SCES108G-JULY 1997-REVISED NOVEMBER 2004 #### **FEATURES** - Operates From 1.65 V to 3.6 V - Max t_{pd} of 2.8 ns at 3.3 V - ±24-mA Output Drive at 3.3 V - Latch-Up Performance Exceeds 250 mA Per JESD 17 - ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) - 200-V Machine Model (A115-A) - 1000-V Charged-Device Model (C101) ## D, DGV, NS, OR PW PACKAGE (TOP VIEW) #### **DESCRIPTION/ORDERING INFORMATION** This quadruple 2-input positive-OR gate is designed for 1.65-V to 3.6-V V_{CC} operation. The SN74ALVC32 performs the Boolean function $Y = \overline{\overline{A} \cdot \overline{B}}$ or Y = A + B in positive logic. #### ORDERING INFORMATION | T _A | PACKA | GE ⁽¹⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|-------------|-------------------|-----------------------|------------------| | | SOIC - D | Tube | SN74ALVC32D | ALVC32 | | | 3010 - D | Tape and reel | SN74ALVC32DR | ALVO32 | | -40°C to 85°C | SOP - NS | Tape and reel | SN74ALVC32NSR | ALVC32 | | -40°C 10 65°C | TSSOP - PW | Tube | SN74ALVC32PW | VA32 | | | 1330P - PW | Tape and reel | SN74ALVC32PWR | VA32 | | | TVSOP - DGV | Tape and reel | SN74ALVC32DGVR | VA32 | (1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. # FUNCTION TABLE (each gate) | INP | JTS | OUTPUT | |-----|-----|--------| | Α | В | Y | | Н | Х | Н | | X | Н | Н | | L | L | L | ## LOGIC DIAGRAM, EACH GATE (POSITIVE LOGIC) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## SN74ALVC32 QUADRUPLE 2-INPUT POSITIVE-OR GATE SCES108G-JULY 1997-REVISED NOVEMBER 2004 ## ABSOLUTE MAXIMUM RATINGS(1) over operating free-air temperature range (unless otherwise noted) | | | | МІ | N MAX | UNIT | | |------------------|---|--------------------|----|--------------------------|-------|--| | V_{CC} | Supply voltage range | | -0 | .5 4.6 | V | | | VI | Input voltage range ⁽²⁾ | | -0 | .5 4.6 | V | | | Vo | Output voltage range (2)(3) | | -0 | .5 V _{CC} + 0.5 | V | | | I _{IK} | Input clamp current | V _I < 0 | | -50 | mA | | | I _{OK} | Output clamp current | V _O < 0 | | -50 | mA | | | Io | Continuous output current | | | ±50 | mA | | | | Continuous current through V _{CC} or GND | | | ±100 | mA | | | | | D package | | 86 | | | | 0 | Deckage thermal impedance (4) | DGV package | | 127 | °C/W | | | θ_{JA} | Package thermal impedance (4) | NS package | | 76 | 30/00 | | | | | PW package | | 113 | | | | T _{stg} | Storage temperature range | | -6 | 55 150 | °C | | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## **RECOMMENDED OPERATING CONDITIONS**(1) | | | | MIN | MAX | UNIT | |--------------------|---|---|----------------------|----------------------|------| | V_{CC} | Supply voltage | | 1.65 | 3.6 | V | | | | V _{CC} = 1.65 V to 1.95 V | $0.65 \times V_{CC}$ | | | | V_{IH} | High-level input voltage | V _{CC} = 2.3 V to 2.7 V | 1.7 | | V | | | High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current | V _{CC} = 2.7 V to 3.6 V | 2 | | | | | | V _{CC} = 1.65 V to 1.95 V | | $0.35 \times V_{CC}$ | | | V_{IL} | High-level input voltage Low-level input voltage Input voltage Output voltage High-level output current Low-level output current | V _{CC} = 2.3 V to 2.7 V | | 0.7 | V | | | | V _{CC} = 2.7 V to 3.6 V | | 0.8 | | | VI | Input voltage | , | 0 | 3.6 | V | | Vo | Output voltage | | 0 | V _{CC} | V | | | | V _{CC} = 1.65 V | | -4 | | | | I Park Tarrell and and an arrange | V _{CC} = 2.3 V | | -12 | | | I _{OH} | Low-level input voltage Input voltage Output voltage High-level output current Low-level output current | V _{CC} = 2.7 V | | -12 | mA | | | | $\begin{array}{c} V_{CC} = 1.65 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 2.7 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.3 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.7 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 2.7 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.7 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.7 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.7 \ V \\ V_{CC} = 2.3 \ V \\ V_{CC} = 2.7 \ V \\ V_{CC} = 2.3 2.7 3 \ V \\ \end{array}$ | -24 | | | | | High-level output current | V _{CC} = 1.65 V | | 4 | | | | Landard autout amount | V _{CC} = 2.3 V | | 12 | 4 | | I _{OL} Lo | Low-level output current | V _{CC} = 2.7 V | | 12 | mA | | | | V _{CC} = 3 V | | 24 | | | Δt/Δν | Input transition rise or fall rate | , | | 5 | ns/V | | T _A | Operating free-air temperature | | -40 | 85 | °C | All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. ⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. ⁽³⁾ This value is limited to 4.6 V maximum. ⁽⁴⁾ The package thermal impedance is calculated in accordance with JESD 51-7. SCES108G-JULY 1997-REVISED NOVEMBER 2004 #### **ELECTRICAL CHARACTERISTICS** over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | TEST CONDITIONS | V _{cc} | MIN | TYP ⁽¹⁾ | MAX | UNIT | |-----------------|--|-----------------|-----------------------|--------------------|------|------| | | I _{OH} = -100 μA | 1.65 V to 3.6 V | V _{CC} - 0.2 | | | | | | I _{OH} = -4 mA | 1.65 V | 1.2 | | | | | V _{ОН} | I _{OH} = -6 mA | 2.3 V | 2 | | | | | | | 2.3 V | 1.7 | | | V | | | I _{OH} = -12 mA | 2.7 V | 2.2 | | | | | | | 3 V | 2.4 | | | | | | I _{OH} = -24 mA | 3 V | 2 | | | | | V_{OL} | $I_{OL} = 100 \mu A$ | 1.65 V to 3.6 V | | | 0.2 | | | | I _{OL} = 4 mA | 1.65 V | | | 0.45 | | | | I _{OL} = 6 mA | 2.3 V | | | 0.4 | V | | | 12 m/ | 2.3 V | | | 0.7 | V | | | I _{OL} = 12 mA | 2.7 V | | | 0.4 | | | | I _{OL} = 24 mA | 3 V | | | 0.55 | | | l _l | V _I = V _{CC} or GND | 3.6 V | | | ±5 | μΑ | | I _{cc} | $V_I = V_{CC}$ or GND, $I_O = 0$ | 3.6 V | | | 10 | μΑ | | ΔI_{CC} | One input at V _{CC} - 0.6 V, Other inputs at V _{CC} or GND | 3 V to 3.6 V | | | 750 | μΑ | | C _i | V _I = V _{CC} or GND | 3.3 V | | 4 | | pF | ⁽¹⁾ All typical values are at V_{CC} = 3.3 V, T_A = 25°C. #### **SWITCHING CHARACTERISTICS** over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1) | PARAMETER FROM TO (OUTPUT) | | V _{CC} = 1.8 V
± 0.15 V | | V _{CC} = 2.5 V
± 0.2 V | | V _{CC} = 2.7 V | | V _{CC} = 3.3 V
± 0.3 V | | UNIT | | |----------------------------|------------------|-------------------------------------|-----|------------------------------------|-----|-------------------------|-----|------------------------------------|-----|------|----| | | (INPOT) (OUTPOT) | MIN | MAX | MIN | MAX | MIN | MAX | MIN | MAX | ı | | | t _{pd} | A or B | Y | 1 | 4.7 | 1 | 3.1 | | 2.9 | 1 | 2.8 | ns | #### **OPERATING CHARACTERISTICS** $T_A = 25^{\circ}C$ | | PARAMETER | | CONDITIONS | V _{CC} = 1.8 V
± 0.15 V | V _{CC} = 2.5 V
± 0.2 V | V _{CC} = 3.3 V
± 0.3 V | UNIT | | |----------|--|-------------|------------|-------------------------------------|------------------------------------|------------------------------------|------|--| | | | | | TYP | TYP | TYP | | | | C_{pd} | Power dissipation capacitance per gate | $C_L = 0$, | f = 10 MHz | 23 | 24 | 26 | pF | | #### PARAMETER MEASUREMENT INFORMATION | TEST | S1 | |------------------------------------|-------------------| | t _{pd} | Open | | t _{PLZ} /t _{PZL} | V _{LOAD} | | t _{PHZ} /t _{PZH} | GND | LOAD CIRCUIT | V | IN | PUT | ,, | , , , , , , , , , , , , , , , , , , , | | ь | V | |-------------------|-----------------|--------------------------------|--------------------|---------------------------------------|-------|----------------|-----------------------| | V _{CC} | VI | t _r /t _f | V _M | V _{LOAD} | CL | R _L | $oldsymbol{V}_\Delta$ | | 1.8 V ± 0.15 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 1 k Ω | 0.15 V | | 2.5 V \pm 0.2 V | V _{CC} | ≤2 ns | V _{CC} /2 | 2×V _{CC} | 30 pF | 500 Ω | 0.15 V | | 2.7 V | 2.7 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | | 3.3 V \pm 0.3 V | 2.7 V | ≤2.5 ns | 1.5 V | 6 V | 50 pF | 500 Ω | 0.3 V | NOTES: A. C_L includes probe and jig capacitance. - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, $Z_{O} = 50 \Omega$. - D. The outputs are measured one at a time, with one transition per measurement. - E. t_{PLZ} and t_{PHZ} are the same as t_{dis} . - F. t_{PZL} and t_{PZH} are the same as t_{en} . - G. t_{PLH} and t_{PHL} are the same as t_{pd} . - H. All parameters and waveforms are not applicable to all devices. Figure 1. Load Circuit and Voltage Waveforms ## DGV (R-PDSO-G**) #### **24 PINS SHOWN** #### **PLASTIC SMALL-OUTLINE** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side. D. Falls within JEDEC: 24/48 Pins – MO-153 14/16/20/56 Pins – MO-194 ## D (R-PDSO-G14) ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-012 variation AB. ## **MECHANICAL DATA** ## NS (R-PDSO-G**) ## 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. ## PW (R-PDSO-G**) #### 14 PINS SHOWN ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | e | |-----------------| | d | | trol | | | | work | | | | | | | | | | d
trol
wo | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2004, Texas Instruments Incorporated