AM26LV31C, AM26LV31I LOW-VOLTAGE HIGH-SPEED QUADRUPLE DIFFERENTIAL LINE DRIVERS

D OR NS PACKAGE

SLLS201F - MAY 1995 - REVISED APRIL 2002

- Switching Rates up to 32 MHz
- Operate From a Single 3.3-V Supply
- Propagation Delay Time . . . 8 ns Typ
- Pulse Skew Time . . . 500 ps Typ
- High Output-Drive Current . . . ±30 mA
- Controlled Rise and Fall Times . . . 3 ns Typ
- **Differential Output Voltage With** 100- Ω Load . . . 1.5 V Typ
- **Ultra-Low Power Dissipation**
 - dc, 0.3 mW Max
 - 32 MHz All Channels (No Load). **385 mW Typ**
- Accept 5-V Logic Inputs With a 3.3-V Supply
- Low-Voltage Pin-to-Pin Compatible Replacement for AM26C31, AM26LS31, MB571
- **High Output Impedance in Power-Off** Condition
- **Driver Output Short-Protection Circuit**
- **Package Options Include Plastic** Small-Outline (D, NS) Packages

(TOP VIEW) 16 🛮 V_{CC} 1Y 🛮 2 15 **∏** 4A 1Z**∏**3 14 **1** 4Y $G\Pi 4$ 13 **∏** 4Z 12 N G 2Z Π 2Y 🛮 6 11 3Z 10 3Y 2A **∏** 7 GND [] 8 9 **∏** 3A

description

The AM26LV31C and AM26LV31I are BiCMOS quadruple differential line drivers with 3-state outputs. They are designed to be similar to TIA/EIA-422-B and ITU Recommendation V.11 drivers with reduced supply-voltage

The devices are optimized for balanced-bus transmission at switching rates up to 32 MHz. The outputs have very high current capability for driving balanced lines such as twisted-pair transmission lines and provide a high impedance in the power-off condition. The enable function is common to all four drivers and offers the choice of active-high or active-low enable inputs. The AM26LV31C and AM26LV31I are designed using Texas Instruments proprietary LinIMPACT-C60™ technology, facilitating ultra-low power consumption without sacrificing speed. These devices offer optimum performance when used with the AM26LV32 quadruple line receivers.

The AM26LV31C is characterized for operation from 0°C to 70°C. The AM26LV31I is characterized for operation from -45°C to 85°C

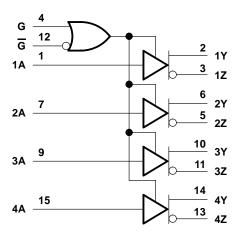
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinIMPACT-C60 is a trademark of Texas Instruments.

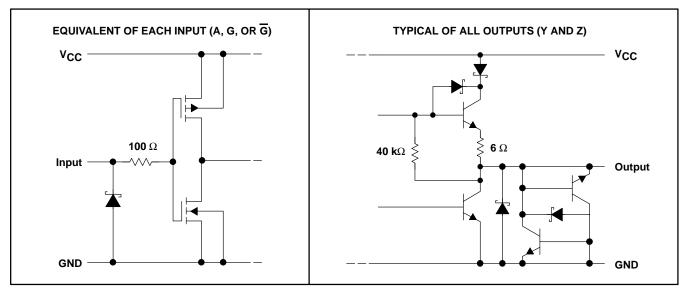
SLLS201F - MAY 1995 - REVISED APRIL 2002

AVAILABLE OPTIONS

	PACKAGES		
TA	SMALL OUTLINE (D, NS)		
0°C to 70°C	AM26LV31CD		
	AM26LV31CNSR		
–45°C to 85°C	AM26LV31INSR		


The D package also is available taped and reeled. Add the suffix R to device type (e.g., AM26LV31CDR). The NS package is only available taped and reeled.

FUNCTION TABLE


INPUT	ENA	BLES	OUTPUTS		
Α	G	G	Y	Z	
Н	Н	Х	Н	L	
L	Н	Χ	L	Н	
Н	Х	L	Н	L	
L	Х	L	L	Н	
Х	L	Н	Z	Z	

H = high level, L = low level, X = irrelevant, Z = high impedance (off)

logic diagram (positive logic)

schematic (each driver)

All resistor values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	–0.3 V to 6 V
Input voltage range, V ₁	–0.3 V to 6 V
Output voltage range, VO	–0.3 V to 6 V
Package thermal impedance, θ_{JA} (see Note 2): D package	
NS package	64°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stg}	–65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. All voltage values are with respect to GND.

recommended operating conditions

			MIN	NOM	MAX	UNIT
VCC	V _{CC} Supply voltage		3	3.3	3.6	V
VIH	V _{IH} High-level input voltage		2			V
V _{IL}	V _{IL} Low-level input voltage				0.8	V
IOH High-level output current				-30	mA	
loL	I _{OL} Low-level output current				30	mA
TA	Operating free-air temperature	AM26LV31C	0		70	°C
		AM26LV31I	-45		85	J

^{2.} The package thermal impedance is calculated in accordance with JESD 51-7.

AM26LV31C, AM26LV31I LOW-VOLTAGE HIGH-SPEED QUADRUPLE DIFFERENTIAL LINE DRIVERS

SLLS201F - MAY 1995 - REVISED APRIL 2002

electrical characteristics over recommended operating supply-voltage and free-air temperature ranges (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	I _I = –18 mA				-1.5	V
Vон	High-level output voltage	V _{IH} = 2 V,	$I_{OH} = -12 \text{ mA}$	1.85	2.3		V
VOL	Low-level output voltage	V _{IL} = 0.8 V,	I _{OH} = 12 mA		0.8	1.05	V
V _{OD}	Differential output voltage‡	R _L = 100 Ω		0.95	1.5		V
Voc	Common-mode output voltage			1.3	1.55	1.8	V
Δ VOC	Change in magnitude of common-mode output voltage [‡]					±0.2	٧
IO	Output current with power off	$V_0 = -0.25 \text{ V or } 6 \text{ V},$	$V_{CC} = 0$			±100	μΑ
loz	Off-state (high-impedance state) output current	$V_0 = -0.25 \text{ V or } 6 \text{ V},$	$G = 0.8 \text{ V or } \overline{G} = 2 \text{ V}$			±100	μΑ
lН	High-level input current	$V_{CC} = 0 \text{ or } 3 \text{ V},$	V _I = 5.5 V			10	μΑ
IIL	Low-level input current	V _{CC} = 3.6 V,	V _I = 0			-10	μΑ
los	Short-circuit output current	$V_{CC} = 3.6 \text{ V},$	V _O = 0			-200	mA
ICC	Supply current (all drivers)	$V_I = V_{CC}$ or GND,	No load			100	μΑ
C _{pd}	Power dissipation capacitance (all drivers)§	No load			160		pF

switching characteristics, $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output		4	8	12	ns
tPHL	Propagation delay time, high- to low-level output	See Figure 2	4	8	12	ns
t _t	Transition time (t _r or t _f)			3		ns
SR	Slew rate, single-ended output voltage	See Note 3 and Figure 2		0.3	1	V/ns
^t PZH	Output-enable time to high level	See Figure 3		10	20	ns
tPZL	Output-enable time to low level	See Figure 4		10	20	ns
^t PHZ	Output-disable time from high level	See Figure 3		10	20	ns
tPLZ	Output-disable time from low level	See Figure 4		10	20	ns
t _{sk(p)}	Pulse skew	f = 32 MHz, See Note 4		0.5	1.5	ns
t _{sk(o)}	Skew limit	f = 32 MHz			1.5	ns
tsk(lim)	Skew limit (device to device)	f = 32 MHz, See Note 5			3	ns

NOTES: 3. Slew rate is defined by:

$$SR = \frac{90\% \left(V_{OH} - V_{OL}\right) - 10\% \left(V_{OH} - V_{OL}\right)}{t_r}, \ \ \text{the differential slew rate of } \ V_{OD} \ \ \text{is } \ 2 \times SR.$$

- 4. Pulse skew is defined as the |tpLH tpHL| of each channel of the same device.
- 5. Skew limit (device to device) is the maximum difference in propagation delay times between any two channels of any two devices.

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$. ‡ $\Delta |V_{OD}|$ and $\Delta |V_{OC}|$ are the changes in magnitude of V_{OD} and V_{OC} , respectively, that occur when the input is changed from a high level to a low

 C_{pd} determines the no-load dynamic current consumption. $C_{pd} \times C_{pd} \times C_{$

PARAMETER MEASUREMENT INFORMATION

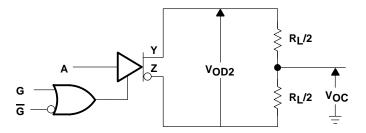
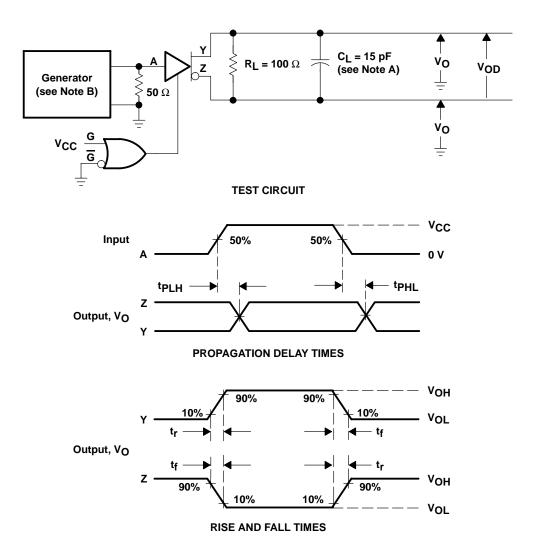



Figure 1. Differential and Common-Mode Output Voltages

NOTES: A. C_L includes probe and jig capacitance.

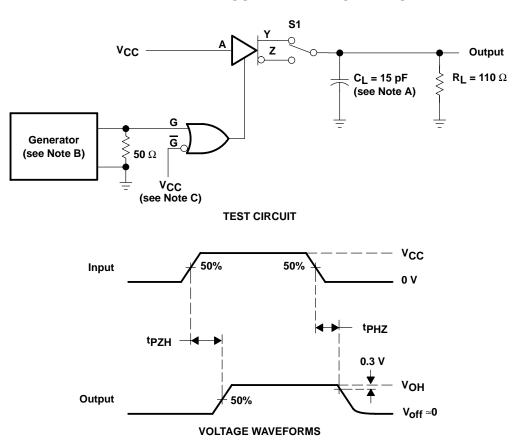

B. The input pulse is supplied by a generator having the following characteristics: PRR = 32 MHz, $Z_O \approx 50~\Omega$, 50% duty cycle, t_r and $t_f \le 2$ ns.

Figure 2. Test Circuit and Voltage Waveforms, tpHL and tpLH

SLLS201F - MAY 1995 - REVISED APRIL 2002

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

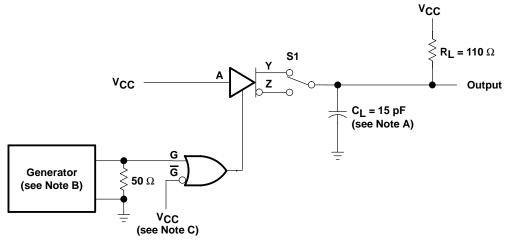
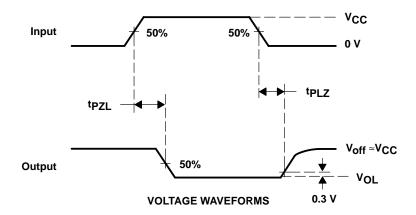

- B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, $Z_0 = 50 \Omega$, 50% duty cycle, t_Γ and t_f (10% to 90%) \leq 2 ns. C. To test the active-low enable \overline{G} , ground G and apply an inverted waveform to \overline{G} .

Figure 3. Test Circuit and Voltage Waveforms, tpzH and tpHZ



SLLS201F - MAY 1995 - REVISED APRIL 2002

PARAMETER MEASUREMENT INFORMATION

TEST CIRCUIT

NOTES: A. C_L includes probe and jig capacitance.

- B. The input pulse is supplied by a generator having the following characteristics: PRR = 1 MHz, Z_O = 50 Ω , 50% duty cycle, t_Γ and t_f (10% to 90%) \leq 2 ns.__
- C. To test the active-low enable \overline{G} , ground G and apply an inverted waveform to \overline{G} .

Figure 4. Test Circuit and Voltage Waveforms, tpzL and tpLZ

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated