DS25BR120

DS25BR120 3.125 Gbps LVDS Buffer with Transmit Pre-Emphasis

Literature Number: SNLS256D

DS25BR120

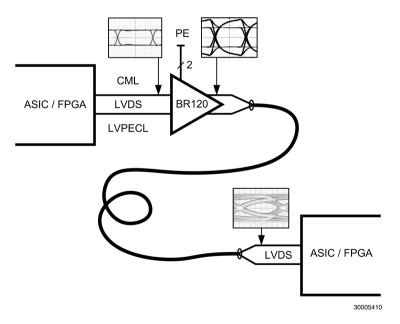
3.125 Gbps LVDS Buffer with Transmit Pre-Emphasis

General Description

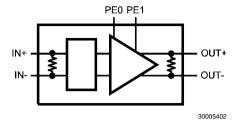
The DS25BR120 is a single channel 3.125 Gbps LVDS buffer optimized for high-speed signal transmission over lossy FR-4 printed circuit board backplanes and balanced metallic cables. Fully differential signal paths ensure exceptional signal integrity and noise immunity.

The DS25BR120 features four levels of pre-emphasis (PE) for use as an optimized driver device. Other LVDS devices with similar IO characteristics include the following products. The DS25BR110 features four levels of equalization for use as an optimized receiver device, while the DS25BR100 features both pre-emphasis and equalization for use as an optimized repeater device. The DS25BR150 is a buffer/repeater with the lowest power consumption and does not feature transmit pre-emphasis nor receive equalization.

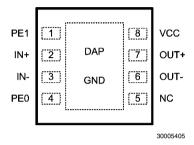
Wide input common mode range allows the receiver to accept signals with LVDS, CML and LVPECL levels; the output levels are LVDS. A very small package footprint requires minimal space on the board while the flow-through pinout allows easy board layout. The differential inputs and outputs are internally terminated with a 100Ω resistor to lower device input and output return losses, reduce component count and further minimize board space.


Features

- DC 3.125 Gbps low jitter, high noise immunity, low power operation
- Four levels of transmit pre-emphasis drive lossy backplanes and cables
- On-chip 100Ω input and output termination minimizes insertion and return losses, reduces component count and minimizes board space
- 7 kV ESD on LVDS I/O pins protects adjoining components
- Small 3 mm x 3 mm 8-LLP space saving package


Applications

- Clock and data buffering
- Metallic cable driving
- FR-4 driving


Typical Application

Block Diagram

Pin Diagram

Pin Descriptions

Pin Name	Pin Name	Pin Type	Pin Description
PE1	1	Input	Pre-emphasis select pin.
IN+	2	Input	Non-inverting LVDS input pin.
IN-	3	Input	Inverting LVDS input pin.
PE0	4	Input	Pre-emphasis select pin.
NC	5	NA	"NO CONNECT" pin.
OUT-	6	Output	Inverting LVDS output pin.
OUT+	7	Output	Non-inverting LVDS Output pin.
VCC	8	Power	Power supply pin.
GND	DAP	Power	Ground pad (DAP - die attach pad)

Pre-Emphasis Truth Table

PE1	PE0	Pre-emphasis Level
0	0	Off
0	1	Low (Approx. 3 dB at 1.56 GHz)
1	0	Medium (Approx. 6 dB at 1.56 GHz)
1	1	High (Approx. 9 dB at 1.56 GHz)

Ordering Codes and Configurations

NSID	Function	Available Equalization Levels	Available Pre-emphasis Levels
DS25BR100TSD	Buffer/Repeater	Low / Medium	Off / Medium
DS25BR110TSD	Receiver	Off / Low / Medium / High	NA
DS25BR120TSD	Driver	NA	Off / Low / Medium / High
DS25BR150TSD	Buffer/Repeater	NA	NA

≥1250V

Absolute Maximum Ratings (Note 4)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V_{CC}) -0.3V to +4V LVCMOS Input Voltage -0.3V to $(V_{CC} + 0.3V)$ (PE0, PE1) LVDS Input Voltage (IN+, IN-) -0.3V to +4V Differential Input Voltage |VID| 1.0V LVDS Output Voltage -0.3V to $(V_{CC} + 0.3V)$ (OUT+, OUT-) LVDS Differential Output Voltage 0V to 1.0V ((OUT+) - (OUT-)) LVDS Output Short Circuit Current 5 ms Duration +150°C Junction Temperature Storage Temperature Range -65°C to +150°C Lead Temperature Range Soldering (4 sec.) +260°C Maximum Package Power Dissipation at 25°C SDA Package 2.08W Derate SDA Package 16.7 mW/°C above +25°C

Package memai hesistance	
θ_{JA}	+60.0°C/W
θ_{JC}	+12.3°C/W
ESD Susceptibility	
HBM (Note 1)	≥7 kV
MM (Note 2)	≥250V

Note 1: Human Body Model, applicable std. JESD22-A114C Note 2: Machine Model, applicable std. JESD22-A115-A Note 3: Field Induced Charge Device Model, applicable std. JESD22-C101-C

Doolsone Thermal Decistores

CDM(Note 3)

Recommended Operating Conditions

	Min	Тур	Max	Units
Supply Voltage (V _{CC})	3.0	3.3	3.6	V
Receiver Differential Input Voltage (V_{ID})	0		1.0	V
Operating Free Air Temperature (T_A)	-40	+25	+85	°C

Electrical Characteristics

Over recommended operating supply and temperature ranges unless otherwise specified. (Note 5, Note 6, Note 7)

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
LVCMOS	S INPUT DC SPECIFICATIONS (PE0, PE1)							
V _{IH}	High Level Input Voltage		2.0		V _{CC}	V		
V _{IL}	Low Level Input Voltage		GND		0.8	V		
I _{IH}	High Level Input Current	V _{IN} = 3.6V V _{CC} = 3.6V		0	±10	μА		
I _{IL}	Low Level Input Current	$V_{IN} = GND$ $V_{CC} = 3.6V$		0	±10	μА		
V _{CL}	Input Clamp Voltage	$I_{CL} = -18 \text{ mA}, V_{CC} = 0V$		-0.9	-1.5	V		
LVDS OUTPUT DC SPECIFICATIONS (OUT+, OUT-)								
V _{OD}	Differential Output Voltage		250	350	450	mV		
ΔV_{OD}	Change in Magnitude of V _{OD} for Complimentary Output States	$R_L = 100\Omega$	-35		35	mV		
V _{os}	Offset Voltage		1.05	1.2	1.375	V		
ΔV _{OS}	Change in Magnitude of V _{OS} for Complimentary Output States	$R_L = 100\Omega$	-35		35	mV		
I _{os}	Output Short Circuit Current (Note 8)	OUT to GND PE0 = PE1 = 0		-35	-55	mA		
		OUT to V _{CC} PE0 = PE1 = 0		7	55	mA		
C _{OUT}	Output Capacitance	Any LVDS Output Pin to GND		1.2		pF		
R _{OUT}	Output Termination Resistor	Between OUT+ and OUT-		100		Ω		

Symbol	Parameter	Conditions	Min	Тур	Max	Units		
LVDS IN	LVDS INPUT DC SPECIFICATIONS (IN+, IN-)							
V _{ID}	Input Differential Voltage		0		1	V		
V _{TH}	Differential Input High Threshold	$V_{CM} = +0.05V \text{ or } V_{CC} -0.05V$		0	+100	mV		
V _{TL}	Differential Input Low Threshold		-100	0		mV		
V _{CMR}	Common Mode Voltage Range	V _{ID} = 100 mV	0.05		V _{CC} - 0.05	٧		
I _{IN}	Input Current	$V_{IN} = 3.6V \text{ or } 0V$ $V_{CC} = 3.6V \text{ or } 0V$		±1	±10	μA		
C _{IN}	Input Capacitance	Any LVDS Input Pin to GND		1.7		pF		
R _{IN}	Input Termination Resistor	Between IN+ and IN-		100		Ω		
SUPPLY	CURRENT	•	•	,				
I _{CC}	Supply Current	PE0 = 0, PE1 = 0		35	43	mA		

Note 4: "Absolute Maximum Ratings" indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions at which the device is functional and the device should not be operated beyond such conditions.

Note 5: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 6: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except V_{OD} and ΔV_{OD} .

Note 7: Typical values represent most likely parametric norms for $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C$, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

Note 8: Output short circuit current (I_{OS}) is specified as magnitude only, minus sign indicates direction only.

AC Electrical Characteristics (Note 11)

Over recommended operating supply and temperature ranges unless otherwise specified. (Note 9, Note 10)

Cumbal	Parameter	Conditions		Min	Typ	Max	Units	
Symbol		Condi	LIUIIS	INIII	Тур	IVIAX	Units	
LVDS O	UTPUT AC SPECIFICATIONS (OUT+, OUT-)	1		1				
t _{PHLD}	Differential Propagation Delay High to Low	B = 1000		350	465	ps		
t _{PLHD}	Differential Propagation Delay Low to High	$R_L = 100\Omega$			350	465	ps	
t _{SKD1}	Pulse Skew It _{PLHD} – t _{PHLD} I (<i>Note 12</i>)				45	100	ps	
t _{SKD2}	Part to Part Skew (Note 13)				45	150	ps	
t _{LHT}	Rise Time	D = 4000		80	150	ps		
t _{HLT}	Fall Time	$R_L = 100\Omega$		80	150	ps		
JITTER PERFORMANCE WITH PE = OFF								
t _{RJ1A}	Random Jitter (RMS Value)	V _{ID} = 350 mV	2.5 Gbps		0.5	1	ps	
t _{RJ2A}	No Test Channels (Note 14)	V _{CM} = 1.2V Clock (RZ) PE0 = 0, PE1 = 0	3.125 Gbps		0.5	1	ps	
t _{DJ1A}	Deterministic Jitter (Peak to Peak)	V _{ID} = 350 mV	2.5 Gbps		9	31	ps	
t _{DJ2A}	No Test Channels (Note 15)	V _{CM} = 1.2V K28.5 (NRZ) PE0 = 0, PE1 = 0	3.125 Gbps		16	40	ps	
t _{TJ1A}	Total Jitter (Peak to Peak)	V _{ID} = 350 mV	2.5 Gbps		0.05	0.13	UI _{P-P}	
t _{TJ2A}	No Test Channels (Note 16)	V _{CM} = 1.2V PRBS-23 (NRZ) PE0 = 0, PE1 = 0	3.125 Gbps		0.09	0.16	UI _{P-P}	

Symbol	Parameter	Condi	Conditions			Max	Units
	PERFORMANCE WITH PE = LOW (Figure	s 5 and 6)			Тур		
t _{RJ1B}	Random Jitter (RMS Value) Test Channel A	V _{ID} = 350 mV V _{CM} = 1.2V Clock (RZ)	2.5 Gbps 3.125 Gbps		0.5	1.3	ps ps
	(Note 14)	PE0 = 1, PE1 = 0	<u> </u>				'
t _{DJ1B}	Deterministic Jitter (Peak to Peak) Test Channel A (Note 15)	$V_{ID} = 350 \text{ mV}$ $V_{CM} = 1.2 \text{V}$ $K28.5 \text{ (NRZ)}$ $PE0 = 1, PE1 = 0$	2.5 Gbps 3.125 Gbps		17	40	ps ps
t _{TJ1B}	- Total Jitter (Peak to Peak)	$V_{ID} = 350 \text{ mV}$	2.5 Gbps		0.09	0.14	UI _{P-P}
t _{TJ2B}	Test Channel A (Note 16)	V _{CM} = 1.2V PRBS-23 (NRZ) PE0 = 1, PE1 = 0	3.125 Gbps		0.12	0.19	UI _{P-P}
JITTER	PERFORMANCE WITH PE = MEDIUM (Fig	jures 5 and 6)					
t _{RJ1C}	 - Random Jitter (RMS Value)	$V_{ID} = 350 \text{ mV}$	2.5 Gbps		0.5	1.2	ps
t _{RJ2C}	Test Channel B (Note 14)	V _{CM} = 1.2V Clock (RZ) PE0 = 0, PE1 = 1	3.125 Gbps		0.5	1.2	ps
t _{DJ1C}	Deterministic litter (Deak to Beak)	$V_{ID} = 350 \text{ mV}$	2.5 Gbps		21	44	ps
t _{DJ2C}	Deterministic Jitter (Peak to Peak) Test Channel B (Note 15)	V _{CM} = 1.2V K28.5 (NRZ) PE0 = 0, PE1 = 1	3.125 Gbps		27	48	ps
t _{TJ1C}	Total litter (Deals to Deals)	V _{ID} = 350 mV	2.5 Gbps		0.09	0.16	UI _{P-P}
t _{TJ2C}	Total Jitter (Peak to Peak) Test Channel B (Note 16)	V _{CM} = 1.2V PRBS-23 (NRZ) PE0 = 0, PE1 = 1	3.125 Gbps		0.13	0.23	UI _{P-P}
JITTER	PERFORMANCE WITH PE = HIGH (Figure	es 5 and 6)					
t _{RJ1D}	- Random Jitter (RMS Value)	$V_{ID} = 350 \text{ mV}$	2.5 Gbps		0.5	1.2	ps
t _{RJ2D}	Test Channel C (Note 14)	V _{CM} = 1.2V Clock (RZ) PE0 = 1, PE1 = 1	3.125 Gbps		0.5	1.2	ps
t _{DJ1D}	Deterministic litter (Peak to Peak)	V _{ID} = 350 mV	2.5 Gbps		30	65	ps
t _{DJ2D}	Deterministic Jitter (Peak to Peak) Test Channel C (Note 15)	V _{CM} = 1.2V K28.5 (NRZ) PE0 = 1, PE1 = 1	3.125 Gbps		30	58	ps
t _{TJ1D}	Total litter (Peak to Peak)	V _{ID} = 350 mV	2.5 Gbps		0.09	0.20	UI _{P-P}
t _{TJ2D}	Total Jitter (Peak to Peak) Test Channel C (Note 16)	V _{CM} = 1.2V PRBS-23 (NRZ) PE0 = 1, PE1 = 1	3.125 Gbps		0.13	0.22	UI _{P-P}

Note 9: The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed.

Note 10: Typical values represent most likely parametric norms for $V_{CC} = +3.3V$ and $T_A = +25^{\circ}C$, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed.

Note 11: Specification is guaranteed by characterization and is not tested in production.

Note 12: t_{SKD1}, It_{PLHD} – t_{PHLD}I, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel.

Note 13: t_{SKD2} , Part to Part Skew, is defined as the difference between the minimum and maximum specified differential propagation delays. This specification applies to devices at the same V_{CC} and within 5°C of each other within the operating temperature range.

Note 14: Measured on a clock edge with a histogram and an acummulation of 1500 histogram hits. Input stimulus jitter is subtracted geometrically.

Note 15: Tested with a combination of the 1100000101 (K28.5+ character) and 0011111010 (K28.5- character) patterns. Input stimulus jitter is subtracted algebraically.

Note 16: Measured on an eye diagram with a histogram and an acummulation of 3500 histogram hits. Input stimulus jitter is subtracted.

DC Test Circuits

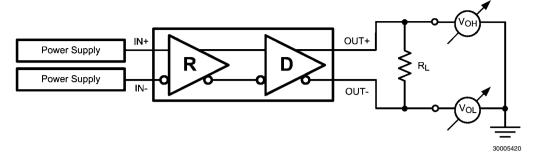
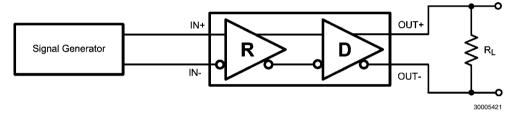



FIGURE 1. Differential Driver DC Test Circuit

AC Test Circuits and Timing Diagrams

FIGURE 2. Differential Driver AC Test Circuit

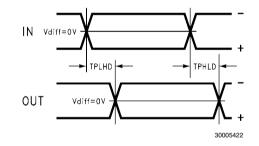


FIGURE 3. Propagation Delay Timing Diagram

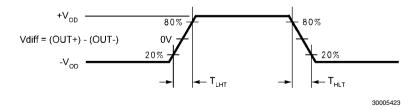


FIGURE 4. LVDS Output Transition Times

Pre-Emphasis Test Circuits

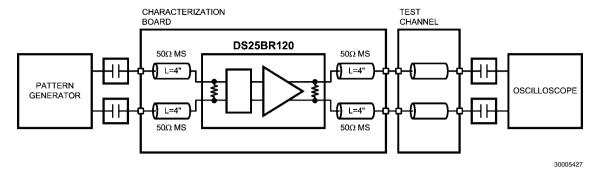
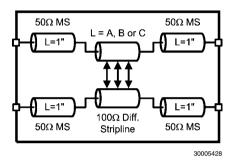
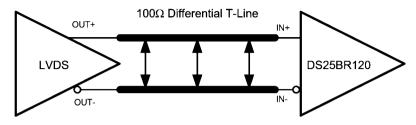



FIGURE 5. Pre-emphasis Performance Test Circuit

FIGURE 6. Test Channel Description

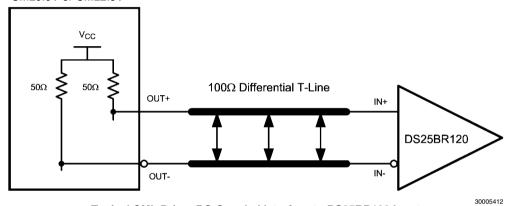
Test Channel Loss Characteristics

The test channel was fabricated with Polyclad PCL-FR-370-Laminate/PCL-FRP-370 Prepreg materials (Dielectric constant of 3.7 and Loss Tangent of 0.02). The edge coupled differential striplines have the following geometries: Trace Width (W) = 5 mils, Gap (S) = 5 mils, Height (B) = 16 mils.


Test Channel	Length	Insertion Loss (dB)					
	(inches)	500 MHz	750 MHz	1000 MHz	1250 MHz	1500 MHz	1560 MHz
Α	10	-1.2	-1.7	-2.0	-2.4	-2.7	-2.8
В	20	-2.6	-3.5	-4.1	-4.8	-5.5	-5.6
С	30	-4.3	-5.7	-7.0	-8.2	-9.4	-9.7
D	15	-1.6	-2.2	-2.7	-3.2	-3.7	-3.8
E	30	-3.4	-4.5	-5.6	-6.6	-7.7	-7.9
F	60	-7.8	-10.3	-12.4	-14.5	-16.6	-17.0

Device OperationINPUT INTERFACING

The DS25BR120 accepts differential signals and allows simple AC or DC coupling. With a wide common mode range, the


DS25BR120 can be DC-coupled with all common differential

drivers (i.e. LVPECL, LVDS, CML). The following three figures illustrate typical DC-coupled interface to common differential drivers. Note that the DS25BR120 inputs are internally terminated with a 100Ω resistor.

Typical LVDS Driver DC-Coupled Interface to DS25BR120 Input 30005411

CML3.3V or CML2.5V

Typical CML Driver DC-Coupled Interface to DS25BR120 Input

LVPECL
Driver

OUT+

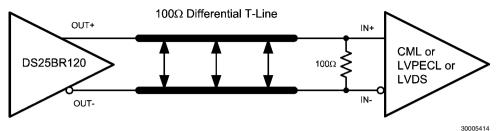
100Ω Differential T-Line

N+

100Ω

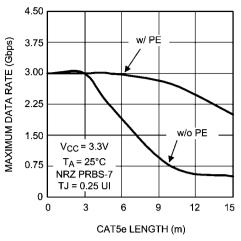
N
150-250Ω

150-250Ω

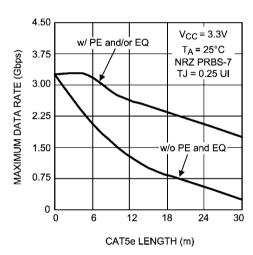

Typical LVPECL Driver DC-Coupled Interface to DS25BR120 Input

9

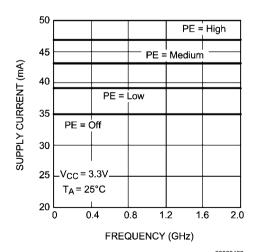
OUTPUT INTERFACING

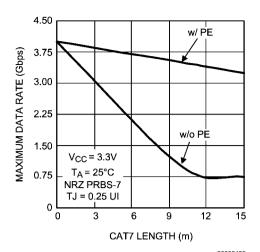

The DS25BR120 outputs signals compliant to the LVDS standard. It can be DC-coupled to most common differential receivers. The following figure illustrates typical DC-coupled interface to common differential receivers and assumes that

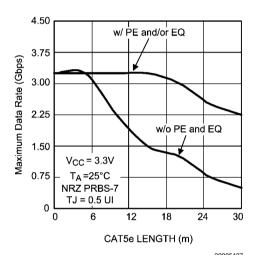
the receivers have high impedance inputs. While most differential receivers have a common mode input range that can accomodate LVDS compliant signals, it is recommended to check respective receiver's data sheet prior to implementing the suggested interface implementation.

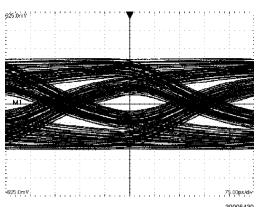


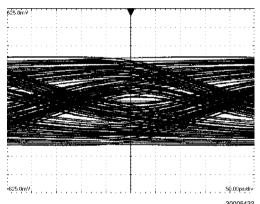
Typical DS25BR120 Output DC-Coupled Interface to an LVDS, CML or LVPECL Receiver

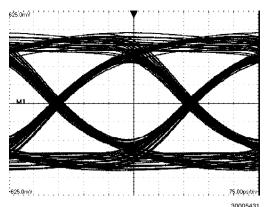

Typical Performance

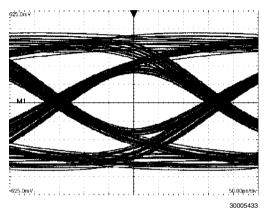

Maximum Data Rate as a Function of CAT5e (Belden 1700A) Length


Maximum Data Rate as a Function of CAT5e (Belden 1700A) Length DS25BR120 Used as a Driver DS25BR110 Used as a Receiver

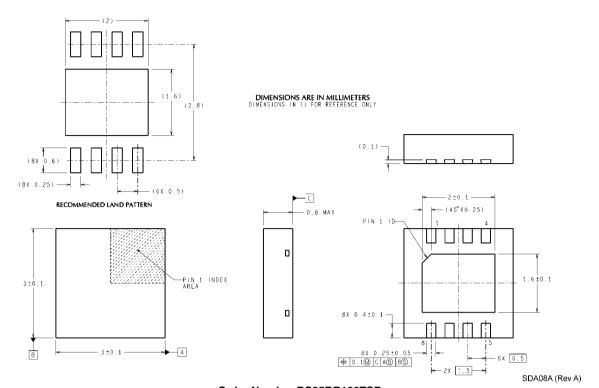

Power Supply Current as a Function of Frequency


Maximum Data Rate as a Function of CAT7 (Siemon Tera) Length


Maximum Data Rate as a Function of CAT5e
(Belden 1700A) Length
DS25BR120 Used as a Driver
DS25BR110 Used as a Receiver


A 2.5 Gbps NRZ PRBS-7 After 40" Differential FR-4 Stripline V:125 mV / DIV, H:75 ps / DIV

A 3.125 Gbps NRZ PRBS-7 After 40"
Differential FR-4 Stripline
V:125 mV / DIV, H:50 ps / DIV



An Equalized (with PE) 2.5 Gbps NRZ PRBS-7 After 40"
Differential FR-4 Stripline
V:125 mV / DIV, H:75 ps / DIV

An Equalized (with PE) 3.125 Gbps NRZ PRBS-7 After 40" Differential FR-4 Stripline V:125 mV / DIV, H:50 ps / DIV

Physical Dimensions inches (millimeters) unless otherwise noted

Order Number DS25BR120TSD NS Package Number SDA08A (See AN-1187 for PCB Design and Assembly Recommendations)

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com

Pro	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical

Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers Microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>

OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page <u>e2e.ti.com</u>