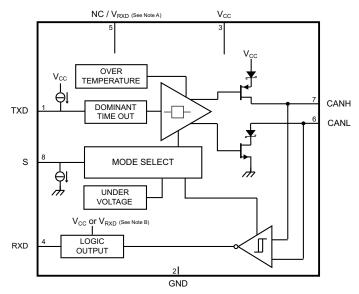
CAN Transceiver with Fast Loop Times for Highly Loaded Networks

Check for Samples: SN65HVD255, SN65HVD256

FEATURES


- Meets the Requirements of ISO11898-2
- "Turbo CAN":
 - Short Propagation Delay Times and Fast Loop Times
 - Higher Data Rates in Network
 - Enhances System Timing Margins
- I/O Voltage Range Supports 3.3V and 5V MCUs
- Ideal Passive Behavior When Unpowered
 - Bus Pins are High Impedance (no load to operating bus)
 - Logic Pins are High Impedance
 - Power Up/Down With Glitch Free Operation On Bus
- Protection Features:
 - ESD Protection of Bus Pins
 - HBM ESD Protection Exceeds ±12 kV
 - Bus Fault Protection –27V to 40V
 - Under Voltage Protection on Supply Pins
 - TXD (Driver) Dominant Time Out (DTO)
 - Thermal Shutdown Protection
- Characterized for –40°C to 125°C Operation

APPLICATIONS

- 1Mbps Operation in Highly Loaded CAN Networks Down to 10kbps Networks With TXD DTO
- Industrial Automation, Control, Sensors and Drive Systems
- Building and Climate Control Automation
- Security Systems
- Telecom Base Station Status and Control
- CAN Bus Standards Such as CANopen, CAN Kingdom, DeviceNet, NMEA2000

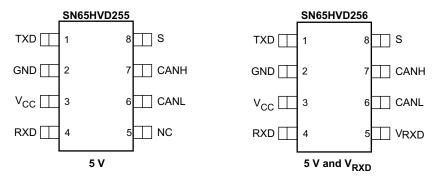
DESCRIPTION

This CAN transceiver meets the ISO1189-2 High Speed CAN (Controller Area Network) Physical Layer standard. It is designed for data rates in excess of 1 megabit per second (Mbps) in short networks and enhanced timing margin and higher data rates in long and highly loaded networks. The device includes many protection features providing device and CAN network robustness.

- A. Pin 5 use is device dependent. NC for 5V-only devices and V_{RXD} for RXD output level-shifting devices.
- B. RXD logic output is driven to 5V V_{CC} on 5V-only devices and driven to V_{RXD} on output level-shifting devices.

Figure 1. Functional Block Diagram

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

D PACKAGE (TOP VIEW)

DEVICE OPTIONS

PART NUMBER	I/O SUPPLY for RXD	COMMENT
SN65HVD255	No	`251 and `1050 functional upgrade with "Turbo" CAN fast loop times and TXD DTO protection allowing data rates down to 10kbps
SN65HVD256	Yes	`251 and `1050 functional upgrade with "Turbo" CAN fast loop times and TXD DTO protection allowing data rates down to 10kbps. RXD output level shifting via RXD supply input.

PIN FUNCTIONS

F	PIN		DESCRIPTION			
NAME	NO.	TYPE	DESCRIPTION			
TXD	1	I	CAN transmit data input (LOW for dominant and HIGH for recessive bus states)			
GND	2	GND	Ground connection			
V _{CC}	3	Supply	Fransceiver 5V supply voltage			
RXD	4	0	CAN receive data output (LOW for dominant and HIGH for recessive bus states)			
NC	5	NC	SN65HVD255: No Connect			
V_{RXD}		Supply	SN65HVD256: RXD output supply voltage			
CANL	6	I/O	Low level CAN bus line			
CANH	7	I/O	High level CAN bus line			
S	8	I	Mode select: S (Silent Mode) select pin (active high)			

ORDERING INFORMATION(1)

T _A PACKAGE ⁽²⁾		ORDERABLE PART NUMBER	TOP SIDE MARKING
40°C to 405°C	0010	SN65HVD255D and SN65HVD255DR	HVD255
–40°C to 125°C	SOIC – D	SN65HVD256D and SN65HVD256DR	HVD256

⁽¹⁾ For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com.

⁽²⁾ Package drawings, thermal data, and symbolization are available at www.ti.com/packaging.

FUNCTIONAL DESCRIPTION

OPERATING MODES

The device has two main operating modes: normal mode and silent mode. Operating mode selection is made via the S input pin.

Table 1. Operating Modes

S Pin	MODE	DRIVER	RECEIVER	RXD Pin
LOW	Normal Mode	Enabled (ON)	Enabled (ON)	Mirrors Bus State ⁽¹⁾
HIGH	Silent Mode	Disabled (OFF)	Enabled (ON)	Mirrors Bus State

⁽¹⁾ Mirrors bus state: low if CAN bus is dominant, high if CAN bus is recessive.

CAN BUS STATES

The CAN bus has two states during powered operation of the device: dominant and recessive. Dominant bus state is when the bus is driven differentially. Dominant bus state corresponds to logic low on the TXD and RXD pins. Recessive bus states is when the bus is biased to $V_{\rm CC}/2$ via the high-ohmic internal input resistors $R_{\rm IN}$ of the receiver. Recessive bus state corresponds to logic high on the TXD and RXD pins. See Figure 2 and Figure 3.

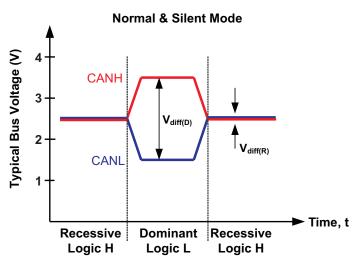


Figure 2. Bus States (Physical Bit Representation)

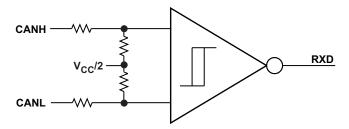


Figure 3. Simplified Recessive Common Mode Bias and Receiver

NORMAL MODE

This is the normal operating mode of the device, selected by setting S low. The CAN driver and receiver are fully operational and CAN communication is bi-directional. The driver is translating a digital input on TXD to a differential output on CANH and CANL. The receiver is translating the differential signal from CANH and CANL to a digital output on RXD.

RUMENTS

SILENT MODE

This is the silent (receive only) mode of the device, selected by setting S high. The CAN driver is turned off while the receiver remains active and RXD will output the received bus state.

APPLICATION NOTE: Silent mode may be used to implement babbling idiot protection, to ensure that the driver does not disrupt the network in case of a local fault. Silent mode may also be used in redundant systems to select or de-select the redundant transceiver (driver) when needed.

DRIVER AND RECEIVER FUNCTION TABLES

Table 2. Driver Function Table

DEVICE	INP	UTS	OUTI	DRIVEN BUS	
DEVICE	S ⁽¹⁾⁽²⁾	TXD ⁽¹⁾⁽³⁾	CANH ⁽¹⁾	CANL ⁽¹⁾	STATE
	L or Onen	L	Н	L	Dominant
All Devices	L or Open	H or Open	Z	Z	Recessive
	Н	Х	Z	Z	Recessive

- (1) H = high level, L = low level, X= irrelevant, Z = common mode (recessive) bias to V_{CC} / 2. See Figure 2 and Figure 3 for bus state and common mode bias information.
- Devices have an internal pull down to GND on S pin. If S pin is open the pin will be pulled low and the device will be in normal mode.
- Devices have an internal pull up to V_{CC} on TXD pin. If the TXD pin is open the pin will be pulled high and the transmitter will remain in recessive (non-driven) state.

Table 3. Receiver Function Table

DEVICE MODE	CAN DIFFERENTIAL INPUTS V _{ID} = V _{CANH} - V _{CANL}	BUS STATE	RXD PIN ⁽¹⁾
	V _{ID} ≥ 0.9 V	Dominant	L
Normal or Cilent	0.5 V < V _{ID} < 0.9 V	?	?
Normal or Silent	V _{ID} ≤ 0.5 V	Recessive	Н
	Open (V _{ID} ≈ 0 V)	Open	Н

⁽¹⁾ H = high level, L = low level, ? = indeterminate.

DIGITAL INPUTS AND OUTPUTS

5V V_{CC} Only Device (SN65HVD255):

The 5V V_{CC} device is supplied by a single 5V rail and has digital inputs that are 5V and 3.3V compatible. This device has a 5V (V_{CC}) level RXD output. TXD is internally pulled up to V_{CC} and S is internally pulled down to GND.

APPLICATION NOTE: While the TXD is internally pulled up to V_{CC} and S pin is internally pulled down to GND care should be take that the strength of the internal biasing is strong enough in application situations. The internal bias is there to put the device in a known state if the pin floats and not to provide system level biasing. Special consideration should be taken on pull up strength and timing if the TXD output pin on the microprocessor's CAN controller is open drain.

5V V_{CC} with V_{RXD} RXD output Supply Devices (SN65HVD256): This device is a 5V V_{CC} CAN transceiver with a separate supply for the RXD output, V_{RXD} . The digital inputs are 5V and 3.3V compatible. These devices have a V_{RXD} level RXD output. TXD remains weakly pulled up to V_{CC} .

APPLICATION NOTE: On device versions with V_{RXD} supply which shifts the RXD output level the input pins of the device remain the same. TXD remains weakly pulled up to V_{CC} internally and thus a small I_{IH} current will flow if TXD input is used below V_{CC} levels.

www.ti.com

PROTECTION FEATURES

TXD DOMINANT TIME OUT (DTO)

During normal mode, the only mode where the CAN driver is active, the TXD dominant time out circuit prevents the transceiver from blocking network communication in event of a hardware or software failure where TXD is held dominant longer than the time out period t_{TXD_DTO} . The dominant time out circuit is triggered by a falling edge on TXD. If no rising edge is seen before the time out period of the circuit expires, the CAN bus driver is disabled. This keeps the bus free for communication between other nodes on the network. The CAN driver is re-activated when a recessive signal is seen on TXD pin, thus clearing the TXD dominant time out. The receiver and RXD pin will still reflect the CAN bus and the bus pins will be biased to recessive level during a TXD dominant time out.

APPLICATION NOTE: The minimum dominant TXD time allowed by the TXD dominant time out limits the minimum possible transmitted data rate of the device. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the t_{TXD_DTO} minimum, limits the minimum data rate. The minimum transmitted data rate may be calculated by: Minimum Data Rate = 11/ t_{TXD_DTO} .

THERMAL SHUTDOWN

If the junction temperature of the device exceeds the thermal shut down threshold the device will turn off the CAN driver circuits thus blocking the TXD to bus transmission path. The shutdown condition is cleared once the junction temperature drops below the thermal shutdown temperature of the device.

APPLICATION NOTE: During thermal shutdown the CAN bus drivers will be turned off thus no transmission is possible from TXD to the bus. The CAN bus pins will be biased to recessive level during a thermal shutdown and the receiver to RXD path will remain operational.

UNDER VOLTAGE LOCKOUT

The supply pins have undervoltage detection which place the device in protected mode. This protects the bus during an undervoltage event on either the V_{CC} or V_{RXD} supply pins.

Table 4. Undervoltage Lockout 5V Only Device

V _{CC}	DEVICE STATE	BUS OUTPUT	RXD
GOOD	Normal	Per Device State and TXD	Mirrors Bus
BAD	Protected	High Impedance	High Impedance (3-state)

Table 5. Undervoltage Lockout 5V and V_{RXD} Device

V _{CC}	V_{RXD}	DEVICE STATE	BUS OUTPUT	RXD
GOOD	GOOD	Normal	Per Device State and TXD	Mirrors Bus
BAD	GOOD	Protected	High Impedance	High (Recessive)
GOOD	BAD	Protected	Recessive	High Impedance (3-state)
BAD	BAD	Protected	High Impedance	High Impedance (3-state)

APPLICATION NOTE: Once an undervoltage condition is cleared and the supplies have returned to valid levels the device will typically need 300 µs to transition to normal operation.

UNPOWERED DEVICE

The device is designed to be an "ideal passive" or "no load" to the CAN bus if it is unpowered. The bus pins (CANH, CANL) have extremely low leakage currents when the device is unpowered so they will not load down the bus. This is critical if some nodes of the network will be unpowered while the rest of the of network remains in operation. Logic pins will also have extremely low leakage currents when the device is unpowered so they will not load down other circuits which may remain powered.

FLOATING PINS

The device has internal pull ups and pull downs on critical pins to place the device into known states if the pins float. The TXD pin is pulled up to V_{CC} to force a recessive input level if the pin floats. The S pin is pulled down to GND to force the device into normal mode if the pin floats.

CAN BUS SHORT CIRCUIT CURRENT LIMITING

The device has several protection features that limit the short circuit current when a CAN bus line is shorted. These include CAN driver current limiting (dominant and recessive). The device has TXD dominant state time out which prevents permanently having the higher short circuit current of dominant state in case of a system fault. During CAN communication the bus switches between dominant and recessive states, thus the short circuit current may be viewed either as the current during each bus state or as a DC average current. For system current and power considerations in the termination resistors and common mode choke ratings the average short circuit current should be used. The percentage dominant is limited by the TXD dominant time out which prevents permanently driving dominant and CAN protocol has forced state changes and recessive bits such as bit stuffing, control fields, and interframe space. These ensure there is a minimum recessive amount of time on the bus even if the data field contains a high percentage of dominant bits.

APPLICATION NOTE: The short circuit current of the bus depends on the ratio of recessive to dominant bits and their respective short circuit currents. The average short circuit current may be calculated with the following formula:

 $I_{OS(AVG)} = \%Transmit \times [(\%REC_Bits \times I_{OS(SS)_REC}) + (\%DOM_Bits \times I_{OS(SS)_DOM})] + [\%Receive \times I_{OS(SS)_REC}]$ Where $I_{OS(AVG)}$ is the average short circuit current, %Transmit is the percentage the node is transmitting CAN messages, %Receive is the percentage the node is receiving CAN messages, %Receive is the percentage of recessive bits in the transmitted CAN messages, $\%DOM_Bits$ is the percentage of dominant bits in the transmitted CAN messages, $I_{OS(SS)_Rec}$ is the recessive steady state short circuit current and $I_{OS(SS)_DOM}$ is the dominant steady state short circuit current.

APPLICATION NOTE: The short circuit current and possible fault cases of the network should be taken into consideration when sizing the power ratings of the termination resistance and other network components

www.ti.com

ABSOLUTE MAXIMUM RATINGS(1)(2)

1.0				RATING	UNIT
1.1	V _{CC}	Supply voltage range	•	-0.3 to 6	V
1.2	V_{RXD}	RXD Output supply voltage range	(SN65HVD256 only)	-0.3 to 6 and $V_{RXD} \le V_{CC} + 0.3$	٧
1.3	V _{BUS}	CAN Bus I/O voltage range (CANH, CA	ANL)	-27 to 40	V
1.4	V _{Logic_Input}	Logic input pin voltage range (TXD, S)		-0.3 to 6	V
1.5	V _{Logic_Output}	Logic output pin voltage range (RXD)	SN65HVD255	-0.3 to 6	V
1.6	V _{Logic_Output}	Logic output pin voltage range (RXD)	SN65HVD256	-0.3 to 6 and $V_I \le V_{RXD} + 0.3$	V
1.7	I _{O(RXD)}	RXD (Receiver) output current	•	12	mA
1.8	T _J	Operating virtual junction temperature	range	-40 to 150	°C
1.9	T _A	Ambient temperature range		-40 to 125	°C
1.10	T _{LEAD}	Lead temperature (soldering, 10sec)		260	°C

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) All voltage values, except differential I/O bus voltages, are with respect to ground terminal.

TRANSIENT AND ELECTROSTATIC DISCHARGE PROTECTION

2.0		TES	T CONDITIONS	RATING	UNIT
0.4	Harris Bada Madal	All pins ⁽¹⁾		±2.5	137
2.1	Human-Body Model	CAN bus pins (CAN	±12	kV	
2.2	Charged-Device Model	All pins ⁽³⁾		±750	V
2.3	Machine Model	All pins ⁽⁴⁾		±250	V
2.4	IEC 61400-4-2 according to GIFT-ICT CAN EMC test spec ⁽⁵⁾	CAN bus pins (CANH, CANL) to GND		±8	kV
2.5			Pulse 1	-100	V
2.6	ISO7637 Transients according to GIFT - ICT CAN	CAN bus pins	Pulse 2	+75	V
2.7	EMC test spec ⁽⁶⁾	(CANH, CANL)	Pulse 3a	-150	V
2.8			Pulse 3b	+100	V

- (1) Tested in accordance to JEDEC Standard 22, Test Method A114.
- (2) Test method based upon JEDEC Standard 22 Test Method A114, CAN bus pins stressed with respect to GND.
- Tested in accordance to JEDEC Standard 22, Test Method C101.
- (4) Tested in accordance to JEDEC Standard 22, Test Method A115.
- (5) IEC 61000-4-2 is a system level ESD test. Results given here are specific to the GIFT-ICT CAN EMC Test specification conditions. Different system level configurations may lead to different results.
- (6) ISO7637 is a system level transient test. Results given here are specific to the GIFT-ICT CAN EMC Test specification conditions. Different system level configurations may lead to different results.

RECOMMENDED OPERATING CONDITIONS

3.0			MIN	MAX	UNIT
3.1	V _{CC}	Supply voltage	4.5	5.5	V
3.2	V_{RXD}	RXD supply (SN65HVD256 only)	2.8	5.5	V
3.3	V _I or V _{IC}	CAN bus terminal voltage (separately or common mode)	-2	7	V
3.4	V_{ID}	CAN bus differential voltage	-6	6	V
3.5	V _{IH}	Logic HIGH level input (TXD, S)	2	5.5	V
3.6	V _{IL}	Logic LOW level input (TXD, S)	0	0.8	V
3.7	I _{OH(DRVR)}	CAN BUS Driver High level output current	-70		mA
3.8	I _{OL(DRVR)}	CAN BUS Driver Low level output current		70	mA
3.9	I _{OH(RXD)}	RXD pin HIGH level output current	-2		mA
3.10	I _{OL(RXD)}	RXD pin LOW level output current		2	mA
3.11	T _A	Operational free-air temperature (see Thermal Characteristics table)	-40	125	°C

ELECTRICAL CHARACTERISTICS

Over recommended operating conditions, $T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted). SN65HVD256 device $V_{RXD} = V_{CC}$.

OVEI		PARAMETER		125°C (unless otherwise noted). SN TEST CONDITIONS / COMMENT	MIN	TYP ⁽¹⁾	MAX	
4.0	SIIDDI V CH	ARACTERISTICS	1	TEST CONDITIONS / COMMENT	IVIIIV	IIF.,	IVIAA	UNII
4.1	SUPPLY CH	ARACTERISTICS	Normal Mode (Driving Dominant)	See Figure 4, TXD = 0 V, R_L = 50- Ω , C_L = open, R_{CM} = open, S = 0V		60	85	
4.2			Normal Mode (Driving Dominant – bus fault)	See Figure 4, TXD = 0 V, S = 0V, CANH = -12V, RL = open, C _L = open, R _{CM} = open		130	180	
4.3	I _{cc}	5-V Supply current	Normal Mode (Driving Dominant)	See Figure 4, TXD = 0 V, R _L = open (no load), C _L = open, R _{CM} = open, S = 0V		10	20	mA
4.4			Normal Mode (Recessive)	See Figure 4, TXD = V_{CC} , R_L = 50- Ω , C_L = open, R_{CM} = open, S = 0V		10	20	
4.5			Silent Mode	See Figure 4, TXD = V_{CC} , R_L = 50- Ω , C_L = open, R_{CM} = open, $S = V_{CC}$		2.5	5	
4.6	I _{RXD}	RXD Supply current (SN65HVD256 only)	All modes	RXD Floating, TXD = 0V			500	μA
4.7	UV _{VCC}	Undervoltage detect protected mode	ion on V _{CC} for		3.5		4.45	V
4.8	V _{HYS(UVVCC)}	Hysteresis voltage of	on UV _{VCC}			200		mV
4.9	UV _{RXD}	Undervoltage detect protected mode (SN			1.3		2.75	V
4.10	V _{HYS(UVRXD)}	Hysteresis voltage on UV _{RXD} (SN65HVD256 only)				80		mV
5.0	S PIN (MOD	E SELECT INPUT)						
5.1	V _{IH}	HIGH-level input vol	tage		2			V
5.2	V _{IL}	LOW-level input volt	age				0.8	V
5.3	I _{IH}	HIGH-level input lea	kage current	S = V _{CC} = 5.5 V	7		100	μA
5.4	I _{IL}	Low-level input leak	age current	S = 0 V, V _{CC} = 5.5 V	-1	0	1	μA
5.5	I _{LKG(OFF)}	Unpowered leakage	current	S = 5.5 V, V _{CC} = 0 V, V _{RXD} = 0 V	7	35	100	μA
6.0	1 /	N TRANSMIT DATA	INPUT)					
6.1	V _{IH}	HIGH level input vol	tage		2			V
6.2	V _{IL}	LOW level input volt	age				0.8	V
6.3	I _{IH}	HIGH level input lea		TXD = V _{CC} = 5.5 V	-2.5	0	1	μΑ
6.4	I _{IL}	Low level input leak		TXD = 0 V, V _{CC} = 5.5 V	-100	-25	-7	μA
6.5	I _{LKG(OFF)}	Unpowered leakage	current	$TXD = 5.5 \text{ V}, V_{CC} = 0 \text{ V}, V_{RXD} = 0 \text{ V}$	-1	0	1	μA
6.6	C _I	Input Capacitance		100		3.5		pF
7.0		AN RECEIVE DATA O	OUTPUT)					
7.1	V _{OH}	HIGH level output vo		See Figure 5, $I_O = -2mA$. For devices with V_{RXD} supply $V_{OH} = 0.8$ × V_{RXD}	0.8×V _{CC}			V
7.2	V _{OL}	LOW level output vo	oltage	See Figure 5, I _O = 2mA.			0.4	V
7.3	I _{LKG(OFF)}	Unpowered leakage	current	RXD = 5.5 V, V _{CC} = 0 V, V _{RXD} = 0 V	-1	0	1	μΑ
7.4	t _R	Output signal rise tir	ne	See Receiver Rise Time				
7.5	t _F	Output signal fall tim	ne	See Receiver Fall Time				

⁽¹⁾ All typical values are at 25°C and supply voltages of V_{CC} = 5 V and V_{RXD} = 5 V, R_L = 60 Ω .

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating conditions, $T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted). SN65HVD256 device $V_{RXD} = V_{CC}$.

over i	recommende			125°C (unless otherwise noted). St				
		PARAMETER	1	TEST CONDITIONS / COMMENT	MIN	TYP ⁽¹⁾	MAX	UNIT
8.0	DEVICE SW	ITCHING CHARACTI	ERISTICS	1				
8.1	t _{PROP(LOOP1)}	Total loop delay, dri receiver output (RXI dominant		See Figure 7, S = 0 V, $R_L = 60\Omega$,			150	ns
8.2	t _{PROP(LOOP2)}	Total loop delay, dri receiver output (RXI recessive	,	$C_L = 100pF, C_{L_RXD} = 15pF$			150	113
8.3	I _{MODE}	Mode change time, or from Silent to Nor	from Normal to Silent mal	See Figure 6			20	μS
9.0	DRIVER ELE	CTRICAL CHARAC	TERISTICS					
9.1	<u></u>	Bus output voltage	CANH	See Figure 2 and Figure 4, TXD = 0	2.75		4.5	.,
9.2	$V_{O(D)}$	(dominant	CANL	$V, S = 0 V, R_L = 60\Omega, C_L = open,$ $R_{CM} = open$	0.5		2.25	V
9.3	V _{O(R)}	Bus output voltage (recessive)	See Figure 2 and Figure 4, TXD = V_{CC} , $V_{RXD} = V_{CC}$, $S = V_{CC}$ or 0 V $^{(2)}$, R_L = open (no load), R_{CM} = open	2	0.5×V _{CC}	3	V
9.4	V	OD(D) Differential output voltage (dominant)		See Figure 2 and Figure 4, TXD = 0 V, S = 0 V, $45\Omega \le R_L \le 65\Omega$, $C_L = 0$ open, $R_{CM} = 330\Omega$, $-2 V \le V_{CM} \le 7$ V, $4.75 V \le V_{CC} \le 5.25 V$	1.5		3	V
9.5	V _{OD(D)}			See Figure 2 and Figure 4, TXD = 0 V, S = 0 V, $45\Omega \le R_L \le 65\Omega$, $C_L = 0$ open, $R_{CM} = 330\Omega$, $-2 V \le V_{CM} \le 7$ V, $4.5V \le V_{CC} \le 5.5 V$	1.25		3.2	V
9.6				See Figure 2 and Figure 4, TXD = V_{CC} , S = 0 V, R_L = 60 Ω , C_L = open, R_{CM} = open	-0.12		0.012	
9.7	V _{OD(R)}	Differential output vo	oltage (recessive)	See Figure 2 and Figure 4, TXD = V_{CC} , S = 0 V, R_L = open (no load), C_L = open, R_{CM} = open, $-40^{\circ}C \le T_A$ $\le 85^{\circ}C$	-0.100		0.050	V
9.8	V _{SYM}	Output symmetry (d recessive) (V _{CC} - V _{O(CANH)} - V		See Figure 2 and Figure 4, S at 0 V, $R_L = 60\Omega$, $C_L = open$, $R_{CM} = open$	-0.4		0.4	V
9.9		Short-circuit steady-	See Figure 2 and Figure 9, V _{CANF} ort-circuit steady-state output current,		-160			m ^
9.10	OS(SS)_DOM			See Figure 2 and Figure 9, V _{CANL} = 32 V, CANH = open, TXD = 0V			160	mA
9.11	I _{OS(SS)_REC}	Short-circuit steady-state output current, Recessive		See Figure 2 and Figure 9, $-20 \text{ V} \le V_{\text{BUS}} \le 32 \text{ V}$, Where $V_{\text{BUS}} = \text{CANH} = \text{CANL}$, TXD = V_{CC} , Normal and Silent Modes	-8		8	mA
9.12	Co	Ouatput capacitance	e	See receiver input capacitance				
10.0	DRIVER SW	ITCHING CHARACTI	ERISTICS					
10.1	t _{pHR}	Propagation delay time,HIGH TXD to Driver Recessive				50	70	
10.2	t _{pLD}	Propagation delay ti Driver Dominant	me,LOW TXD to	See Figure 4, S = 0 V, $R_L = 60\Omega$,		40	70	ne
10.3	t _{sk(p)}	Pulse skew (t _{pHR} - 1	_{pLD})	$C_L = 100pF, R_{CM} = open$		10		ns
10.4	t _R	Differential output si				10	30	1
10.5	t _F	Differential output si	anal fall time	1		17	30	1

⁽²⁾ For the bus output voltage (recessive) will be the same if the device is in normal mode with S pin LOW or if the device is in silent mode with the S pin is HIGH.

TEXAS INSTRUMENTS

ELECTRICAL CHARACTERISTICS (continued)

Over recommended operating conditions, $T_A = -40^{\circ}\text{C}$ to 125°C (unless otherwise noted). SN65HVD256 device $V_{RXD} = V_{CC}$.

		PARAMETER	TEST CONDITIONS / COMMENT	MIN	TYP ⁽¹⁾	MAX	UNIT
10.6	t _{R(10k)}	Differential output signal rise time, $R_L = 10k\Omega$	See Figure 4, $S = 0 \text{ V}$, $R_1 = 10\text{k}\Omega$,			35	
10.7	t _{F(10k)}	Differential output signal fall time, $R_L = 10k\Omega$	_{CL} = 10pF, R _{CM} = open			100	ns
10.8	t _{TXD_DTO}	Dominant time out ⁽³⁾	See Figure 8, $R_L = 60\Omega$, $C_L = open$	1175		3700	μs
11.0	RECEIVER	ELECTRICAL CHARACTERISTICS					
11.1	V _{IT+}	Positive-going input threshold voltage, normal mode	See Figure 5 and Table 3.			900	mV
11.2	V _{IT}	Negative-going input threshold voltage, normal mode		500			mV
11.3	V _{HYS}	Hysteresis voltage (V _{IT+} - V _{IT-})			125		mV
11.4	I _{IOFF(LKG)}	Power-off (unpowered) bus input leakage current	$ \begin{aligned} \text{CANH} &= \text{CANL} = 5 \text{ V}, \text{ V}_{\text{CC}} = 0 \text{ V}, \\ \text{V}_{\text{RXD}} &= 0 \text{ V} \end{aligned} $			5.5	μΑ
11.5	C _I	Input capacitance to ground (CANH or CANL)	$TXD = V_{CC}, V_{RXD} = V_{CC}, V_{I} = 0.4 sin$ (4E6 π t) + 2.5 V		25		pF
11.6	C _{ID}	Differential input capacitance	$TXD = V_{CC}, V_{RXD} = V_{CC}, VI = 0.4 sin$ (4E6 π t)		10		pF
11.7	R _{ID}	Differential input resistance	TYP V V 5V C 6V	3		80	kΩ
11.8	R _{IN}	Input resistance (CANH or CANL)	$TXD = V_{CC} = V_{RXD} = 5 \; V, \; S = 0 \; V$	15		40	kΩ
11.9	R _{IN(M)}	Input resistance matching: [1 – (R _{IN(CANH)}) / R _{IN(CANL)})] × 100%	$V_{(CANH)} = V_{(CANL)}, -40^{\circ}C \le T_A \le 85^{\circ}C$	-3%		3%	
12.0	RECEIVER	SWITCHING CHARACTERISTICS					
12.1	t _{PRH}	Propagation delay time, recessive input to high output			70	90	ns
12.2	t _{PDL}	Propagation delay time, dominant input to low output	See Figure 5, C _{L_RXD} = 15pF		70	90	ns
12.3	t _R	Output signal rise time					ns
12.4	t _F	Output signal fall time		4	20	ns	

⁽³⁾ The TXD dominant time out (t_{TXD_DTO}) disables the driver of the transceiver once the TXD has been dominant longer than t_{TXD_DTO}, which releases the bus lines to recessive, preventing a local failure from locking the bus dominant. The driver may only transmit dominant again after TXD has been returned HIGH (recessive). While this protects the bus from local faults, locking the bus dominant, it limits the minimum data rate possible. The CAN protocol allows a maximum of eleven successive dominant bits (on TXD) for the worst case, where five successive dominant bits are followed immediately by an error frame. This, along with the t_{TXD_DTO} minimum, limits the minimum bit rate. The minimum bit rate may be calculated by: Minimum Bit Rate = 11/t_{TXD_DTO} = 11 bits / 1175 µs = 9.4 kbps.

www.ti.com

THERMAL CHARACTERISTICS

13.0		THERMAL METRIC ⁽¹⁾	TEST CONDITIONS	TYP	UNIT
13.1	θ_{JA}	Junction-to-air thermal resistance	High-K thermal resistance ⁽²⁾	107.5	
13.2	θ_{JB}	Junction-to-board thermal resistance ⁽³⁾		48.9	
13.3	$\theta_{\text{JC(TOP)}}$	Junction-to-case (top) thermal resistance (4)		56.7	°C/W
13.4	Ψ_{JT}	Junction-to-top characterization parameter ⁽⁵⁾		12.1	
13.5	Ψ_{JB}	Junction-to-board characterization parameter ⁽⁶⁾		48.2	
13.6		Average power discipation	V_{CC} = 5 V, V_{RXD} = 5 V, T_J = 27°C, R_L = 60 Ω , S at 0 V, Input to TXD at 250 kHz, 25% duty cycle square wave, C_{L_RXD} = 15 pF. Typical CAN operating conditions at 500kbps with 25% transmission (dominant) rate.		m)\//
13.7	P _D	Average power dissipation	V_{CC} = 5.5 V, V_{RXD} = 5.5 V, T_J = 150°C, R_L = 50Ω, S at 0 V, Input to TXD at 500 kHz, 50% duty cycle square wave, C_{L_RXD} = 15 pF. Typical high load CAN operating conditions at 1mbps with 50% transmission (dominant) rate and loaded network.		mW
13.8		Thermal shutdown temperature		170	°C
13.9		Thermal shutdown hysteresis		5	°C

- For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.
- The junction-to-ambient thermal resistance under natural convection is obtained in a simulation on a JEDEC-standard, High-K board, as specified in JESD51-7, in an environment described in JESD51-2a.
- he junction-to-board thermal resistance is obtained by simulating in an environment with a ring cold plate fixture to control the PCB temperature, as described in JESD51-8.
- (4) The junction-to-case (top) thermal resistance is obtained by simulating a cold plate test on the package top. No specific JEDEC-standard test exists, but a close description can be found in the ANSI SEMI standard G30-88.
- The junction-to-top characterization parameter, Ψ_{JT} , estimates the junction temperature of a device in a real system and is extracted from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7). The junction-to-board characterization parameter, Ψ_{JB} estimates the junction temperature of a device in a real system and is extracted
- from the simulation data for obtaining θ_{JA} , using a procedure described in JESD51-2a (sections 6 and 7).

PARAMETER MEASUREMENT INFORMATION

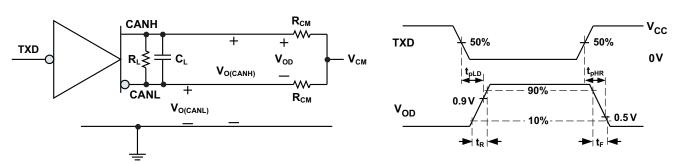


Figure 4. Driver Test Circuit and Measurement

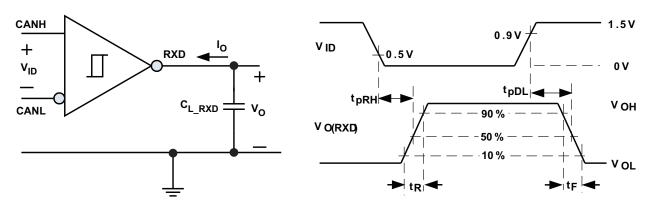


Figure 5. Receiver Test Circuit and Measurement

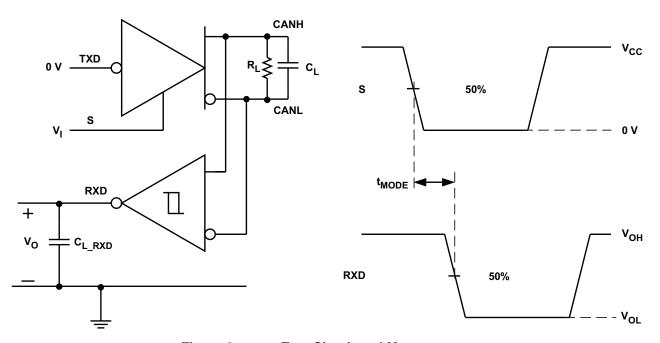


Figure 6. t_{MODE} Test Circuit and Measurement

PARAMETER MEASUREMENT INFORMATION (continued)

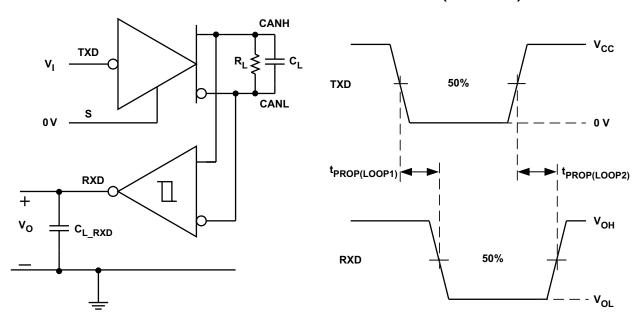


Figure 7. $T_{PROP(LOOP)}$ Test Circuit and Measurement

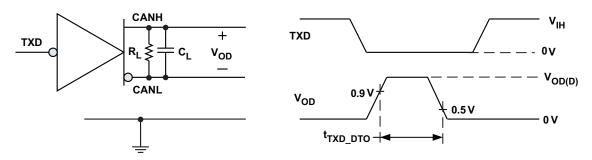


Figure 8. TXD Dominant Time Out Test Circuit and Measurement

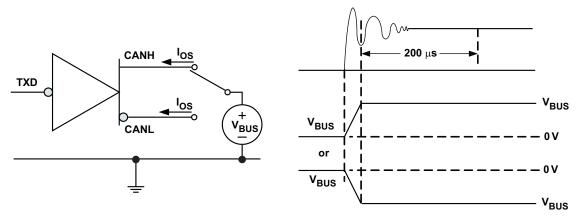


Figure 9. Driver Short-Circuit Current Test and Measurement

APPLICATION INFORMATION

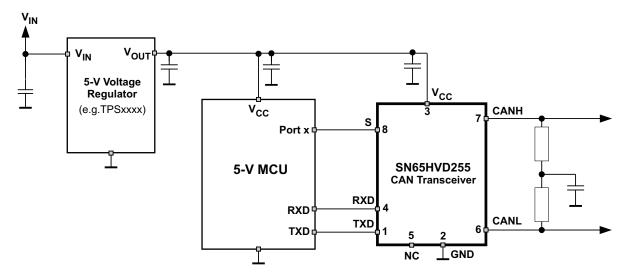


Figure 10. Typical 5V Application

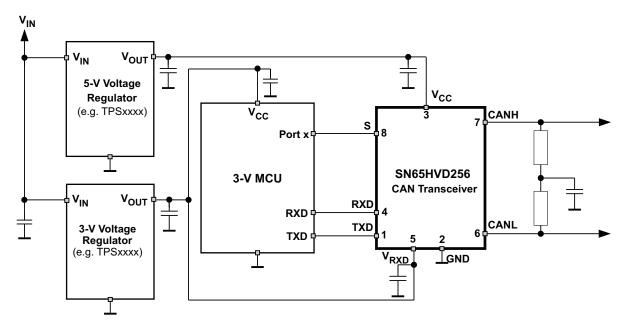


Figure 11. Typical 3.3V Application

INSTRUMENTS

CAN TERMINATION

ISTRUMENTS

CAN is designed for use with twisted pair cabling of 120Ω characteristic impedance in a bus topology. The bus should be properly terminated at both ends with 120Ω resistors that match this impedance to avoid signal reflections. If nodes may be removed from the bus care must be used where to place the termination such that it is not removed from the bus.

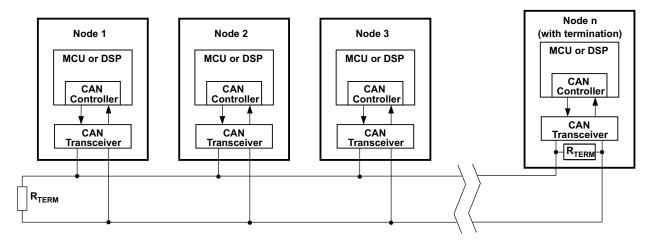


Figure 12. Typical CAN Bus

Termination may be a single 120Ω resistor at the end of the bus either on the cable or in a "terminating node". If filtering and stabilization of the common mode voltage of the bus is desired then "split termination" may used, see Figure 13. Utilizing split termination in a CAN network improves electromagnetic emissions behavior of the network by eliminating fluctuations in the bus common mode voltage levels at the start and end of message transmissions.

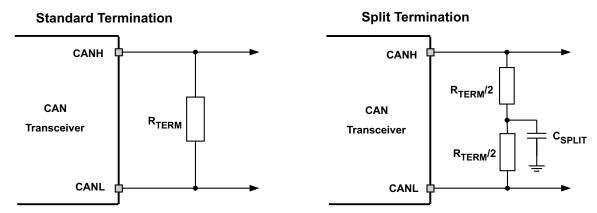


Figure 13. CAN Bus Termination Concepts

19-Dec-2011

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN65HVD255D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN65HVD255DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN65HVD256D	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
SN65HVD256DR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

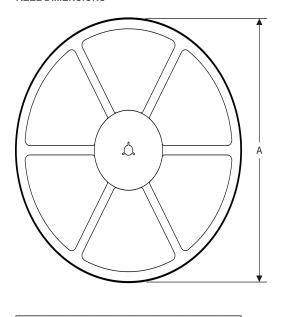
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

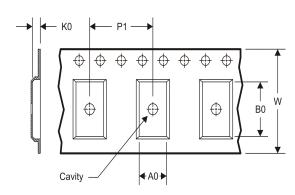
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

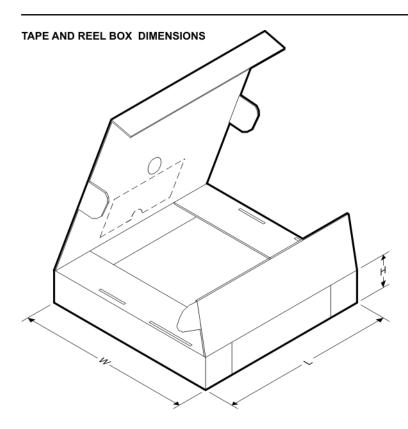
PACKAGE MATERIALS INFORMATION


www.ti.com 7-Jan-2012

TAPE AND REEL INFORMATION

REEL DIMENSIONS

TAPE DIMENSIONS

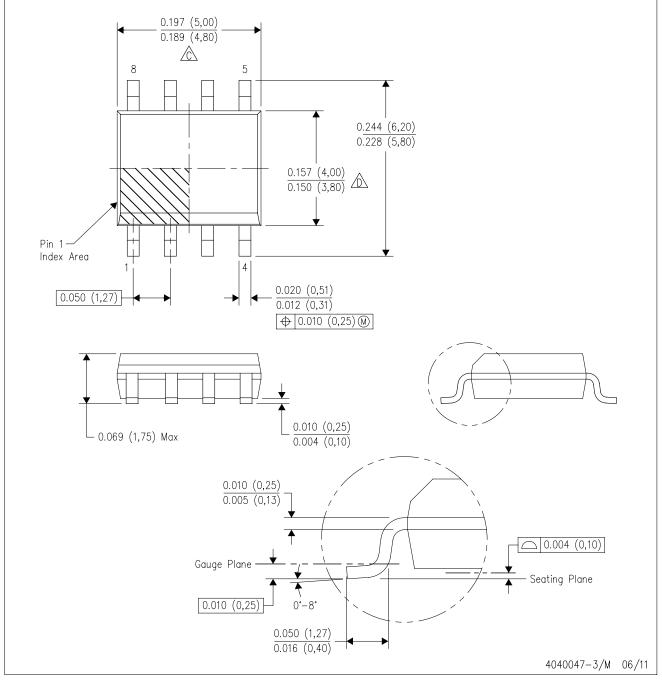

A0	Dimension designed to accommodate the component width
В0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN65HVD255DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
SN65HVD256DR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1

www.ti.com 7-Jan-2012

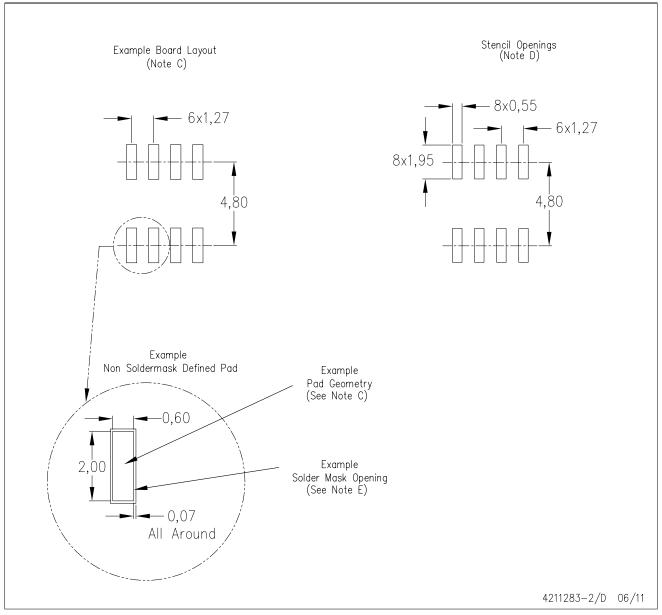


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
SN65HVD255DR	SOIC	D	8	2500	340.5	338.1	20.6
SN65HVD256DR	SOIC	D	8	2500	340.5	338.1	20.6

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

D (R-PDSO-G8)

PLASTIC SMALL OUTLINE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Applications

Automotive and Transportation www.ti.com/automotive

e2e.ti.com

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

		•	
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Products

Audio

Wireless Connectivity www.ti.com/wirelessconnectivity

www.ti.com/audio

TI E2E Community Home Page

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2012, Texas Instruments Incorporated