

OPT3101 System Estimator

The OPT3101 device is a time-of-flight (ToF) based optical proximity sensor. The *OPT3101 System Estimator* is a tool for simulating the performance of the OPT3101 AFE under various conditions. This user's guide explains the features of the *OPT3101 System Estimator* tool.

	•••••••	
1	Introduction	. 2
2	Intended Audience	. 2
3	Prerequisite Reading	. 2
4	Quick Start	. 2
5	GUI Structure	. 5
6	Menu Bar	. 6
7	Specifications	. 8
8	Simple Model	10
9	Output Characteristics	11
10	Plotting	12
11	Input Controls	13
12	Status Bar	14
13	Notes	14

List of Figures

1	Installation Introduction Page	2
2	Installer License Page	3
3	Installer File Location Page	3
4	OPT3101 System Estimator New Window	4
5	Manage LEDs Page	6
6	Manage Photodiodes Page	7
7	LED Simple Model Parameters	10
8	Photodiode Simple Model Parameters	11
9	Typical "Distance vs Accuracy" Plot	12
10	Typical "Distance vs Amplitude" Plot	12
11	Tab Plot With a Single Input (Input 2 = "None")	13
12	Tab Plot With Two Inputs	13

List of Tables

1	Input Parameter Properties	14
---	----------------------------	----

Trademarks

All trademarks are the property of their respective owners.

Introduction

1 Introduction

The primary purpose of this document is to explain the features of the OPT3101 system estimator tool which assists in analyzing the performance of the OPT3101 AFE under varied conditions. The document describes the various elements of the GUI. The functionality of each control of the GUI is explained with suitable examples.

2 Intended Audience

This document is intended towards developers who want to:

- Analyze the OPT3101 performance
- Incorporate OPT3101 into their solution
- Check if OPT3101 is suitable for their application

3 Prerequisite Reading

- Texas Instruments, OPT3101 ToF-Based Long-Range Proximity and Distance Sensor AFE
- Texas Instruments, Introduction to Time-of-Flight Optical Proximity Sensor System Design

4 Quick Start

4.1 Installation

Follow these steps to install the application:

1. Start the installation by running OPT3101-System-Estimator.exe

Figure 1. Installation Introduction Page

- 2. The welcome page is displayed. Click the Next button
- 3. Read the license agreement and click the I Agree button to continue

Sector Setup					
License Agreement					
Please review the license terms before installing OPT3101-System-Estimator.					
Press Page Down to see the rest of the agreement.					
Source and Binary Code Internal Use License Agreement					
Important - Please carefully read the following license agreement, which is legally binding. After you read it, you will be asked whether you accept and agree to its terms. Do not click "I have read and agree" unless: (1) you will use the Licensed Materials for your own benefit and personally accept, agree to and intend to be bound by these terms; or (2) you are authorized to, and intend to *					
If you accept the terms of the agreement, click I Agree to continue. You must accept the agreement to install OPT3101-System-Estimator.					
Nullsoft Install System v3.0					
< Back I Agree Cancel					

Figure 2. Installer License Page

- 4. Select whether a Desktop Shortcut or a Start Menu entry is needed. Click the Next button to continue
- 5. Choose the destination folder using the *Browse* button. Click the *Install* button to proceed with the installation

SOPT3101-System-Estimator Setup	
Choose Install Location Choose the folder in which to install OPT3101-System-Estimator.	
Setup will install OPT3101-System-Estimator in the following folder. To install folder, dick Browse and select another folder. Click Install to start the installa	in a different ation.
Destination Folder truments\OPT3101-System-Estimator_1p1\Texas Instruments\ E	Prowse
Space required: 108.1MB Space available: 44.2GB Nullsoft Install System v3.0	
< Back Install	Cancel

Figure 3. Installer File Location Page

6. The installer success is displayed. Click the Finish button to complete the installation

Quick Start

4.2 Uninstallation

Follow these steps to uninstall the application:

- 1. Open the Uninstaller: "Start Menu -> Texas Instruments -> OPT3101-System-Estimator_ver -> OPT3101-System-Estimator_ver_Uninstall.exe", where ver is the version number of the application
- 2. The application can be uninstalled from Control Panel->Programs and Features as well
- 3. The welcome page is displayed. Click the Next button to continue
- 4. A confirmation is asked for uninstallation. Click on the Uninstall button to continue
- 5. Once the uninstallation finishes, click the Finish button to complete the process

4.3 Starting the Application

Follow these steps to start the application:

- 1. Open the application OPT3101-System-Estimator_*ver* from the installation folder, start menu, or desktop shortcut
- 2. The application should look like Figure 4:

ystem Specs			Mechanica	Specs		Target Specs		
AFE Model	OPT3101	•	Distance E	etween LED	and PD 20.00 (mm)	Distance	1000.00 (mm)	
						JUstance	1000.00 ((((()))	
Average Sub-Frame Count	32	•	Emitter Sp	ecs		ן ן		
			LED Mode		SFH4550 💌	Reflectivity	80.00 (%)	
Number of sub frames	32 (per sample)						
			LED Hal	Angle	3.01 (degrees)	AFE output character	istics	
Samples per second	125.00 (per second	0				Amplitude	4213 (codes)	
			Light Extra	action Efficier	ncy 80.00 (%)			
Expected Ambient Current Value (u	A) 10.0	•				Distance Accuracy	2.83 (mm)	
			LED Cur	rent Values (r	nA)			
Ambient Lux	2.00 (klux)		173.60		43.40	Distance Noise	1.82 (mm)	
			11.20		<u>^</u> 2.80 <u>*</u>	Power Consumption		
Mode of Operation	Super HDR	•				AFE Power	34.48 (mW)	
			Receiver	pecs		1		
HDR Ratio	64		Photodiod	e Model	SFH213FA 💌	Average LED Curren	t 73.78 (mA)	
LDO Mode			Photodi	de Half And	e 10.72 (degrees)	Ambient Current	0.73 (uA)	
				-				
Monoshot Enabled			Lens			Plotting Outputs		
Manashat Options			Lens			Minimum Distance	100.00 (mm)	
Honoshot Options						.		
Number of Frames Per Shot	1		Apertur	e [5.00 (mm)	Maximum Distance	1000.00 (mm)	
						Number of Data Points	50	
Power-Up delay	1150 (us)		Focal Le	ngth	5.00 (mm)	Number of Data Points	50	
Time Between Monoshots	10.00 (ms)		Distance	hetween PF	and Lens 5.00 (mm)	Plot	Distance vs Accuracy	
	10100 ()				0.00 ()	Plot	Distance vs Amplitude	
/ Tab 1 🗙 \					+			
	Minimum	Maximum	Number of steps	unit	Plot			
Input 1 Samples per second	▼ 100.00	150.00	3		Semilog Axis		AS	
Input 2 Target Distance	▼ 500.00	2000.00	3	mm	Add plat to Report			
					Muu piot to Report		трімс	NTS

Figure 4. OPT3101 System Estimator New Window

٠

5 GUI Structure

The GUI includes the following sections:

- Menu Bar
- File
 - New Project: Creates a new project
 - **Open Project:** Opens an existing project
 - Save Project: Saves the current project
 - Save Project As: Saves the current project as a different project
 - Exit: Closes the application
- Project
 - · Generate Report: Generate a report consisting of different project parameters and plots
 - Manage LEDs: View default LEDs and add custom LEDs
 - Manage Photodiodes: View default photodiodes and add custom photodiodes

– Help

- **About:** Version info of the current application
- Help: Opens the user guide in the default browser
- **System Specs:** Contains parameters pertaining to the system AFE model, sub-frames to average, number of sub-frames, samples per second, ambient lux, Monoshot Options, and so forth
- **Mechanical Specs:** Specifications related to the mechanical design the distance and the angle between LED and photodiode.
- Emitter Specs: Specifications related to the emitter the model of the LED used, half-angle of the LED, and LED current values
- **Receiver Specs** Specifications related to the receiver the model of the photodiode, half angle of the photodiode, and lens options, if the photodiode does not have a built-in lens.
- **Target Specs:** Includes the target requirements reflectivity and the target distance.
- **AFE output characteristics:** These are the output parameters of the AFE. This includes distance accuracy, distance noise, the amplitude of the received signal at the target distance, power consumption details, and the ambient current received by the AFE.
- **Plotting Tabs** Gives a sweep across one or two different input parameters in a specified range for either output power or depth resolution. Multiple tabs can be present for a particular project.
- Distance vs Accuracy and Distance vs Amplitude: These push buttons give options to plot the amplitude, accuracy, and noise response across various distances.
- Status Bar: Gives information of the project name and the information about saving and opening a file. It also provides information about parameters which should be changed if the output goes beyond the upper or lower limits.

6 Menu Bar

6.1 File

Projects are saved as SDX files and contain data pertaining to the inputs and plotting tab parameters for each configuration. Projects can be managed using the file menu options like "New Project", "Save Project", "Save Project", "Save Project As" and "Open Project". The application can be closed by choosing the "Exit" option.

6.2 Project

6.2.1 Generate Report

A report is a PDF file containing data and plots pertaining to the project. Each plotting tab can be added to a report by selecting the "Add Plot to Report" check box. The report consists of:

- 1. Project Name
- 2. Specifications (Inputs)
- 3. AFE output characteristics
- 4. Graphs for distance noise versus distance, distance accuracy versus distance, and amplitude versus distance
- 5. Selected tabs:
 - Tab parameters: One or two inputs with their minimum, maximum and number of steps and the output
 - Plots: Can be either log or semi-log according to whether the "Semilog" check box is checked

6.2.2 Manage LEDs

This option shows the illumination sources which are available with the tool. Illumination sources can be viewed, added, and modified from this dialog box.

The illumination parameters include the radiant intensity, forward current, spectral emission, as well as the field of view (FoV). There are a few default illumination sources included with the application.

Parameters for the default sources cannot be modified by the user. If a new illumination source is required, add it using the *Add* button. These can be renamed by double-clicking and typing the new name. Deletion is also possible for only the custom-added light sources. There is an option to copy LED parameters. By default, on adding a new LED, the parameters from the first LED are copied.

LEDs			8 23
LEDs SFH4550		Name	SFH4550
SFH4556 TSHF5210		Radiant Intensity (mW/sr)	1100.00
		Forward Current (mA)	100.00
		Spectral Emission	Complete Spectrum 👻
		Edit	View Remove All
		FOV	Complete FOV 🔻
Add Copy	Delete	Edit	View Remove All

Figure 5. Manage LEDs Page

For a new light source, the spectral emission can be provided in two ways:

- 1. **Single Value:** In case of a *Single Value*, the tool models a band of wavelengths. This means that a wavelength falling within the range is given a relative power emission value of 1, and any wavelength falling outside this range is given a relative power emission value of 0. Once a single value is added, the new value of the spectral emission curve can be seen using the "View and Edit" option
- 2. **Complete Spectrum:** When the *Complete Spectrum* is selected, the tool expects a table containing wavelengths and intensity values. These can be imported from a CSV file. The relative power emission is a fraction of the total power emitted at that wavelength. This is a value less than or equal to 1.

Similar to the spectral emission, there is an option to add the FoV curve. This takes the incident angle as well as the intensity as parameters. The single-value for an FoV is modeled using Equation 1. The complete FoV curve expects the incident angle and intensity values. There is an option to import from CSV files.

Once this window is closed or the *Done* button is clicked, the new and default illumination sources are added to the LEDs drop-down menu. Once a new LED is saved, it can be used for any new project.

6.2.3 Manage Photodiodes

The photodiode is the receiver which collects the light reflected by the target. This option allows the user to add, delete, and modify photodiodes to be used with the tool.

The parameters for the photodiode include spectral sensitivity, capacitance, area, photocurrent, irradiance at which the photocurrent is specified, spectral response, and the field of view (FoV). Just like LEDs, there are a few default photodiodes present with the tool, which cannot be modified.

Spectral sensitivity of the photodiode should be entered in A/W. The capacitance should be entered in picofarads (pF). The spectral response as well as the FoV should be entered in the same way as they are entered for the LEDs. If there is an built-in lens with the photodiode, photocurrent and irradiance are also required as parameters.

Photodiodes	<u> १</u> ×
Photodiodes SFH203FA SFH213FA	Name SFH2701
SFH2400 SFH2400FA SFH2701	Spectral Sensitivity (A/W) 0.50
	Spectral Emission Complete Spectrum v
	Edit View Remove All
	FOV Complete FOV *
	Edit View Remove All
	Capacitance (pf) 1.80
	Area (sq mm) 0.36
Add Delete Copy Done	Integrated Optics

Figure 6. Manage Photodiodes Page

6.3 Help

Help consists of two options: *About* and *User Guide*. *About* displays version information about the application and *User Guide* opens this user guide for reference.

7 Specifications

For calculation of accuracy and noise numbers, the application requires various inputs. The following sections describe these inputs in detail.

7.1 System Specifications

System specifications include the following:

- 1. **AFE Model:** The AFE that is being used. Currently, only one option (OPT3101) is present, and selected by default.
- 2. Average sub-frame count: This indicates the number of sub-frames which are averaged. Changing this changes the number of samples per second. Averaging sub-frames leads to a reduction in noise.
- 3. **Number of sub-frames:** Indicates the number of sub-frames which will be present in each frame. Increasing the sub-frame count reduces the number of samples captured per second.
- 4. Samples per second: This is a read-only parameter which indicates the sampling rate of the AFE.
- 5. **Expected Ambient Current Value:** This is an indicative parameter asking for the expected value of the ambient current generated by the AFE in micro-amperes (μA). Changing this changes the ambient noise factor. If the calculated ambient current is more than this value, it automatically changes to next supported max ambient range.
- 6. Ambient Lux: Indicates the light intensity in klux
- 7. Mode of operation: Indicative of the mode the AFE is operating in. There are three possible modes:
 - 1. Normal: A single current is used for illumination
 - 2. **HDR:** In this mode, the dynamic range is increased by using two different LED currents depending on the received signal from the target.
 - 3. **Super HDR:** In this mode, the dynamic range is further increased by using four different LED currents
- 8. **HDR Ratio:** Indicates the ratio of the LED currents being used. Only applicable in HDR and Super HDR modes. In case of Super HDR mode, this indicates the ratio between the highest and the lowest LED currents.
- LDO Mode: Indicates if the LDO mode is turned on or off. In LDO mode only 3.3-V external supply is used and 1.8-V supply required for the device is generated using the on-chip LDO. LDO mode is useful for computing the AFE output power
- 10. **Monoshot Enabled:** Indicates if the monoshot mode is turned on. Useful for computing the AFE output power. Enabling monoshot mode adds more parameters:
 - 1. Number of frames per shot: The number of samples being captured with each shot
 - 2. **Power-up delay** Indicates the delay from the monoshot trigger to the sample start
 - 3. Time between monoshots: The time between two triggers

7.2 Mechanical Specifications

These include the following:

1. **Distance between LED and photodiode:** Indicates the distance between the LED and the photodiode in milimeters (mm).

7.3 Emitter Specifications

This includes the specifications related to the emitter. These are:

- 1. **LED Model:** Indicates the model of the LED being used. The LEDs are modeled using the parameters entered in the "Manage LEDs" section. There is an option to select a simple model as well. The simple model calculations are explained in
- 2. **LED Half Angle:** Indicates the half-angle of the LED.
- 3. Light Extraction Efficiency: Indicates the light-extraction efficiency of the emitter.

8

Section 8.1

4. **LED Current Values:** The output current from the LED. There are four possible LED currents in the Super HDR mode, two currents in the HDR mode, and only one possible current in the Normal mode.

7.4 Receiver Specifications

This includes the specification of the receiver. These are:

- 1. **Photodiode Model:** Indicates the model of the photodiode being used. There is an option to select simple model. These are explained in Section 8.2
- 2. Photodiode Half angle: Indicates the half-angle of the photodiode
- 3. Lens: Indicates if a lens is used with the photodiode. If the PD comes with an integrated lens, this parameter is disabled. The following parameters are required for the lens (if available):
 - 1. Aperture: The aperture of the lens
 - 2. Focal Length: The focal length of the lens
 - 3. Distance between Diode and Lens: The distance between the photodiode and the lens

7.5 Target Specifications

These are the target specifications. These include the target distance (in mm) and reflectivity (in %).

(1)

(2)

Simple Model

8 Simple Model

This section explains the calculations done for modeling a simple model for the LED and the Photodiode.

8.1 Simple Model for the LED

LED simple model is generated using the half angle, LED efficiency, and the center wavelength as inputs. All other inputs stay the same. Figure 7 shows the inputs in case the "Simple Model" is selected.

LED Simple Model		
LED Efficiency	0.70	(mW/mA)
LED Half Angle	5.00	(degrees)
Center Wavelength	850.00	(nm)

Figure 7. LED Simple Model Parameters

The half angle is used to model the LED field of view curve using the following equation: $\cos^{\alpha}(\theta) = 0.5$

where

• θ is the half-angle of the LED

This gives the calculation of alpha as:

$$\alpha = \frac{\log(0.5)}{\log(\cos(\theta))}$$

LED efficiency is entered in watt per ampere. (W/A). The center wavelength gives the amount of light falling for a certain wavelength of the LED, and is used for calculating the losses in wavelength between the LED and the photodiode.

8.2 Simple Model for the Photodiode

Similar to the LED simple model, the photodiode simple model is generated using the half-angle of the photodiode. The half angle equations remain the same as Equation 1 and Equation 2. Other parameters are the spectral sensitivity of the photodiode, photodiode area, capacitance of the photodiode, and the center wavelength. Figure 8 shows the required parameters.

Photodiode Simple Model						
Spectral Sensitivity	0.65	(A/W)				
Half Angle	6.00	(degrees)				
Capacitance	6.00	(pf)				
Center Wavelength	850.00	(nm)				
Area of the PD	1.00	(sq mm)				

Figure 8. Photodiode Simple Model Parameters

The spectral response of the simple photodiode is considered to be a band-pass filter of 200-nm bandwidth.

By default, a simple photodiode does not come with integrated optics. For adding a custom photodiode with integrated optics, use the "Manage Photodiodes" option.

9 Output Characteristics

The output characteristics of the AFE are the calculated parameters based on the inputs provided. These include:

- 1. Amplitude: This gives the return amplitude at the target distance
- 2. **Distance accuracy:** This gives the accuracy at the given target distance.
- 3. Distance noise: The noise expected at the target distance
- 4. Power Consumption: Power consumed by the system. This has two parts:
 - 1. AFE Power: The total power consumed by the AFE
 - 2. Average LED current: This is the average LED current.
- 5. Ambient Current: Ambient current output

10 Plotting

The two types of plots are explained in Section 10.1 and Section 10.2.

10.1 Plot Push-Buttons

Two plot buttons are provided to show the performance at various distances. These are "Plot Distance v/s Accuracy and "Plot Distance v/s Amplitude. These plots give an indication of the performance of the system with respect to the distance of the target, at the given reflectivity. It also shows the LED current values for the given distances. The plots are added below, for reference:

Figure 9. Typical "Distance vs Accuracy" Plot

Figure 10. Typical "Distance vs Amplitude" Plot

10.2 Plot Tab

The plotting tab gives further options to compare between parameters. The output options are distance noise and distance accuracy. Plots can be generated for varying inputs. Two inputs can be provided and the output will be calculated for both. There is an option to add a semilog axis to the y-axis. If one of the inputs is "None", it results in a single line-plot. With two inputs, we get a plot with varying inputs. Figure 11 and Figure 12 illustrate two example plots.

Figure 11. Tab Plot With a Single Input (Input 2 = "None")

Figure 12. Tab Plot With Two Inputs

11 Input Controls

The application has many input text box controls. Some of the inputs have a tool tip giving more information about the input. The input is limited between a minimum and maximum value. Table 1 indicates the default, minimum, and maximum values of all the input parameters.

Table 1. Input Parameter Properties

Parameter	Units	Default	Minimum	Maximum
Number of sub-frames ⁽¹⁾	sub-frames/sample	32	1	4000
Ambient Lux	klux	2	0	200
HDR Ratio ⁽²⁾	-	64	2 (8)	128 (80)
Number of frames per shot	-	1	1	63
Power-up delay	micro-seconds (us)	1150	1150	26212
Time between monoshots	milliseconds (ms)	33.24	33.24	10000
Distance between LED and photodiode	millimeters (mm)	20	1	500
LED efficiency	milliwatts per milliampere (mW/mA)	0.7	0.01	1.2
LED half-angle	degrees	3	0	60
Center wavelength (led)	nm	850	300	1500
Light extraction efficiency	%	80	0	100
LED current values ⁽³⁾	milliamperes (mA)	173.6	1.4	173.6
Photodiode half-angle	degrees	10	0	60
Spectral sensitivity	ampere per watt (A/W)	0.65	0.01	1
Capacitance	picofarad (pf)	6	1	6
Center wavelength (photodiode)	nanometers (nm)	850	300	1500
Lens aperture	millimeters (mm)	5	1	100
Focal length ⁽⁴⁾	millimeters (mm)	5	1	100
Distance between diode and lens	millimeters (mm)	5	1	100
Distance	millimeters (mm)	1000	1	30000
Reflectivity	%	80	0	10000
Minimum distance	millimeters (mm)	100	1	30000
Maximum distance	millimeters (mm)	1000	1	30000
Number of data points	-	50	50	1000

⁽¹⁾ The number of sub-frames cannot be lower than the *"average sub-frame count"* option. Minimum and maximum change depending on the average sub-frame count.

(2) The ratio changes on switching between HDR and super HDR modes. The values in parenthesis are for the super HDR mode.
 (3) Based on the setting, up to four LED currents are possible. The application lets the user set the highest LED current. Other values are calculated according to the HDR ratio.

⁽⁴⁾ The minimum focal length to be entered depends on the lens aperture. The focal length cannot be less than 0.7*(lens aperture)

12 Status Bar

The status bar is split into two. The right half always displays the project name. If the current project name is "Default Project", this means that the project needs to be saved first. The application prompts for a suitable project name.

The left half gives status information about whether a file has been saved with the "File has been Saved" message and whether a report has been generated with the "Report Generated" message. These messages are temporary.

The status bar also gives suggestions when requirements go beyond limits. If the return signal is saturated, the status bar prompts the user to reduce LED current or enable the HDR modes.

13 Notes

These results are based on simulations. Actual measurements may not match the results exactly. Assumptions such as reflectivity, ambient light, lens transmittivity, sensor configuration, and so forth, may be different in the actual system and hence the results may vary. The results are not final numbers. They are approximate indicators of the system performance for an example use-case. Further optimization may be possible through rigorous design specifically for the application.

IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES

Texas Instruments Incorporated ('TI") technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources.

You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice.

This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI's standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/stdterms.htm), evaluation

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated