------|------------------------|---------------------|------| | PAI | RAMETER | TEST CONDITIONS | VCC | MIN | TYP MAX | MIN | MAX | UNIT | | | | I _{OH} = -20 μA | 0.8 V to 3.6 V | V _{CC} - 0.1 | | V _{CC} - 0.1 | | | | | | I _{OH} = -1.1 mA | 1.1 V | 0.75 × V _{CC} | | $0.7 \times V_{CC}$ | | | | | | $I_{OH} = -1.7 \text{ mA}$ | 1.4 V | 1.11 | | 1.03 | | | | \ , | | $I_{OH} = -1.9 \text{ mA}$ | 1.65 V | 1.32 | | 1.3 | | V | | VOH | | $I_{OH} = -2.3 \text{ mA}$ | 221/ | 2.05 | | 1.97 | | V | | | | $I_{OH} = -3.1 \text{ mA}$ | 2.3 V | 1.9 | | 1.85 | | | | | | $I_{OH} = -2.7 \text{ mA}$ | 3 V | 2.72 | | 2.67 | | | | | | $I_{OH} = -4 \text{ mA}$ | 3 V | 2.6 | | 2.55 | | | | | | I _{OL} = 20 μA | 0.8 V to 3.6 V | | 0.1 | | 0.1 | | | | I _{OL} = 1.1 mA | | 1.1 V | | $0.3 \times V_{CC}$ | | $0.3 \times V_{CC}$ | | | | | $I_{OL} = 1.7 \text{ mA}$ | 1.4 V | | 0.31 | | 0.37 | | | \/-· | | $I_{OL} = 1.9 \text{ mA}$ | 1.65 V | | 0.31 | | 0.35 | | | VOL | | $I_{OL} = 2.3 \text{ mA}$ | 0.01/ | | 0.31 | | 0.33 | V | | | | I _{OL} = 3.1 mA | 2.3 V | | 0.44 | | 0.45 | | | | | $I_{OL} = 2.7 \text{ mA}$ | 2.1/ | | 0.31 | | 0.33 | | | | | I _{OL} = 4 mA | 3 V | | 0.44 | | 0.45 | | | IJ | D or CLK input | V _I = GND to 3.6 V | 0 V to 3.6 V | | 0.1 | | 0.5 | μΑ | | l _{off} | | V_I or $V_O = 0 V$ to 3.6 V | 0 V | | 0.2 | | 0.6 | μΑ | | $\Delta I_{ ext{off}}$ | | V_I or $V_O = 0 V$ to 3.6 V | 0 V to 0.2 V | | 0.2 | | 0.6 | μΑ | | Icc | | $V_I = GND \text{ or}$
$V_{CC} \text{ to } 3.6 \text{ V},$ $I_O = 0$ | 0.8 V to 3.6 V | | 0.5 | | 0.9 | μΑ | | ∆lcc | | $V_1 = V_{CC} - 0.6 \text{ V},^{\dagger} I_O = 0$ | 3.3 V | | 40 | | 50 | μΑ | | <u> </u> | | V. V CND | 0 V | | 1.5 | | | | | Ci | | V _I = V _{CC} or GND | 3.6 V | | 1.5 | | | pF | | Со | | $V_O = GND$ | 0 V | | 3 | | | pF | [†]One-input switching SCES592 - JULY 2004 # timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3) | | | | V _{CC} | T _A = 25°C | T _A = - | -40°C
5°C | UNIT | |--------------------|---|---------------|-----------------|-----------------------|--------------------|--------------|------| | | | | | TYP | MIN | MAX | | | | | | 0.8 V | | | 20 | | | | | | 1.2 V ± 0.1 V | | | 80 | | | f _{clock} | Clock frequency | | 1.5 V ± 0.1 V | | | 100 | | | CIOCK | Clock frequency | cy | | | | 140 | ns | | | | 2.5 V ± 0.2 V | | | 210 | | | | | | | 3.3 V ± 0.3 V | | | 260 | | | | | | 0.8 V | | 4.8 | | | | | | | | | 2.2 | | | | ١. | Poles deserting OLIC high and accompany | | 1.5 V ± 0.1 V | | 1.5 | | | | t _W | Pulse duration, CLK high or low | | 1.8 V ± 0.15 V | | 1.6 | | ns | | | | | 2.5 V ± 0.2 V | | 1.7 | | | | | | | 3.3 V ± 0.3 V | | 1.9 | | | | | | | 0.8 V | 2.9 | 4.2 | | | | | | | 1.2 V ± 0.1 V | | 1.4 | | | | | | | 1.5 V ± 0.1 V | | 1 | | | | | | Data high | 1.8 V ± 0.15 V | | 0.9 | | | | | | | 2.5 V ± 0.2 V | | 0.7 | | | | | | | 3.3 V ± 0.3 V | | 0.6 | | | | t _{su} | Setup time before CLK↑ | | 0.8 V | 3.5 | 5.3 | | ns | | | | | 1.2 V ± 0.1 V | | 1.8 | | | | | | | 1.5 V ± 0.1 V | | 1.2 | | | | | | Data low | 1.8 V ± 0.15 V | | 1.1 | | | | | | | 2.5 V ± 0.2 V | | 1 | | | | | | | 3.3 V ± 0.3 V | | 1 | | | | | | | 0.8 V | 0 | 0 | | | | | | | 1.2 V ± 0.1 V | | 0 | | | | 4. | Hold time and often CLIVA | | 1.5 V ± 0.1 V | | 0 | | | | ^t h | Hold time, data after CLK↑ | | 1.8 V ± 0.15 V | | 0 | | ns | | | | | 2.5 V ± 0.2 V | | 0 | | | | | | | 3.3 V ± 0.3 V | | 0 | | | SCES592 - JULY 2004 # switching characteristics over recommended operating free-air temperature range, C_L = 5 pF (unless otherwise noted) (see Figures 3 and 4) | PARAMETER | FROM | TO (OUTDUT) | Vcc | T, | 4 = 25°C | ; | T _A = - | | UNIT | |------------------|---------|---------------|----------------|-----|----------|-----|--------------------|------|-------| | | (INPUT) | (OUTPUT) | | MIN | TYP | MAX | MIN | MAX | | | | | | 0.8 V | | 93 | | 90 | | | | f _{max} | | 1.2 V ± 0.1 V | | 199 | | 220 | | | | | | | | 1.5 V ± 0.1 V | | 250 | | 230 | | MHz | | | | | 1.8 V ± 0.15 V | | 271 | | 240 | | IVITZ | | | | | 2.5 V ± 0.2 V | | 280 | | 250 | | | | | | | 3.3 V ± 0.3 V | | 280 | | 260 | | | | | | | 0.8 V | | 15.9 | | | | | | | | | 1.2 V ± 0.1 V | 3.7 | 6.9 | 11 | 2.6 | 13.1 | | | . | CLK | _ | 1.5 V ± 0.1 V | 3 | 4.8 | 7.6 | 2 | 8.8 | | | ^t pd | CLK | Q | 1.8 V ± 0.15 V | 2.4 | 3.8 | 6.1 | 1.5 | 7.1 | ns | | | | | 2.5 V ± 0.2 V | 1.8 | 2.7 | 4.4 | 1.1 | 5 | | | | | | 3.3 V ± 0.3 V | 1.5 | 2.1 | 3.6 | 0.9 | 4 | | # switching characteristics over recommended operating free-air temperature range, C_L = 10 pF (unless otherwise noted) (see Figures 3 and 4) | PARAMETER | FROM | TO | VCC | T, | գ = 25°C | ; | T _A = - | | UNIT | |------------------|---------|----------|----------------|-----|----------|------|--------------------|------|-------| | | (INPUT) | (OUTPUT) | | MIN | TYP | MAX | MIN | MAX | | | | | | 0.8 V | | 62 | | 50 | | | | | | | 1.2 V ± 0.1 V | | 147 | | 160 | | | | f | | | 1.5 V ± 0.1 V | | 189 | | 200 | | MHz | | f _{max} | | | 1.8 V ± 0.15 V | | 180 | | 240 | | IVITZ | | | | | 2.5 V ± 0.2 V | | 260 | | 250 | | | | | | | 3.3 V ± 0.3 V | | 280 | | 260 | | | | | | | 0.8 V | | 18 | | | | | | | | | 1.2 V ± 0.1 V | 4.3 | 7.8 | 12.3 | 3.2 | 14.4 | | | | | | 1.5 V ± 0.1 V | 3.5 | 5.5 | 8.4 | 2.5 | 9.8 | | | ^t pd | CLK | Q | 1.8 V ± 0.15 V | 2.8 | 4.4 | 6.8 | 1.9 | 8 | ns | | | | | 2.5 V ± 0.2 V | 2.2 | 3.2 | 5 | 1.5 | 5.7 | | | | | | 3.3 V ± 0.3 V | 1.8 | 2.6 | 4.1 | 1.3 | 4.5 | | SCES592 - JULY 2004 # switching characteristics over recommended operating free-air temperature range, C_L = 15 pF (unless otherwise noted) (see Figures 3 and 4) | PARAMETER | FROM | TO | Vcc | Т, | դ = 25°C | ; | T _A = - | | UNIT | | |---------------------|---------|----------------|---------------|---------------|----------|------|--------------------|------|-------|--| | | (INPUT) | (OUTPUT) | | MIN | TYP | MAX | MIN | MAX | | | | | | | 0.8 V | | 48 | | 30 | | | | | | | | 1.2 V ± 0.1 V | | 112 | | 120 | | | | | f | | | 1.5 V ± 0.1 V | | 151 | | 160 | | MI I- | | | fmax | | 1.8 V ± 0.15 V | | 194 | | 220 | | MHz | | | | | | | 2.5 V ± 0.2 V | | 248 | | 250 | | | | | | | | 3.3 V ± 0.3 V | | 280 | | 260 | | | | | | | | 0.8 V | | 20.3 | | | | | | | | | | 1.2 V ± 0.1 V | 5 | 8.7 | 13.6 | 3.9 | 15.6 | | | | | | | 1.5 V ± 0.1 V | 4.1 | 6.3 | 9.3 | 3.1 | 10.7 | | | | t _{pd} CLK | Q | 1.8 V ± 0.15 V | 3.3 | 4 | 7.6 | 2.4 | 8.7 | ns | | | | | | | [| 2.5 V ± 0.2 V | 2.6 | 3.6 | 5.5 | 1.9 | 6.3 | | | | | | 3.3 V ± 0.3 V | 2.2 | 3 | 4.5 | 1.6 | 5 | | | # switching characteristics over recommended operating free-air temperature range, C_L = 30 pF (unless otherwise noted) (see Figures 3 and 4) | PARAMETER | FROM | TO | VCC | T, | գ = 25°C | ; | T _A = - | | UNIT | | |---------------------|---------|----------------|---------------|---------------|----------|------|--------------------|-------|------|--| | | (INPUT) | (OUTPUT) | | MIN | TYP | MAX | MIN | MAX | | | | | | | 0.8 V | | 24 | | 20 | | | | | | | | 1.2 V ± 0.1 V | | 72 | | 80 | | | | | f | | | 1.5 V ± 0.1 V | | 100 | | 100 | | MHz | | | f _{max} | | 1.8 V ± 0.15 V | | 127 | | 140 | | IVITZ | | | | | | | 2.5 V ± 0.2 V | | 185 | | 210 | | | | | | | | 3.3 V ± 0.3 V | | 266 | | 260 | | | | | | | | 0.8 V | | 27.2 | | | | | | | | | | 1.2 V ± 0.1 V | 7 | 11.5 | 17.3 | 5.9 | 24 | | | | | | | 1.5 V ± 0.1 V | 5.7 | 8.3 | 11.8 | 4.6 | 15.9 | | | | t _{pd} CLK | Q | 1.8 V ± 0.15 V | 4.7 | 6.7 | 9.6 | 3.8 | 13 | ns | | | | | | | | 2.5 V ± 0.2 V | 3.7 | 4.9 | 7 | 2.9 | 9 | | | | | | 3.3 V ± 0.3 V | 3.2 | 4.1 | 5.8 | 2.6 | 7.2 | | | # operating characteristics, $T_A = 25^{\circ}C$ | | PARAMETER | TEST CONDITIONS | v _{cc} | TYP | UNIT | |-----------------|------------------------------------|-----------------|-----------------|-----|------| | | | 0.8 V | 2.5 | | | | | C. I. Baura dissination constitues | | 1.2 V ± 0.1 V | 2.5 | | | C . | | f = 10 MHz | 1.5 V ± 0.1 V | 2.5 | | | C _{pd} | Power dissipation capacitance | | 1.8 V ± 0.15 V | 2.5 | pF | | | | | 2.5 V ± 0.2 V | 3 | | | | | | 3.3 V ± 0.3 V | 3 | | # PARAMETER MEASUREMENT INFORMATION (Propagation Delays, Setup and Hold Times, and Pulse Width) LOAD CIRCUIT | | V _{CC} = 0.8 V | V _{CC} = 1.2 V
± 0.1 V | V _{CC} = 1.5 V
± 0.1 V | V _{CC} = 1.8 V
± 0.15 V | V _{CC} = 2.5 V
± 0.2 V | V _{CC} = 3.3 V
± 0.3 V | |----------------------------------|---|---|---|---|---|---| | C _L
V _M | 5, 10, 15, 30 pF
V _{CC} /2
V _{CC} | 5, 10, 15, 30 pF
V _{CC} /2
V _{CC} | 5, 10, 15, 30 pF
V _{CC} /2
V _{CC} | 5, 10, 15, 30 pF
V _{CC} /2
V _{CC} | 5, 10, 15, 30 pF
V _{CC} /2
V _{CC} | 5, 10, 15, 30 pF
V _{CC} /2
V _{CC} | NOTES: A. C_L includes probe and jig capacitance. - B. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_r/t_f = 3$ ns. - C. The outputs are measured one at a time, with one transition per measurement. - D. tpLH and tpHL are the same as tpd. - E. All parameters and waveforms are not applicable to all devices. Figure 3. Load Circuit and Voltage Waveforms # PARAMETER MEASUREMENT INFORMATION (Enable and Disable Times) | TEST | S1 | |-----------|---------------------| | tPLZ/tPZL | 2 × V _{CC} | | tPHZ/tPZH | GND | LOAD CIRCUIT | | V _{CC} = 0.8 V | V _{CC} = 1.2 V
± 0.1 V | V _{CC} = 1.5 V
± 0.1 V | V _{CC} = 1.8 V
± 0.15 V | V _{CC} = 2.5 V
± 0.2 V | V _{CC} = 3.3 V
± 0.3 V | |----------------|-------------------------|------------------------------------|------------------------------------|-------------------------------------|------------------------------------|------------------------------------| | C _L | 5, 10, 15, 30 pF | | V _M | V _{CC} /2 | | V _I | V _{CC} | | V _∆ | 0.1 V | 0.1 V | 0.1 V | 0.15 V | 0.15 V | 0.3 V | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_O = 50 \Omega$, $t_T/t_f = 3$ ns. - D. The outputs are measured one at a time, with one transition per measurement. - E. tpLz and tpHz are the same as tdis. - F. tpzL and tpzH are the same as ten. - G. All parameters and waveforms are not applicable to all devices. Figure 4. Load Circuit and Voltage Waveforms # DBV (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - All linear dimensions are in millimeters. - This drawing is subject to change without notice. - C. Body dimensions do not include mold fla D. Falls within JEDEC MO—178 Variation AA. Body dimensions do not include mold flash or protrusion. ### DCK (R-PDSO-G5) #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion. D. Falls within JEDEC MO-203 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated