-1.5 Amp Negative Step-Down **Integrated Switching Regulator**

SLTS061A

(Revised 6/30/2000)

Standard Application

D1 🛣 C2

PT79SR1

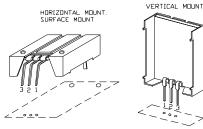
C1 = Optional ceramic (1 μ F) $C2 = Optional ceramic (1-5\mu F)$ D1 = Zener diode required to clamp turn-on overshoot (See Application Note)

-Vout

СОМ

C1

- High Efficiency > 85%
- Self-Contained Inductor
- Short Circuit Protection
- Over-Temperature Protection


The PT79SR100 is a line of Negative Input/Negative Output 3-terminal Integrated Switching

Regulators (ISRs). These ISRs have a maximum output current of -1.5 Amps and an output voltage that is laser trimmed to most industry standard voltages. They have excellent line and load regulation, and are ideal for applications, such as RS232 and Ethernet communications, ECL logic, and op-amp circuitry.

Pin-Out Information

Pin	Function
1	GND
2	- $ m V_{in}$
 3	$-V_{out}$

COM

Pkg Style 500

Ordering Information

PT79SR1

Output Voltage

05 = -5.0 Volts 52 = -5.2 Volts

06 = -6.0 Volts **08** = -8.0 Volts

09 = -9.0 Volts

12 = -12.0 Volts 15 = -15.0 Volts

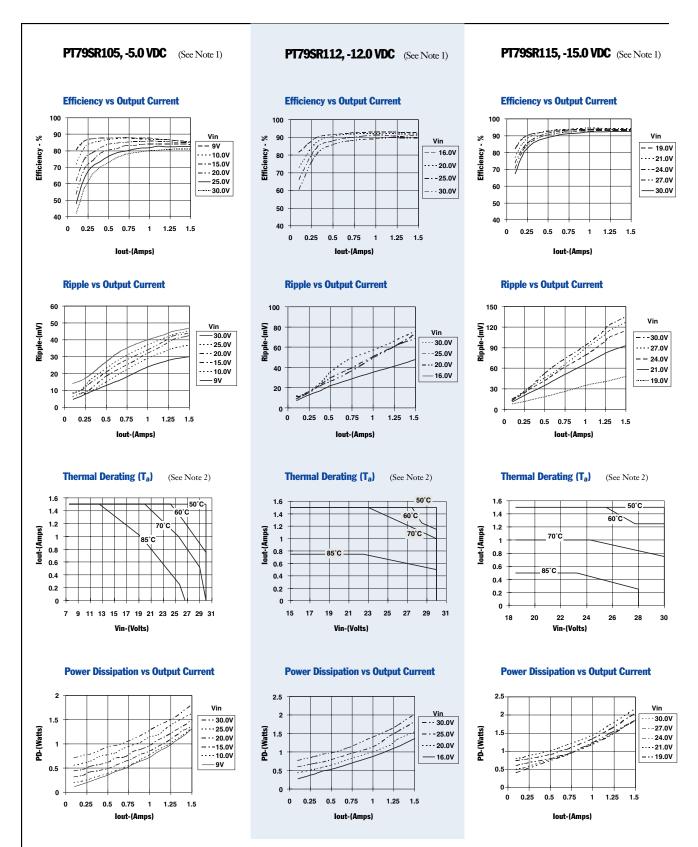
Package Suffix

V = Vertical Mount

S = Surface Mount

H = Horizontal Mount

Specifications


Characteristics			PT79SR	PT79SR100 SERIES		
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	I_{o}	Over V _{in} range	-0.1*	_	-1.5	A
Short Circuit Current	I_{sc}	$V_{\rm in}=V_{\rm o}-4V$	_	-3.5	_	Apk
Input Voltage Range	out Voltage Range V_{in} I_o =-0.1 to -1.5 A -0.1 \geq I_o \geq -1.5 A		-9 -19	_	-30 -30	V V
Output Voltage Tolerance ΔV_o Over Vii T_{σ^2} =20°		Over Vin range, I _o =-1.5 A T _a =-20°C to shutdown	_	±1.0	±3.0	$%V_{\circ}$
Line Regulation	Reg _{line}	Over V _{in} range	_	±1.0	±2.0	$%V_{o}$
Load Regulation	Regload	$-0.1 \le I_0 \le -1.5 \text{ A}$	_	±0.5	±1.0	$%V_{o}$
V _o Ripple/Noise			_	35	_	$\mathrm{mV}_{\mathrm{pp}}$
Transient Response t _{tr}		50% load change V _o =overshoot/undershoot	=	100 30	_	μSec %V _o
Efficiency	η	V _{in} =-10V, I _o =-1.0A, V _o =-5V	_	85	_	%
Switching Frequency f _o		Over V _{in} and I _o ranges	0.95	1.0	1.05	MHz
Absolute Maximum T _a Operating Temperature Range			-40	_	+85	°C
Recommended Operating Temperature Range	T_a	Free Air Convection, (40-60LFM) Over V _{in} and I _o ranges	-40	_	+60**	°C
Thermal Resistance	θ_{ja}	Free Air Convection, (40-60LFM)	_	45	_	°C/V
Temperature Coefficient	T_{c}	Over V _{in} and I _o ranges	_	±0.5	±1.5	mV/°
Storage Temperature	T_s	_	-40		+125	°C
Mechanical Shock	_	Per Mil-STD-883D, Method 2002.3	_	500	_	G's
Mechanical Vibration —		Per Mil-STD-883D, Method 2007.2, 20-2000 Hz, soldered in a PC board	_	5	_	G's
Weight		_	_	7.0	_	Gran

^{*} ISR will operate down to no load with reduced specifications.

^{**} See Thermal Derating chart.

-1.5 Amp Negative Step-Down Integrated Switching Regulator

Note 1: All data listed in the above graphs, except for derating data, has been developed from actual products tested at 25°C. This data is considered typical data for the ISR. Note 2: Thermal derating graphs are developed in free air convection cooling of 40-60 LFM soldered in a printed circuit board. (See Thermal Application Notes.)

18-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
PT79SR105H	ACTIVE	SIP MOD ULE	EFA	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR105S	ACTIVE	SIP MOD ULE	EFC	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR105T	ACTIVE	SIP MOD ULE	EFT	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR105V	ACTIVE	SIP MOD ULE	EFD	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR106S	ACTIVE	SIP MOD ULE	EFC	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR108H	ACTIVE	SIP MOD ULE	EFA	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR108S	ACTIVE	SIP MOD ULE	EFC	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR108V	ACTIVE	SIP MOD ULE	EFD	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR109H	ACTIVE	SIP MOD ULE	EFA	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR109S	ACTIVE	SIP MOD ULE	EFC	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR112H	ACTIVE	SIP MOD ULE	EFA	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR112S	ACTIVE	SIP MOD ULE	EFC	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR112T	ACTIVE	SIP MOD ULE	EFT	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR112V	ACTIVE	SIP MOD ULE	EFD	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR115H	ACTIVE	SIP MOD ULE	EFA	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR115S	ACTIVE	SIP MOD ULE	EFC	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR115T	ACTIVE	SIP MOD ULE	EFT	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR115V	ACTIVE	SIP MOD ULE	EFD	3	25	Pb-Free (RoHS)	Call TI	N / A for Pkg Type
PT79SR152H	ACTIVE	SIP MOD ULE	EFA	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR152S	ACTIVE	SIP MOD ULE	EFC	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR152ST	ACTIVE	SIP MOD ULE	EFC	3	200	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM
PT79SR152V	ACTIVE	SIP MOD ULE	EFD	3	25	Pb-Free (RoHS)	Call TI	Level-1-215C-UNLIM

(1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

PACKAGE OPTION ADDENDUM

18-Jul-2006

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications			
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio		
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive		
DSP	dsp.ti.com	Broadband	www.ti.com/broadband		
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol		
Logic	logic.ti.com	Military	www.ti.com/military		
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork		
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security		
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony		
		Video & Imaging	www.ti.com/video		
		Wireless	www.ti.com/wireless		

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated