
PT6310

Series

2 AMP ADJUSTABLE POSITIVE STEP-DOWN INTEGRATED SWITCHING REGULATOR

SLTS076 (Revised 8/17/99)

- 87% Efficiency
- Adjustable Output Voltage
- Internal Short Circuit Protection
- Over-Temperature Protection
- On/Off Control (Ground Off)
- Small SIP Footprint
- Wide Input Range

Pin-Out Information

Inhibit

(30V max)

 $\underline{V_{in}}$ V_{in} **GND**

GND

GND

GND

 V_{out}

Vout Adj

Function

Pin

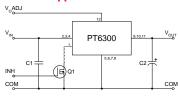
6

7

8

9

10


11

12

The PT6310 series is a High-Performance 2 Amp, 12-Pin SIP (Single In-line Package) Integrated Switching Regulator (ISR) designed to meet the on-board power conversion needs of battery powered or other equipment requiring high efficiency and small size. This high performance ISR offers a unique combination of features combining 87% typical efficiency with open-collector on/off control and adjustable output voltage.

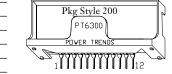
Quiescent current in the shutdown mode is typically less than 100μA.

Standard Application

C1 = Optional 1µF ceramic C2 = Required 100µF electrolytic

 $Q_1 = NFET$

Ordering Information


PT6310□ = +14.6 Volts **PT6311** = +15.5 Volts **PT6312**□ = +15.0 Volts

PT6313□ = +8.0 Volts

PT Series Suffix (PT1234X)

Case/Pin	
Configuratio	n
	_

Comiguration		
Vertical Through-Hole	N	
Horizontal Through-Hole	Α	
Harizantal Surface Mount		

Specifications

Characteristics			PT6310 Series			
(T _a = 25°C unless noted)	Symbols	Conditions	Min	Тур	Max	Units
Output Current	I_{o}	Over V _{in} range	0.1*	_	2.0	A
Short Circuit Current	I_{sc}	$V_{\rm in} = V_{\rm o} + 5V$	_	5.0	_	Apk
Input Voltage Range	V_{in}	$0.1 \le I_o \le 2.0 \text{ A}$	$V_o + 4$	_	38**	V
Output Voltage Tolerance	$\Delta { m V_o}$	Over V_{in} Range, $I_o = 2.0$ A $T_a = 0$ °C to +60°C	_	±1.0	±2.0	$%V_{o}$
Line Regulation	Regline	Over V _{in} range	_	±0.25	±0.5	$%V_{o}$
Load Regulation	Reg _{load}	$0.1 \le I_o \le 2.0 \text{ A}$	_	±0.25	±0.5	$%V_{o}$
Vo Ripple/Noise	V_n	$V_{in} = V_{in} \min$, $I_o = 2.0A$	_	±2	_	$%V_{o}$
Transient Response with $C_0 = 100 \mu F$	$\overset{ extsf{t}_{ ext{tr}}}{ extsf{V}_{ ext{os}}}$	50% load change $ m V_o$ over/undershoot	_	100 5.0	<u>200</u>	μSec %V _o
Efficiency	η	V_{in} =24V, I_o = 2.0 A	_	87	_	%
Switching Frequency	$f_{ m o}$	Over V_{in} and I_o ranges PT6312 only	600 500	700 550	800 600	kHz kHz
Shutdown Current	I_{sc}	$V_{\rm in} = 15 V$	_	100	_	μA
Quiescent Current	I_{nl}	$I_o = 0A$, $V_{in} = 10V$	_	10	_	mA
Output Voltage Adjustment Range	V_{o}	$egin{aligned} { m Below}{ m V_o} \ { m Above}{ m V_o} \end{aligned}$	See Appl			
Absolute Maximum Operating Temperature Range	T_a		-40	_	+85	°C
Recommendated Operating Temperature Range	T_a	Free Air Convection, (40-60LFM) At $V_{\rm in}$ = 18V, $I_{\rm o}$ = 2.0A	-40	_	+70	°C
Thermal Resistance	θ_{ja}	Free Air Convection (40-60LFM)	_	30	_	°C/W
Storage Temperature	T_s	_	-40	_	+125	°C
Mechanical Shock		Per Mil-STD-883D, Method 2002.3, 1 msec, Half Sine, mounted to a fixture	_	500	_	G's
Mechanical Vibration		Per Mil-STD-883D, Method 2007.2, 20-2000 Hz,Soldered in a PC board	_	10	_	G's
Weight	_	_	_	6.5	_	grams

^{*} ISR will operate to no load with reduced specifications.

Note: The PT6310 requires a 100µF electrolytic or tantalum output capacitor for proper operation in all applications.

 $^{^{\}star\star}$ Input voltage cannot exceed 30V when the inhibit function is used.

IMPORTANT NOTICE

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgment, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Customers are responsible for their applications using TI components.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 2000, Texas Instruments Incorporated