# LMC7215/LMC7215-Q1/LMC7225 Micro-Power, Rail-to-Rail CMOS Comparators with Push-**Pull/Open-Drain Outputs** Check for Samples: LMC7215, LMC7225 #### **FEATURES** (Typical Unless Otherwise Noted) - Ultra Low Power Consumption 0.7 µA - Wide Range of Supply Voltages 2V to 8V - Input Common-Mode Range Beyond V<sup>+</sup> and V<sup>-</sup> - **Open Collector and Push-Pull Output** - High Output Current Drive: (@ $V_S = 5V$ ) 45 mA - Propagation Delay (@ $V_S = 5V$ , 10 mV Overdrive) 25 µs - Tiny 5-Pin SOT-23 Package - Latch-up Resistance >300 mA - LMC7215-Q1 is an Automotive Grade Product that is AEC-Q100 Grade 3 Qualified. ## **APPLICATIONS** - **Laptop Computers** - **Mobile Phones** - **Metering Systems** - **Hand-held Electronics** - **RC Timers** - **Alarm and Monitoring Circuits** - **Window Comparators, Multivibrators** - **Automotive** ## **Connection Diagrams** Figure 1. 8-Pin SOIC (Top View) #### DESCRIPTION The LMC7215/LMC7215-Q1/LMC7225 are ultra low power comparators with a maximum of 1 µA power supply current. They are designed to operate over a wide range of supply voltages, from 2V to 8V. LMC7215/LMC7215-Q1/LMC7225 greater than rail-to-rail common mode voltage range. This is a real advantage in single supply applications. The LMC7215 features a push-pull output stage. This feature allows operation with absolute minimum amount of power consumption when driving any load. The LMC7225 features an open drain output. By connecting an external resistor, the output of the comparator can be used as a level shifter to any desired voltage to as high as 15V. The LMC7215/LMC7215-Q1/LMC7225 are designed for systems where low power consumption is the critical parameter. Ensured operation over the full supply voltage range of 2.7V to 5V and rail-to-rail performance makes this comparator ideal for battery-powered applications. Figure 2. 5-Pin SOT-23 (Top View) Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. # Absolute Maximum Ratings (1)(2) | 7 | | | |-----------------------------|--------------------------------------------|--------| | ESD Tolerance (3) | 2 kV | | | Differential Input Voltage | V <sup>+</sup> +0.3V, V <sup>−</sup> −0.3V | | | Voltage at Input/Output Pin | V <sup>+</sup> +0.3V, V <sup>−</sup> −0.3V | | | Supply Voltage (V+-V-) | | 10V | | Current at Input Pin | ±5 mA | | | Current at Output Pin (4) | | ±30 mA | | Current at Power Supply Pin | | 40 mA | | Lead Temperature | (soldering, 10 sec) | 260°C | | Storage Temperature Range | −65°C to +150°C | | | Junction Temperature (5) | 150°C | | | | | | - (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics. - (2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications. - (3) Human Body Model, applicable std. MIL-STD-883, Method 3015.7. Machine Model, applicable std. JESD22-A115-A (ESD MM std. of JEDEC)Field-Induced Charge-Device Model, applicable std. JESD22-C101-C (ESD FICDM std. of JEDEC). - (4) Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. - (5) The maximum power dissipation is a function of $T_{J(MAX)}$ , $\theta_{JA}$ , and $T_A$ . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A)/\theta_{JA}$ . All numbers apply for packages soldered directly into a PC board. # Operating Ratings (1) | Supply Voltage | 2V ≤ V <sub>CC</sub> ≤ 8V | | |-----------------------------------------------|---------------------------|---------| | Temperature Range (2) | −40°C to +85°C | | | Package Thermal Resistance (θ <sub>JA</sub> ) | 8-Pin SOIC | 165°C/W | | | 5-Pin SOT-23 | 325°C/W | - (1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is intended to be functional, but specific performance is not ensured. For ensured specifications and the test conditions, see the Electrical Characteristics. - (2) The maximum power dissipation is a function of $T_{J(MAX)}$ , $\theta_{JA}$ , and $T_A$ . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(MAX)} T_A)/\theta_{JA}$ . All numbers apply for packages soldered directly into a PC board. #### 2.7V to 5V Electrical Characteristics Unless otherwise specified, all limits specified for $T_J = 25^{\circ}C$ , $V^+ = 2.7V$ to 5V, $V^- = 0V$ , $V_{CM} = V_O = V^+/2$ . **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ <sup>(1)</sup> | LMC7215<br>Limit <sup>(2)</sup> | LMC7225<br>Limit <sup>(2)</sup> | Units | |-------------------|---------------------------------------|------------|--------------------|---------------------------------|---------------------------------|-----------| | V | Innut Offact Valtage | | 1 | 6 | 6 | mV | | Vos | Input Offset Voltage | | | 8 | 8 | max | | TCV <sub>OS</sub> | Input Offset Voltage<br>Average Drift | | 2 | | | μV/°C | | I <sub>B</sub> | Input Current | | 5 | | | fA | | Ios | Input Offset Current | | 1 | | | fA | | CMRR | Common Mode<br>Rejection Ratio | See (3) | 80 | 60 | 60 | dB<br>min | - (1) Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material. - (2) All limits are specified by testing or statistical analysis. - (3) CMRR measured at $V_{CM} = 0V$ to 2.5V and 2.5V to 5V when $V_S = 5V$ , $V_{CM} = 0.2V$ to 1.35V and 1.35V to 2.7V when $V_S = 2.7V$ . This eliminates units that have large $V_{OS}$ at the $V_{CM}$ extremes and low or opposite $V_{OS}$ at $V_{CM} = V_S/2$ . Submit Documentation Feedback Copyright © 1999–2013, Texas Instruments Incorporated ## 2.7V to 5V Electrical Characteristics (continued) Unless otherwise specified, all limits specified for $T_J = 25^{\circ}C$ , $V^+ = 2.7V$ to 5V, $V^- = 0V$ , $V_{CM} = V_O = V^+/2$ . **Boldface** limits apply at the temperature extremes. | Symbol | Parameter | Conditions | Typ <sup>(1)</sup> | LMC7215<br>Limit <sup>(2)</sup> | LMC7225<br>Limit <sup>(2)</sup> | Units | | |----------------------|---------------------------------|-------------------------------------|--------------------|---------------------------------|---------------------------------|-----------|--| | PSRR | Power Supply<br>Rejection Ratio | V <sup>+</sup> = 2.2V to 8V | 90 | 60 | 60 | dB<br>min | | | A <sub>V</sub> | Voltage Gain | | 140 | | | dB | | | | | V <sup>+</sup> = 2.7V | 3.0 | 2.9 | 2.9 | V | | | | | CMRR > 50 dB | | 2.7 | 2.7 | min | | | | | V <sup>+</sup> = 2.7V | -0.2 | 0.0 | 0.0 | V | | | OM/D | Input Common-Mode Voltage | CMRR > 50 dB | | 0.2 | 0.2 | max | | | CMVR | Range | V <sup>+</sup> = 5.0V | 5.3 | 5.2 | 5.2 | V | | | | | CMRR > 50 dB | | 5.0 | 5.0 | min | | | | | V <sup>+</sup> = 5.0V | -0.3 | -0.2 | -0.2 | V | | | | | CMRR > 50 dB | | 0.0 | 0.0 | max | | | | | V <sup>+</sup> = 2.2V | 2.05 | 1.8 | NA | V | | | | Output Voltage High | I <sub>OH</sub> = 1.5 mA | | 1.7 | | min | | | ., | | V <sup>+</sup> = 2.7V | 2.05 | 2.3 | NA | V | | | $V_{OH}$ | | I <sub>OH</sub> = 2.0 mA | | 2.2 | | min | | | | | V <sup>+</sup> = 5.0V | 4.8 | 4.6 | NA | V | | | | | I <sub>OH</sub> = 4.0 mA | | 4.5 | | min | | | | | V <sup>+</sup> = 2.2V | 0.17 | 0.4 | 0.4 | V | | | | | I <sub>OH</sub> = 1.5 mA | | 0.5 | 0.5 | max | | | ., | 0 / 11/1 | V <sup>+</sup> = 2.7V | 0.17 | 0.4 | 0.4 | V | | | $V_{OL}$ | Output Voltage Low | I <sub>OH</sub> = 2.0 mA | | 0.5 | 0.5 | max | | | | | V <sup>+</sup> = 5.0V | 0.2 | 0.4 | 0.4 | V | | | | | I <sub>OH</sub> = 4.0 mA | | 0.5 | 0.5 | max | | | I <sub>SC+</sub> | Output Short Circuit Current | V <sup>+</sup> = 2.7V, Sourcing | 15 | | NA | mA | | | | (4) | V <sup>+</sup> = 5.0V, Sourcing | 50 | | NA | mA | | | | Output Short Circuit Current | V <sup>+</sup> = 2.7V, Sinking | 12 | | | mA | | | I <sub>SC</sub> - | (4) | V <sup>+</sup> = 5.0V, Sinking | 30 | | | mA | | | | | V <sup>+</sup> = 2.2V | | | | nA | | | I <sub>Leakage</sub> | Output Leakage Current | $V_{IN}$ + = 0.1V, $V_{IN}$ - = 0V, | 0.01 | NA | 500 | max | | | | | V <sub>OUT</sub> = 15V | | | | | | | | | V <sup>+</sup> = 5.0V | 0.7 | 1 | 1 | μA | | | I <sub>S</sub> | Supply Current | $V_{IN}$ + = 5V, $V_{IN}$ - = 0V | | 1.2 | 1.2 | max | | <sup>(4)</sup> Do not short the output of the LMC7225 to voltages greater than 10V or damage may occur. # **AC Electrical Characteristics** Unless otherwise specified, $T_J = 25^{\circ}C$ , $V^+ = 5V$ , $V^- = 0V$ , $V_{CM} = V^+/2$ | Symbol | Parameter | Conditions | LMC7215<br>Typ <sup>(1)</sup> | LMC7225<br>Typ <sup>(1) (2)</sup> | Units | |-------------------|-----------|-----------------------|-------------------------------|-----------------------------------|-------| | t <sub>rise</sub> | Rise Time | Overdrive = 10 mV (2) | 1 | 12.2 | μs | | t <sub>fall</sub> | Fall Time | Overdrive = 10 mV (2) | 0.4 | 0.35 | μs | <sup>(1)</sup> Typical values represent the most likely parametric norm as determined at the time of characterization. Actual typical values may vary over time and will also depend on the application and configuration. The typical values are not tested and are not specified on shipped production material. <sup>(2)</sup> All measurements made at 10 kHz. A 100 k $\Omega$ pull-up resistor was used when measuring the LMC7225. $C_{LOAD}$ = 50 pF including the test jig and scope probe. The rise times of the LMC7225 are a function of the R-C time constant. # **AC Electrical Characteristics (continued)** Unless otherwise specified, $T_J = 25^{\circ}C$ , $V^+ = 5V$ , $V^- = 0V$ , $V_{CM} = V^+/2$ | Symbol | Parameter | | Conditions | LMC7215<br>Typ <sup>(1)</sup> | LMC7225<br>Typ <sup>(1)</sup> (2) | Units | |------------------|-------------------|------------------------|--------------------|-------------------------------|-----------------------------------|-------| | t <sub>PHL</sub> | Propagation Delay | See <sup>(2) (3)</sup> | Overdrive = 10 mV | 24 | 24 | μs | | | (High to Low) | | Overdrive = 100 mV | 12 | 12 | | | | | $V^+ = 2.7V^{(2)}$ (3) | Overdrive = 10 mV | 17 | 17 | μs | | | | | Overdrive = 100 mV | 11 | 11 | | | t <sub>PLH</sub> | Propagation Delay | See <sup>(2) (3)</sup> | Overdrive = 10 mV | 24 | 29 | μs | | | (Low to High) | | Overdrive = 100 mV | 12 | 17 | | | | | $V^+ = 2.7V^{(2)}$ (3) | Overdrive = 10 mV | 17 | 22 | μs | | | | | Overdrive = 100 mV | 11 | 16 | | <sup>(3)</sup> Input step voltage for the propagation measurements is 100 mV. Submit Documentation Feedback ## **Typical Performance Characteristics** T<sub>A</sub>= 25°C unless otherwise specified # **Typical Performance Characteristics (continued)** $T_A$ = 25°C unless otherwise specified #### APPLICATION INFORMATION #### **RESPONSE TIME** Depending upon the amount of overdrive, the delay will typically be between 10 $\mu$ s to 200 $\mu$ s. The curve showing delay vs. overdrive in the "Typical Characteristics" section shows the delay time when the input is preset with 100 mV across the inputs and then is driven the other way by 1 mV to 500 mV. The transition from high to low or low to high is fast. Typically 1 µs rise and 400 ns fall. With a small signal input, the comparators will provide a square wave output from sine wave inputs at frequencies as high as 25 kHz. Figure 13 shows a worst case example where a ±5 mV sine wave is applied to the input. Note that the output is delayed by almost 180°. Figure 13. #### **NOISE** Most comparators have rather low gain. This allows the output to spend time between high and low when the input signal changes slowly. The result is the output may oscillate between high and low when the differential input is near zero. The exceptionally high gain of these comparators, 10,000 V/mV, eliminates this problem. Less then 1 $\mu$ V of change on the input will drive the output from one rail to the other rail. If the input signal is noisy, the output cannot ignore the noise unless some hysteresis is provided by positive feedback. Figure 14. #### INPUT VOLTAGE RANGE The LMC7215/25 have input voltage ranges that are larger than the supply voltage ensures that signals from other parts of the system cannot overdrive the inputs. This allows sensing supply current by connecting one input directly to the V<sup>+</sup> line and the other to the other side of a current sense resistor. The same is true if the sense resistor is in the ground return line. Sensing supply voltage is also easy by connecting one input directly to the supply. The inputs of these comparators are protected by diodes to both supplies. This protects the inputs from both ESD as well as signals that greatly exceed the supply voltages. As a result, current will flow through these forward biased diodes whenever the input voltage is more than a few hundred millivolts larger than the supplies. Until this occurs, there is essentially no input current. As a result, placing a large resistor in series with any input that may be exposed to large voltages, will limit the input current but have no other noticeable effect. If the input current is limited to less than 5 mA by a series resistor, (see Figure 14), a threshold or zero crossing detector, that works with inputs from as low as a few millivolts to as high as 5,000V, is made with only one resistor and the comparator. #### **INPUTS** As mentioned above, these comparators have near zero input current. This allows very high resistance circuits to be used without any concern for matching input resistances. This also allows the use of very small capacitors in R-C type timing circuits. This reduces the cost of the capacitors and amount of board space used. #### **CAPACITIVE LOADS** The high output current drive allows large capacitive loads with little effect. Capacitive loads as large as 10,000 pF have no effect upon delay and only slow the transition by about 3 µs. #### **OUTPUT CURRENT** Even though these comparators use less than 1 $\mu$ A supply current, the outputs are able to drive very large currents. The LMC7215 can source up to 50 mA when operated on a 5V supply. Both the LMC7215 and LMC7225 can sink over 20 mA. (See the graph of Max I<sub>O</sub> vs. V<sub>SUPPLY</sub> in the "Typical Characteristics" section.) This large current handling ability allows driving heavy loads directly. LEDs, beepers and other loads can be driven easily. The push-pull output stage of the LMC7215 is a very important feature. This keeps the total system power consumption to the absolute minimum. The only current consumed is the less than 1 $\mu$ A supply current and the current going directly into the load. No power is wasted in a pull-up resistor when the output is low. The LMC7225 is only recommended where a level shifting function from one logic level to another is desired, where the LMC7225 is being used as a drop-in lower power replacement for an older comparator or in circuits where more than one output will be paralleled. #### **POWER DISSIPATION** The large output current ability makes it possible to exceed the maximum operating junction temperature of 85°C and possibly even the absolute maximum junction temperature of 150°C. The thermal resistance of the 8-pin SOIC package is 165°C/W. Shorting the output to ground with a 2.7V supply will only result in about 5°C rise above ambient. The thermal resistance of the much smaller 5-Pin SOT-23 package is 325°C/W. With a 2.7V supply, the raise is only 10.5°C but if the supply is 5V and the short circuit current is 50 mA, this will cause a raise of 41°C in the 8-Pin SOIC and 81°C in the 5-Pin SOT-23. This should be kept in mind if driving very low resistance loads. Submit Documentation Feedback #### **SHOOT-THROUGH** Shoot-through is a common occurrence on digital circuits and comparators where there is a push-pull output stage. This occurs when a signal is applied at the same time to both the N-channel and P-channel output transistors to turn one off and turn the other on. (See Figure 15.) If one of the output devices responds slightly faster than the other, the fast one can be turned on before the other has turned off. For a very short time, this allows supply current to flow directly through both output transistors. The result is a short spike of current drawn from the supply. Figure 15. Figure 16. $R_S = 100\Omega$ The LMC7215 produces a small current spike of 300 $\mu$ A peak for about 400 ns with 2.7V supply and 1.8 mA peak for 400 ns with a 5V supply. This spike only occurs when the output is going from high to low. It does not occur when going from low to high. Figure 16 and Figure 17 show what this current pulse looks like on 2.7V and 5V supplies. The upper trace is the output voltage and the lower trace is the supply current as measured with the circuit in Figure 18. If the power supply has a very high impedance, a bypass capacitor of 0.01 µF should be more than enough to minimize the effects of this small current pulse. Figure 17. $R_S = 10\Omega$ #### **LATCH-UP** In the past, most CMOS IC's were susceptible to a damaging phenomena known as latch-up. This occurred when an ESD current spike or other large signal was applied to any of the pins of an IC. The LMC7215 and LMC7225 both are designed to make them highly resistant to this type of damage. They have passed qualification tests with input currents on any lead up to 300 mA at temperatures up to 125°C. #### **SPICE MODELS** For a SPICE model of the LMC7215, LMC7225 and many other op amps and comparators, visit www.ti.com. # **REVISION HISTORY** | CI | Changes from Revision D (March 2013) to Revision E | | | | | | | | | | |----|----------------------------------------------------|--|----|--|--|--|--|--|--|--| | • | Changed layout of National Data Sheet to TI format | | 10 | | | | | | | | 1-Nov-2015 #### PACKAGING INFORMATION | Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking (4/5) | Samples | |-------------------|--------|--------------|--------------------|------|----------------|----------------------------|------------------|--------------------|--------------|----------------------|---------| | LMC7215IM/NOPB | ACTIVE | SOIC | D | 8 | 95 | Green (RoHS<br>& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC72<br>15IM | Samples | | LMC7215IM5 | NRND | SOT-23 | DBV | 5 | 1000 | TBD | Call TI | Call TI | -40 to 85 | C02B | | | LMC7215IM5/NOPB | ACTIVE | SOT-23 | DBV | 5 | 1000 | Green (RoHS<br>& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | C02B | Samples | | LMC7215IM5X | NRND | SOT-23 | DBV | 5 | 3000 | TBD | Call TI | Call TI | -40 to 85 | C02B | | | LMC7215IM5X/NOPB | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS<br>& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | C02B | Samples | | LMC7215IMX/NOPB | ACTIVE | SOIC | D | 8 | 2500 | Green (RoHS<br>& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | LMC72<br>15IM | Samples | | LMC7215QIM5/NOPB | ACTIVE | SOT-23 | DBV | 5 | 1000 | Green (RoHS<br>& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | C02Q | Samples | | LMC7215QIM5X/NOPB | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS<br>& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | C02Q | Samples | | LMC7225IM5 | NRND | SOT-23 | DBV | 5 | 1000 | TBD | Call TI | Call TI | -40 to 85 | C03B | | | LMC7225IM5/NOPB | ACTIVE | SOT-23 | DBV | 5 | 1000 | Green (RoHS<br>& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | C03B | Samples | | LMC7225IM5X | NRND | SOT-23 | DBV | 5 | | TBD | Call TI | Call TI | -40 to 85 | C03B | | | LMC7225IM5X/NOPB | ACTIVE | SOT-23 | DBV | 5 | 3000 | Green (RoHS<br>& no Sb/Br) | CU SN | Level-1-260C-UNLIM | -40 to 85 | C03B | Samples | <sup>&</sup>lt;sup>(1)</sup> The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. <sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. # **PACKAGE OPTION ADDENDUM** 1-Nov-2015 Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) - (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF LMC7215, LMC7215-Q1: Catalog: LMC7215 Automotive: LMC7215-Q1 NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects # PACKAGE MATERIALS INFORMATION www.ti.com 2-Sep-2015 # TAPE AND REEL INFORMATION | | Dimension designed to accommodate the component width | |----|-----------------------------------------------------------| | | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | ## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE #### \*All dimensions are nominal | All dimensions are nominal | | | | | 1 | 1 | | | | | | | |----------------------------|-----------------|--------------------|---|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | Device | Package<br>Type | Package<br>Drawing | | SPQ | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant | | LMC7215IM5 | SOT-23 | DBV | 5 | 1000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | LMC7215IM5/NOPB | SOT-23 | DBV | 5 | 1000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | LMC7215IM5X | SOT-23 | DBV | 5 | 3000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | LMC7215IM5X/NOPB | SOT-23 | DBV | 5 | 3000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | LMC7215IMX/NOPB | SOIC | D | 8 | 2500 | 330.0 | 12.4 | 6.5 | 5.4 | 2.0 | 8.0 | 12.0 | Q1 | | LMC7215QIM5/NOPB | SOT-23 | DBV | 5 | 1000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | LMC7215QIM5X/NOPB | SOT-23 | DBV | 5 | 3000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | LMC7225IM5 | SOT-23 | DBV | 5 | 1000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | LMC7225IM5/NOPB | SOT-23 | DBV | 5 | 1000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | | LMC7225IM5X/NOPB | SOT-23 | DBV | 5 | 3000 | 178.0 | 8.4 | 3.2 | 3.2 | 1.4 | 4.0 | 8.0 | Q3 | www.ti.com 2-Sep-2015 \*All dimensions are nominal | All difficusions are norminal | | | | | | | | |-------------------------------|---------------------|-----|------|------|-------------|------------|-------------| | Device | Device Package Type | | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | LMC7215IM5 | SOT-23 | DBV | 5 | 1000 | 210.0 | 185.0 | 35.0 | | LMC7215IM5/NOPB | SOT-23 | DBV | 5 | 1000 | 210.0 | 185.0 | 35.0 | | LMC7215IM5X | SOT-23 | DBV | 5 | 3000 | 210.0 | 185.0 | 35.0 | | LMC7215IM5X/NOPB | SOT-23 | DBV | 5 | 3000 | 210.0 | 185.0 | 35.0 | | LMC7215IMX/NOPB | SOIC | D | 8 | 2500 | 367.0 | 367.0 | 35.0 | | LMC7215QIM5/NOPB | SOT-23 | DBV | 5 | 1000 | 210.0 | 185.0 | 35.0 | | LMC7215QIM5X/NOPB | SOT-23 | DBV | 5 | 3000 | 210.0 | 185.0 | 35.0 | | LMC7225IM5 | SOT-23 | DBV | 5 | 1000 | 210.0 | 185.0 | 35.0 | | LMC7225IM5/NOPB | SOT-23 | DBV | 5 | 1000 | 210.0 | 185.0 | 35.0 | | LMC7225IM5X/NOPB | SOT-23 | DBV | 5 | 3000 | 210.0 | 185.0 | 35.0 | DBV (R-PDSO-G5) # PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side. - D. Falls within JEDEC MO-178 Variation AA. # DBV (R-PDSO-G5) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad. - D. Publication IPC-7351 is recommended for alternate designs. - E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations. # D (R-PDSO-G8) # PLASTIC SMALL OUTLINE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AA. #### IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. #### Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity