MIL-M-38510/9E <u>8 February 2005</u> SUPERSEDING MIL-M-38510/9D 4 June 1980 MIL-M-0038510/9B 15 October 1973

MILITARY SPECIFICATION

MICROCIRCUITS, DIGITAL, BIPOLAR TTL, SHIFT REGISTERS, MONOLITHIC SILICON

Inactive for new design after 7 September 1995.

This specification is approved for use by all Departments and Agencies of the Department of Defense.

The requirements for acquiring the product herein shall consist of this specification sheet and MIL-PRF 38535

- 1. SCOPE
- 1.1 <u>Scope.</u> This specification covers the detail requirements for monolithic silicon, TTL, shift register microcircuits. Two product assurance classes and a choice of case outlines and lead finishes are provided for each type and are reflected in the complete part number. For this product, the requirements of MIL-M-38510 have been superseded by MIL-PRF-38535, (see 6.4).
 - 1.2 Part or Identifying Number (PIN). The PIN is in accordance with MIL-PRF-38535 and as specified herein.
 - 1.2.1 <u>Device types.</u> The device types are as follows:

Device type	<u>Circuit</u>
01	4 bit right shift, left shift register
02	5 bit shift register
03	8 bit parallel out serial shift register
04	8 bit parallel load shift register
05	4 bit bidirectional shift register
06	4 bit parallel access shift register

- 1.2.2 Device class. The device class is the product assurance level as defined in MIL-PRF-38535.
- 1.2.3 Case outlines. The case outlines are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Α	GDFP5-F14 or CDFP6-F14	14	Flat pack
В	GDFP4-14	14	Flat pack
С	GDIP1-T14 or CDIP2-T14	14	Dual-in-line
D	GDFP1-F14 or CDFP2-F14	14	Flat pack
Е	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or CDFP3-F16	16	Flat-pack

Comments, suggestions, or questions on this document should be addressed to: Commander, Defense Supply Center Columbus, ATTN: DSCC-VAS, P. O. Box 3990, Columbus, OH 43218-3990, or emailed to bipolar@dscc.dla.mil. Since contact information can change, you may want to verify the currency of this address information using the ASSIST Online database at http://assist.daps.dla.mil.

AMSC N/A FSC 5962

1.3 Absolute maximum ratings.

Supply voltage range (V _{CC})	-0.5 V dc to +7.0 V dc
Input voltage range	
Storage temperature range	-65°C to +150°C
Maximum power dissipation per register, $P_D = 1/2$	
Device type 01	
Device type 02	
Device type 03	
Device type 04	
Device type 05	
Device type 06	
Lead temperature (soldering 10 seconds)	
Thermal resistance, junction-to-case (θ_{JC})	,
Junction temperature (T _J) <u>2</u> /	175°C
1.4 Recommended operating conditions.	
Supply voltage (V _{CC})	4.5 V dc minimum to 5.5 V dc maximum
Minimum high level input voltage	
Maximum low level input voltage	0.8 V dc
Case operating temperature range (T _C)	-55°C to 125°C
Fan out	
Device types 01, 02, 04, 05, and 06	
High logic level	
Low logic level	10
Device type 03	
High logic level	
Low logic level	5
Device type 01	
Low level setup time at mode control	
with respect to clock 1 input	35 ns minimum
High level setup time at mode control	
with respect to clock 2 input	35 ns minimum
Low level setup time at mode control	
with respect to clock 2 input	10 ns minimum
High level setup time at mode control	40
with respect to clock 1 input	
Width of clock pulse	
Setup time required at serial A, B, C, D inputs	
Hold time required at serial A, B, C, D inputs	5 ns minimum
Device type 02	05
Minimum clock pulse width	
Minimum clear pulse width	
Minimum preset pulse width	
Serial input setup time	
Serial input hold time	u ns minimum
Device type 03	20 no maximum
Minimum clock pulse width	
Minimum clear pulse width	
Serial setup time	
ochai holu line	IU II3 IIIdXIIIIUIII

 $[\]overline{\underline{1/}}$ Must withstand the added P_D due to short circuit condition (e.g. I_{OS}) at one output for 5 seconds duration. $\underline{\underline{2/}}$ Maximum junction temperature should not be exceeded except in accordance with allowable short duration burn-in screening condition in accordance with MIL-PRF-38535.

Device type 04	
Width of clock input pulse	20 ns minimum
Width of load input pulse	
Clock enable setup time	
Parallel input setup time	
Serial input setup time	35 ns minimum
Shift setup time	
Hold time at serial input	
Hold time at parallel input	25 ns maximum
Device type 05	
Width of clock input pulse	
Width of clear input pulse	
Data input setup time	
Clear input setup time	
Hold time at any input	
Mode control setup time	30 ns minimum
Device type 06	
Width of clock input pulse	
Width of clear input pulse	12 ns minimum
Shift load input setup time	
Data input setup time	
Clear input setup time	
Shift load release time	
Data hold time	0 ns minimum

2.0 APPLICABLE DOCUMENT

2.1 <u>General.</u> The documents listed in this section are specified in sections 3, 4, or 5 of this specification. This section does not include documents cited in other sections of this specification or recommended for additional information or as examples. While every effort has been made to ensure the completeness of this list, document users are cautioned that they must meet all specified requirements of documents cited in sections 3, 4, or 5 of this specification, whether or not they are listed.

2.2 Government documents.

2.2.1 <u>Specifications and standards.</u> The following specifications and standards form a part of this specification to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATIONS

MIL-PRF-38535 - Integrated Circuits (Microcircuits) Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard for Microelectronics.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.3 <u>Order of precedence.</u> In the event of a conflict between the text of this specification and the references cited herein, the text of this document takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Qualification</u>. Microcircuits furnished under this specification shall be products that are manufactured by a manufacturer authorized by the qualifying activity for listing on the applicable qualified manufacturers list before contract award (see 4.3 and 6.3).
- 3.2 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535 and as specified herein or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not affect the form, fit, or function as described herein.
- 3.3 <u>Design, construction, and physical dimensions.</u> The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535 and herein.
 - 3.3.1 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 1.
 - 3.3.2 Truth tables and timing diagrams. The truth tables and timing diagrams shall be as specified on figure 2.
 - 3.3.3 Logic diagrams. The logic diagrams shall be as specified on figure 3.
- 3.3.4 <u>Schematic circuit.</u> The schematic circuit shall be maintained by the manufacturer and made available to the qualifying activity and the preparing activity upon request.
 - 3.3.5 Case outlines. Case outlines shall be as specified in 1.2.3.
 - 3.4 Lead material and finish. Lead material and finish shall be in accordance with MIL-PRF-38535 (see 6.6).
- 3.5 <u>Electrical performance characteristics</u>. The electrical performance characteristics are as specified in table 1 and apply over the full recommended case operating temperature range, unless otherwise specified.
- 3.6 <u>Electrical test requirements</u>. The electrical test requirements for each device class shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table III.
 - 3.7 Marking. Marking shall be in accordance with MIL-PRF-38535.
- 3.8 <u>Microcircuit group assignment.</u> The devices covered by this specification shall be in microcircuit group number 5 (see MIL-PRF-38535, appendix A).

4. VERIFICATION

- 4.1 <u>Sampling and inspection.</u> Sampling and inspection procedures shall be in accordance with MIL-PRF-38535 or as modified in the device manufacturer's Quality Management (QM) plan. The modification in the QM plan shall not effect the form, fit, or function as described herein.
- 4.2 <u>Screening.</u> Screening shall be in accordance with MIL-PRF-38535 and shall be conducted on all devices prior to qualification and conformance inspection. The following additional criteria shall apply:
 - a. The burn-in test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - b. Interim and final electrical test parameters shall be as specified in table II, except interim electrical parameters test prior to burn-in is optional at the discretion of the manufacturer.
 - c. Additional screening for space level product shall be as specified in MIL-PRF-38535.

TABLE I. Electrical performance characteristics.

		Conditions	Device		Limits	
Test	Symbol	$-55^{\circ}C \le T_C \le +125^{\circ}C$ unless otherwise specified	type	Min	Max	Unit
High-level	V _{OH}	$V_{CC} = 4.5 \text{ V}, V_{IN} = 2.0 \text{ V},$	02, 03	2.4		V
output voltage		I _{OH} = -400 μA				
		$V_{CC} = 4.5 \text{ V}, V_{IN} = 2.0 \text{ V},$	01, 04	2.4		V
		I _{OH} = -800 μA	05, 06			<u> </u>
Low-level	V_{OL}	$V_{CC} = 4.5 \text{ V}, I_{OL} = 16 \text{ mA},$	01, 02, 04		0.4	V
output voltage		V _{IN} = 0.8 V	05, 06		0.4	
		$V_{CC} = 4.5 \text{ V}, V_{IN} = 0.8 \text{ V},$	03		0.4	V
18.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	.,	I _{OL} = 8 mA				
High level input voltage	V _{IH}	V _{CC} = 4.5 V	All	2.0		V
Low level input voltage	VIL	V _{CC} = 4.5 V	All		0.8	V
Input clamp voltage	V _{IC}	V _{CC} = 4.5 V, I _{IN} = -12 mA,	All		-1.5	V
		T _C = 25° C				
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.4 \text{ V}$	01		40	μΑ
at any input except mode control	I _{IH2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	01		100	μА
High level input current	I _{IH3}	V _{CC} = 5.5 V, V _{IN} = 2.4 V	01		80	μА
at mode control	I _{IH4}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	01		200	μА
High level input current	I _{IH1}	V _{CC} = 5.5 V, V _{IN} = 2.4 V	02		40	μA
at any input except preset	I _{IH2}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	02		100	μА
High level input current	I _{IH3}	V _{CC} = 5.5 V, V _{IN} = 2.4 V	02		200	μА
at preset	I _{IH4}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	02		500	<u>.</u> μΑ
High level input current	I _{IH1}	V _{CC} = 5.5 V, V _{IN} = 2.4 V	03		40	μA
at any input except	I _{IH2}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	03		100	μA
High level input current	I _{IH3}	V _{CC} = 5.5 V, V _{IN} = 2.4 V	03		80	μА
at clear	I _{IH4}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	03		200	μA
High level input current	I _{IH1}	V _{CC} = 5.5 V, V _{IN} = 2.4 V	04		40	μA
other than load input	I _{IH2}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	04		100	μΑ
High level input current	I _{IH3}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.4 \text{ V}$	04		120	μА
load input	I _{IH4}	V _{CC} = 5.5 V, V _{IN} = 5.5 V	04		300	μА
High level input current	I _{IH1}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 2.4 \text{ V}$	05, 06		40	μΑ
5	I _{IH2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 5.5 \text{ V}$	05, 06		100	μΑ
Low level input current at any input except mode control	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	01	-0.4	-1.6	mA

TABLE I. <u>Electrical performance characteristics - Continued.</u>

Test	Symbol	Conditions $ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C $ unless otherwise specified	Device type		Limits	
Low level input current	I _{IL2}	$V_{CC} = 5.5 \text{ V}, V_{IN} = 0.4 \text{ V}$	01	-0.8	-3.2	mA
at mode control Low level input current at any input except preset	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	02	-0.7	-1.6	mA
Low level input current at preset	I _{IL2}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	02	-3.0	-8.0	mA
Low level input current at any input except clear	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	03	-0.4	-1.6	mA
Low level input current at clear	I _{IL2}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	03	-0.7	-2.6	mA
Low level input current load input	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	04	-1.2	-3.9	mA
Low level input current other than clock and load input	I _{IL2}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	04	-0.4	-1.3	mA
Low level input current clock input	I _{IL3}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	04	-0.4	-1.6	mA
Low level input current other than S0, S1 and clock input	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	05	-0.4	-1.3	mA
Low level input current S0 and S1 input	I _{IL2}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	05	-0.4	-1.6	mA
Low level input current clock input	I _{IL3}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	05	-0.7	-1.6	mA
Low level input current at clear input	I _{IL1}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	06	-0.4	-1.3	mA
Low level input current other than clear and clock inputs	I _{IL2}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	06	-0.4	-1.6	mA
Low level input current at clock input	I _{IL3}	V _{CC} = 5.5 V, V _{IN} = 0.4 V	06	-0.7	-1.6	mA
Short-circuit output	Ios	V _{CC} = 5.5 V <u>1</u> /	01	-18	-57	mA
current			02, 05, 06	-20	-57	
			03	-10	-27.5	
			04	-20	-55	

TABLE I. <u>Electrical performance characteristics - Continued.</u>

Test	Symbol	Conditions $ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C $ unless otherwise specified	Device type		Limits	
Supply current	Icc	V _{CC} = 5.5 V <u>2</u> /	01		72	mA
			02		68	
			04, 05, 06		63	
Supply current	I _{CC1}	$V_{CC} = 5.5 \text{ V}, V_{IN(CLOCK)} = 0.4 \text{ V}$ $\underline{2}$ /	03		44	mA
	I _{CC2}	$V_{CC} = 5.5 \text{ V}, V_{IN(CLOCK)} = 2.4 \text{ V}$ $\underline{2}/$	03		54	mA
Maximum shift frequency	f _{MAX}	V_{CC} = 5.0 V, C_L = 50 pF ±10% R_L = 400 Ω ±5%	01	16		MHz
Propagation delay time, low to high level from clock 1 or clock 2 to outputs	t _{PLH}	(See figure 4)		10	42	ns
Propagation delay time, high to low level from clock 1 or clock 2 to outputs	t _{PHL}			10	49	ns
Maximum clock frequency	f _{MAX}	V_{CC} = 5.0 V, C_L = 50 pF $\pm 10\%$ R_L = 400 Ω $\pm 5\%$	02	7		MHz
Propagation delay time, low to high level from clock to output	t _{PLH1}	(See figure 5)		8	56	ns
Propagation delay time, high to low level from clock to output	t _{PHL1}			8	56	ns
Propagation delay time, low to high level from preset to output	t _{PLH2}			8	59	ns
Propagation delay time, high to low level from clear to output	t _{PHL3}			8	77	ns
Maximum clock frequency	f _{MAX}	V_{CC} = 5.0 V, C_L = 50 pF ±10% R_L = 800 Ω ±5%	03	18		MHz
Propagation delay time, high to low level, clear input to Q outputs	t _{PHL1}	(See figure 6)		12	63	ns
Propagation delay time, high to low level, clock input to Q outputs	t _{PHL2}			10	52	ns
Propagation delay time, low to high level, clock input to Q outputs	t _{PLH2}			10	42	ns

TABLE I. <u>Electrical performance characteristics - Continued.</u>

Test	Symbol	Conditions $ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C $ unless otherwise specified	Device type		Limits	
Maximum clock frequency	f _{MAX}	V_{CC} = 5.0 V, C_L = 50 pF ±10% R_L = 400 Ω ±5%	04	14		MHz
Propagation delay time, low to high level, load input to any output	t _{PLH1}	(See figure 7)		10	40	ns
Propagation delay time, high to low level, load input to any output	t _{PHL1}			11	60	ns
Propagation delay time, low to high level, clock input to any output	t _{PLH2}			6	37	ns
Propagation delay time, high to low level, clock input to any output	t _{PHL2}			10	47	ns
Propagation delay time, low to high level, H input to Q _H output	t _{PLH3}			5	27	ns
Propagation delay time, high to low level, H input to Q _H output	t _{PHL3}			11	54	ns
Propagation delay time, low to high level, H input to QH output	t _{PLH4}			10	41	ns
Propagation delay time, high to low level, H input to Qн output	t _{PHL4}			10	41	ns
Maximum clock frequency	f _{MAX}	V_{CC} = 5.0 V, C_L = 50 pF ±10% R_L = 400 Ω ±5%	05	18		MHz
Propagation delay time, high to low level, output from clear	t _{PHL1}	(See figure 8)		7	48	ns
Propagation delay time, low to high level output from clock	t _{PLH2}			7	36	ns
Propagation delay time, high to low level output from clock	t _{PHL2}			7	44	ns

TABLE I. <u>Electrical performance characteristics - Continued.</u>

Test	Symbol	$\label{eq:conditions} Conditions \\ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ unless otherwise specified$	Device type		Limits	
Maximum clock frequency	f _{MAX}	$V_{CC} = 5.0 \text{ V}, C_L = 50 \text{ pF} \pm 10\%$ $R_L = 400 \Omega \pm 5\%$	06	24		MHz
Propagation delay time, high to low level output from clear	t _{PHL1}	(See figure 9)		7	34	ns
Propagation delay time, high to low level output from clock	t _{PLH2}			7	28	ns
Propagation delay time, low to high level output from clock	t _{PHL2}			7	34	ns

- $\underline{1}'$ Not more than one output should be shorted at a time. $\underline{2}'$ Device type:
- - 01 With the outputs open, mode control at 4.5 V, clock pulse applied to both clock inputs, I_{CC} is measured immediately after the application of the clock pulse.
 - 02 With the outputs open, presets at 4.5 V, I_{CC} is measured with the clock at ground and again with the clock at 4.5 V.
 - 03 I_{CC} is measured with outputs open, serial inputs grounded, and a momentary ground, then 4.5 V
 - 04 With the outputs open, serial at ground, clock, clock inhibit, and parallel inputs at 4.5 V, I_{CC} is measured by applying momentary ground, then 4.5 V to shift load prior to measurement.
 - 05 With all outputs open, inputs A thru D grounded, 5.5. V applied to S0, S1, clear, and the serial inputs, I_{CC} is tested by applying clock pulse.
 - 06 With the outputs open, clear at 5.5 V, shift load, J, \overline{K} , and data inputs grounded, I_{CC} is measured by applying clock pulse.

TABLE II. Electrical test requirements.

	Subgroups (s	ee table III)
MIL-PRF-38535 Test requirement	Class S Devices	Class B Devices
Interim electrical parameters	1	1
Final electrical test parameters	1*, 2, 3, 7, 9, 10, 11	1*, 2, 3, 7, 9
Group A test requirements	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3, 7, 8 9, 10, 11
Group B electrical test parameters when using the method 5005 QCI option	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3 7, 9
Group C end point electrical parameters	1, 2, 3, 7, 8, 9, 10, 11	1, 2, 3
Group D end point electrical parameters	1, 2, 3	1, 2, 3

^{*}PDA applies to subgroup 1 (see 4.3c.).

- 4.3 Qualification inspection. Qualification inspection shall be in accordance with MIL-PRF-38535.
- 4.4 <u>Technology Conformance Inspection (TCI)</u>. Technology conformance inspection shall be in accordance with MIL-PRF-38535 and herein for groups A, B, C, and D inspections (see 4.4.1 through 4.4.4).
- 4.4.1 <u>Group A inspection.</u> Group A inspection shall be in accordance with table III of MIL-PRF-38535 and as follows:
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5 and 6 shall be omitted.
 - 4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of MIL-PRF-38535.
- 4.4.3 Group C inspection. Group C inspection shall be in accordance with table IV of MIL-PRF-38535 and as follows:
 - a. End point electrical parameters shall be as specified in table II herein.
 - b. The steady-state life test duration, test condition, and test temperature, or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-PRF-38535. The burn-in test circuit shall be maintained under document control by the device manufacturer's Technology Review Board (TRB) in accordance with MIL-PRF-38535 and shall be made available to the acquiring or preparing activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
- 4.4.4 <u>Group D inspection.</u> Group D inspection shall be in accordance with table V of MIL-PRF-38535. End-point electrical parameters shall be as specified in table II herein.
 - 4.5 Methods inspection. Methods of inspection shall be as specified in the appropriate tables and as follows:
- 4.5.1 <u>Voltage and current</u>. All voltages given are referenced to the microcircuit ground terminal. Currents given are conventional current and positive when flowing into the referenced terminal.

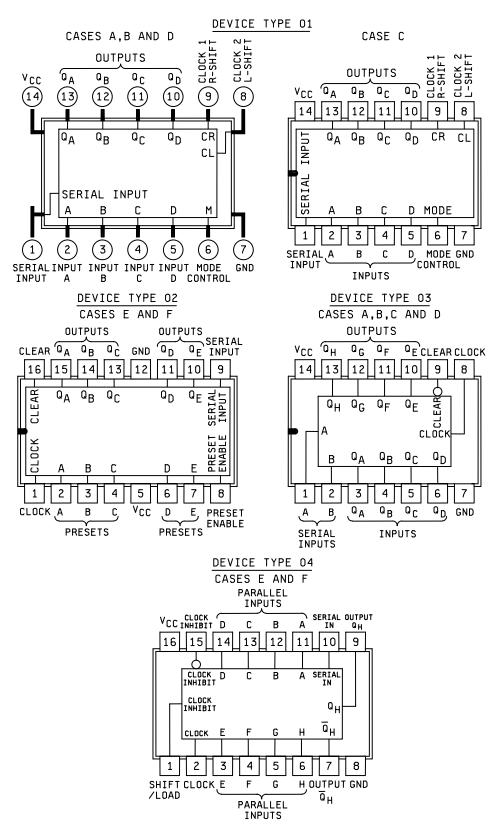
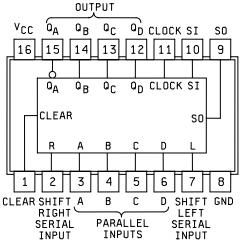



Figure 1. <u>Terminal connections</u>.

DEVICE TYPE 05 CASES E AND F

DEVICE TYPE 06 CASES E AND F

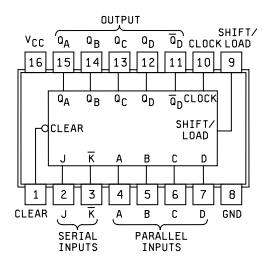


Figure 1. <u>Terminal connections</u> - Continued.

Device type 01

INPUTS									OUTI	PUTS	
MODE	MODE CLOCKS		OCKS SERIAL		PARA	LLEL		Q_A	Q_B	Q_{C}	Q_D
CONTROL	2 (L)	1(R)		Α	В	С	D				
Н	Η	Χ	Х	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
Н	\downarrow	Х	X	а	b	С	d	а	b	С	d
Н	\downarrow	Х	Х	Q_B^{\dagger}	Q_C^{\dagger}	Q_D^{\dagger}	d	Q_{Bn}	Q _{Cn}	Q_{Dn}	d
L	L	Н	Х	Χ	Χ	Χ	Χ	Q_{A0}	Q_{B0}	Q_{C0}	Q_{D0}
L	X	\downarrow	Н	Х	Х	X	Χ	Н	Q_{An}	Q_{Bn}	Q_{Cn}
L	X	\downarrow	L	Х	Х	X	Χ	L	Q_{An}	Q_{Bn}	Q _{Cn}
↑	L	L	X	X	Х	X	X	Q _{A0}	Q _{B0}	Q_{C0}	Q_{D0}
\downarrow	L	L	X	X	Х	X	X	Q _{A0}	Q _{B0}	Q_{C0}	Q_{D0}
\downarrow	L	Н	X	X	Х	X	X	Q _{A0}	Q _{B0}	Q_{C0}	Q_{D0}
↑	Η	L	Х	Х	Х	Х	Χ	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}
↑	Н	Н	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}

 $^{^{\}dagger}$ = Shifting left requires external connection of Q_B to A, Q_C to B, and Q_D to C. Serial data is entered at input D.

	INPUTS									0	UTPU	ΓS	
CLEAR	PRESET		Р	RESE	ΞT		CLOCK	SERIAL	Q_{A}	Q_{B}	Q_{C}	Q_D	Q_{E}
	ENABLE	Α	В	С	D	Е							
L	L	Х	Х	Х	Х	Х	Х	Х	L	L	L	L	L
L	Х	L	L	L	L	L	X	Х	L	L	L	L	L
Н	Н	Ι	Η	Ι	Н	Ι	Х	Х	Ι	Ι	Н	Ι	Ι
Н	Н	Ш	Ш	Ш	L	Ш	L	X	Q_{A0}	Q _{B0}	Q _{C0}	Q_{D0}	Q _{E0}
Н	Н	Ι	Ш	Ι	L	Ι	L	X	Ι	Q _{B0}	Н	Q_{D0}	Η
Н	L	X	Χ	Χ	Х	Χ	L	X	Q_{A0}	Q _{B0}	Q _{C0}	Q_{D0}	Q _{E0}
Н	L	X	Χ	Χ	Χ	Χ	↑	Н	Ι	Q _{An}	Q _{Bn}	Q _{Cn}	Q_{Dn}
Н	L	Χ	Χ	Χ	Χ	Χ	↑	L	L	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Dn}

H = high level (steady state), L = low level (steady state),

Figure 2. Truth tables and timing diagrams.

H = high level (steady state), L = low level (steady state), X = irrelevant (any input including transitions)

 $[\]downarrow$ = transition from high to low level, \uparrow = transition from low to high level

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C or Q_D respectively, before the indicated steady state input conditions were established.

Q_{An}, Q_{Bn}, Q_{Cn}, Q_{Dn} = the level of Q_A, Q_B, Q_C or Q_D respectively, before the most recent ↓ transition of the clock.

X = irrelevant (any input including transitions), $\uparrow = \text{transition}$ from low to high level

 Q_{A0} , Q_{B0} , etc. = the level of Q_A , Q_B , etc. respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , etc. = the level of Q_A , Q_B , etc. respectively, before the most recent \uparrow transition of the clock.

	INPUT	OUTPUTS				
CLEAR	CLOCK	Α	В	Q_A	Q _B	.Q _H
L	Х	Х	Х	L	L	L
Н	L	X	Χ	Q_{A0}	Q _{B0}	Q _{H0}
Н	↑	Н	Н	Н	Q_{An}	Q_{Gn}
Н	↑	L	Х	L	Q _{An}	Q_{Gn}
Н	↑	Х	L	L	Q _{An}	Q_{Gn}

H = high level (steady state), L = low level (steady state),

		INTE	RNAL				
SHIFT/	CLOCK	CLOCK	SERIAL	PARALLEL	OUTI	PUTS	OUTPUT
LOAD	INHIBIT			A H	Q_A	Q _B	Q_H
L	Х	Х	Х	ah	а	b	h
Н	L	L	X	Х	Q _{A0}	Q _{B0}	Q _{H0}
Н	L	↑	Н	Х	Н	Q _{An}	Q_{Gn}
Н	L	↑	L	Х	L	Q _{An}	Q_{Gn}
Н	Н	1	Х	Х	Q_{A0}	Q _{B0}	Q _{H0}

H = high level (steady state), L = low level (steady state),

Figure 2. <u>Truth tables and timing diagrams</u> – Continued.

X = irrelevant (any input including transitions),

^{↑ =} transition from low to high level

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_A , Q_B , or Q_H , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = the level of Q_A or Q_G before the most recent \uparrow transition of the clock; indicates a one bit shift.

X = irrelevant (any input including transitions),

^{↑ =} transition from low to high level

a \ldots h = the level of steady state input at inputs A thru H, respectively.

 Q_{A0} , Q_{B0} , Q_{H0} = the level of Q_{A} , Q_{B} , or Q_{H} , respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Gn} = the level of Q_A or Q_G before the most recent \uparrow transition of the clock.

	INPUTS										OUTI	PUTS	
CLEAR	MC	DDE	CLOCK	SEI	RIAL		PARALLEL			Q_A	Q _B	Q_{C}	Q_D
	S1	S0		LEFT	RIGHT	Α	В	С	D				
L	Х	Х	Х	Х	Х	Х	Х	Χ	Х	L	L	L	L
Н	X	Х	L	X	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}
Н	Н	Н	↑	Χ	Х	а	b	С	d	а	b	С	d
Н	L	Н	1	Х	Н	Х	Х	Х	Х	Н	Q _{An}	Q _{Bn}	Q _{Cn}
Н	L	Н	↑	Χ	L	Х	Х	Х	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}
Н	Н	L	↑	Н	Х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	Н
Н	Н	L	↑	L	Х	Х	Х	Х	Х	Q _{Bn}	Q _{Cn}	Q _{Dn}	L
Н	L	L	Х	Х	Х	Х	Х	Х	Х	Q _{A0}	Q _{B0}	Q _{C0}	Q_{D0}

H = high level (steady state), L = low level (steady state), X = irrelevant (any input including transitions)

	<u>= = </u>												
INPUTS									С	UTPUT	rs		
CLEAR	SHIFT/	CLOCK	SEF	RIAL		PARA	LLEL		Q _A	Q _B	Q _C	Q_D	\overline{Q}_D
	LOAD		J	K	Α	В	С	D					
L	Х	Х	Χ	Χ	Χ	Χ	Χ	Χ	L	L	L	L	Ι
Н	L	↑	Х	Х	а	b	С	d	а	b	С	d	\bar{d}
Н	Н	L	Х	Х	Х	Х	Х	Х	Q _{A0}	Q_{BO}	Q _{C0}	Q_{D0}	Q _{D0}
Н	Н	↑	L	Н	Х	Х	Х	Х	Q _{A0}	Q _{A0}	Q _{Bn}	Q _{Cn}	QCn
Н	Н	↑	L	L	Х	Х	X	Х	L	Q _{An}	Q _{Bn}	Q _{Cn}	$\overline{\overline{Q}}$ Cn
Н	Н	↑	Н	Н	Х	Х	Х	Х	Н	Q _{An}	Q _{Bn}	Q _{Cn}	QCn
Н	Н	↑	Н	L	Х	Х	Х	Х	Q _{An}	Q _{An}	Q _{Bn}	Q _{Cn}	$\overline{\overline{Q}}$ Cn

H = high level (steady state), L = low level (steady state), X = irrelevant (any input including transitions)

Figure 2. Truth tables and timing diagrams - Continued.

 $[\]uparrow$ = transition from low to high level.

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C or Q_D respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C or Q_D respectively, before the most recent \uparrow transition of the clock.

^{↑ =} transition from low to high level.

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

 Q_{A0} , Q_{B0} , Q_{C0} , Q_{D0} = the level of Q_A , Q_B , Q_C or Q_D respectively, before the indicated steady state input conditions were established.

 Q_{An} , Q_{Bn} , Q_{Cn} , Q_{Dn} = the level of Q_A , Q_B , Q_C or Q_D respectively, before the most recent \uparrow transition of the clock.

Positive logic: Mode control = L for right shift.

Mode control = H for left shift or parallel load.

Transfer of information to the output pins occurs when the clock input goes from a logical H to a

logical L.

Device type 02

Positive logic: Low input of clear sets all outputs to logical L.

Clear input is independent of clock.

Preset is independent of the clock or clear inputs

The flip-flops may be independently set to the logical H state by applying a logical H to both the preset input of the specific flip-flop and the common preset input.

Transfer of information to the output pins occurs when the clock input goes from a logical L to a logical H.

The clear input shall be a logical H and the preset input shall be at a logical L when clocking occurs.

The proper information shall appear at the R-S inputs of each flip-flop prior to the rising edge of the clock input voltage waveform.

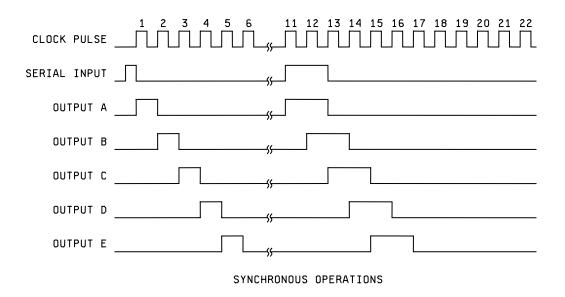
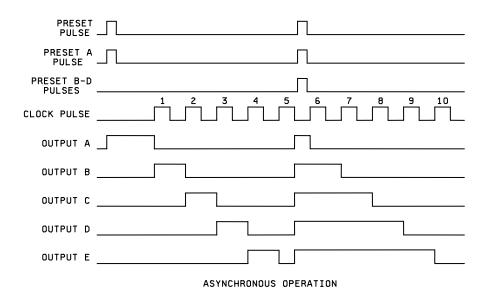



Figure 2. Truth tables and timing diagrams - Continued.

DEVICE TYPE 02 TYPICAL INPUT/OUTPUT VOLTAGE WAVEFORMS

NOTE: INPUTS NOT SHOWN ARE HELD AT LOGIC LEVEL "L".

Device type 03 SERIAL INPUTS A and B

INPUTS	S at t _n	OUTPUT at t _n + 1
Α	В	Q_A
Н	Н	Н
L	Н	L
Н	L	L
L	L	L

Positive logic: $t_n = bi$

 t_n = bit time before clock pulse.

 $t_n + 1$ = bit time after clock pulse.

Data at the serial inputs may be changed while the clock is high, but only information meeting the setup requirements will be entered. Clocking occurs on the low to high level transition of the clock input.

The clear input is asynchronous. Low level at clear input sets all outputs to logical low.

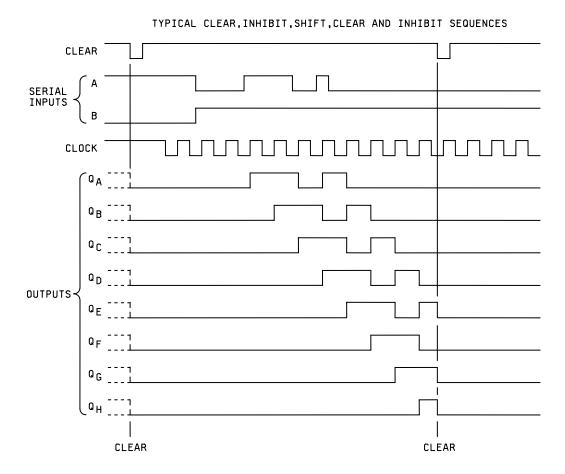


Figure 2. <u>Truth tables and timing diagrams</u> – Continued.

Positive logic: Transfer of information to the output occurs when the clock input goes from a logical L to a logical H.

Clocking is accomplished through a 2 input positive NOR gate, permitting one input to be used as a clock inhibit function. Holding either of the clock inputs high inhibits clocking, and holding either clock input low with the load input high enables the other clock input. The clock inhibit should be changed to the high level only while the clock input is high. Parallel loading is inhibited as long as the load input is high. When taken low, data at the parallel inputs are loaded directly into the register independently of the state of the clock.

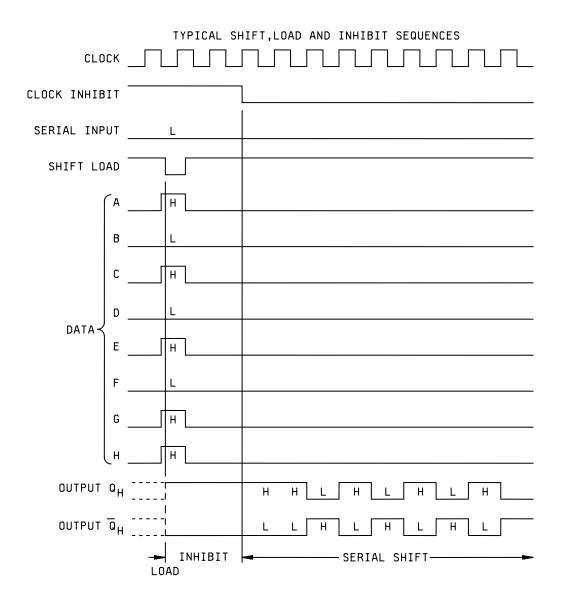


Figure 2. Truth tables and timing diagrams - Continued.

Positive logic: The register has four distinct modes of operation, namely:

	MODE	CONTROL
	S1	S0
Parallel (Broadside) Load	Н	Н
Shift Right (in the direction Q _A toward Q _D)	L	Н
Shift Left (in the direction Q _D toward Q _A)	Н	L
Inhibit Clock (do nothing)	L	L

In the parallel load mode, data is loaded into the associated flip-flop and appears at the output after the positive transition of the clock input. During loading, serial data flow is inhibited. Shift right is accomplished synchronously with the rising edge of the clock pulse when S0 is high and S1 is low. Serial data for this mode is entered at the shift right data input. When S0 is low S1 is high, data shifts left synchronously a new data is entered at the shift left serial input. Clocking of the flip-flops is inhibited when both mode control inputs are low. The mode controls should be changed only while the clock input is high.

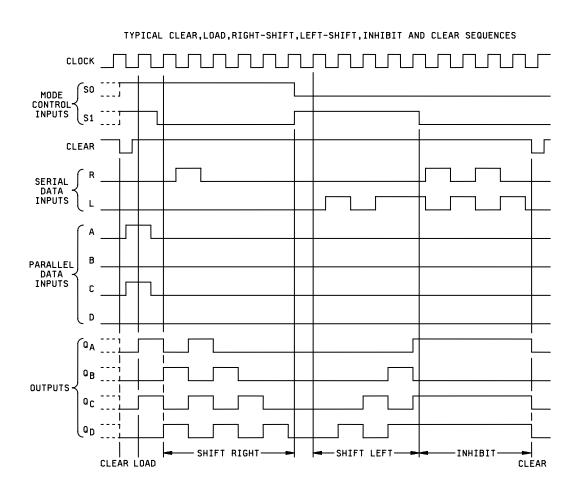


Figure 2. Truth tables and timing diagrams - Continued.

Positive logic: The registers have two modes of operation:

Parallel (broadside) load

Shift (in direction Q_A toward Q_D)

Parallel loading is accomplished by applying the four bits of data and taking the shift/load control input low. The data is loaded into the associated flip-flop and appears at the outputs after the positive transition of the clock input. During loading, serial data flow is inhibited.

Shifting is accomplished synchronously when the shift/load control input is high. Serial data for this mode is entered at the $J - \overline{K}$ inputs. These inputs permit the first stage to perform as a $J - \overline{K}$, D-, or T-type flip-flop as shown in the truth table.

	TRUTH TABLE									
Inputs	s at t _n		Outp	outs at t	_n + 1					
J	ĸ	Q_A	Q _B	Q_{C}	Q_D	Q _D				
L	Η	Q _{An}	Q _{An}	Q_{Bn}	Q _{Cn}	Q _{Cn}				
L	L	L	Q _{An}	Q _{Bn}	Q _{Cn}	Q _{Cn}				
Н	Ι	Н	Q _{An}	Q_{Bn}	Q _{Cn}	Q _{Cn}				
Н	L	Q _{An}	Q _{An}	Q_{Bn}	Q _{Cn}	Q _{Cn}				

H = high level, L = low level NOTES:

- 1. t_n = bit time before clock pulse
- 2. $t_n + 1$ = bit time after clock pulse
- 3. Q_{An} = state of Q_{An} at t_n .

CLOCK

CLEAR

SERIAL

INPUTS

K

SHIFT/LOAD

PARRALLEL

DATA

INPUTS

C

D

OA

OB

OUTPUTS

OC

OD

SERIAL SHIFT

LOAD

SERIAL SHIFT

LOAD

SERIAL SHIFT

Figure 2. Truth tables and timing diagrams - Continued.

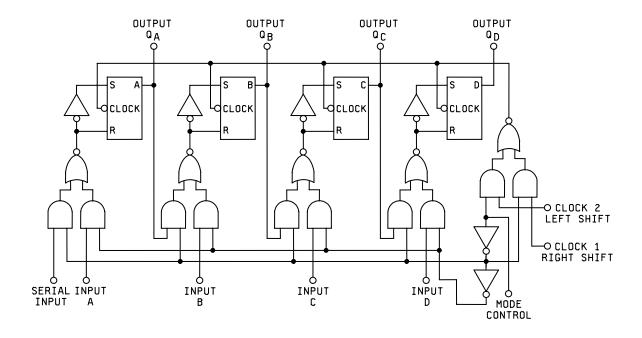


FIGURE 3. Logic diagrams.

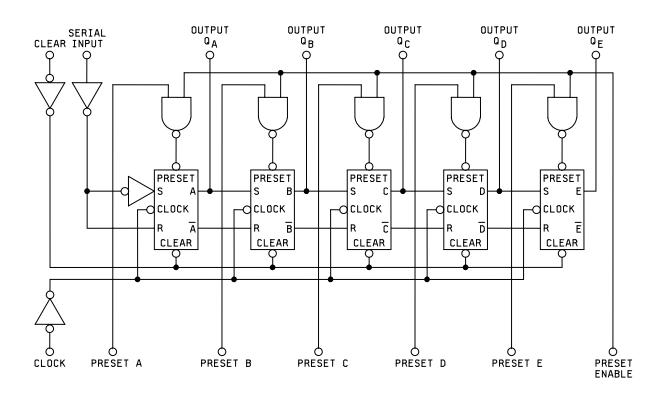
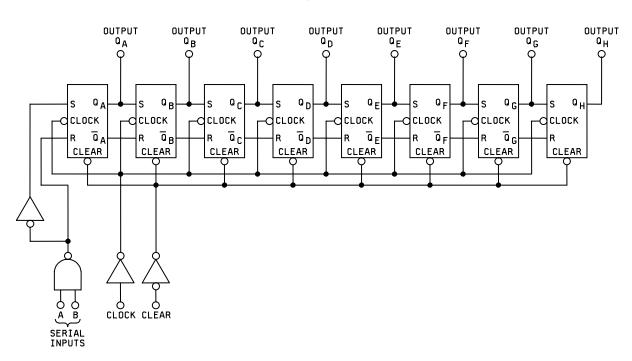



FIGURE 3. Logic diagrams - Continued.

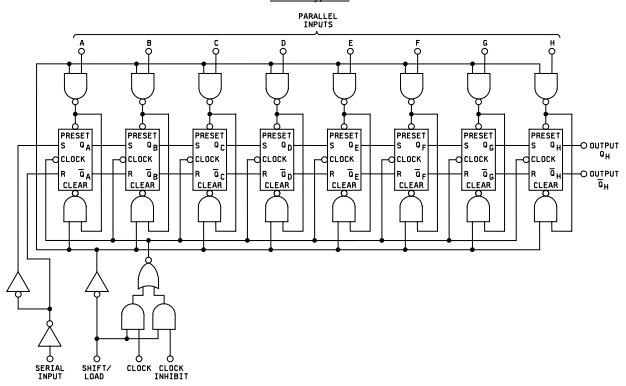


FIGURE 3. Logic diagrams - Continued.

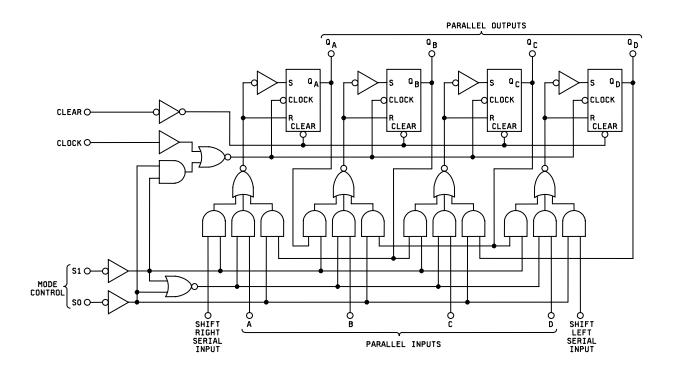


FIGURE 3. Logic diagrams - Continued.

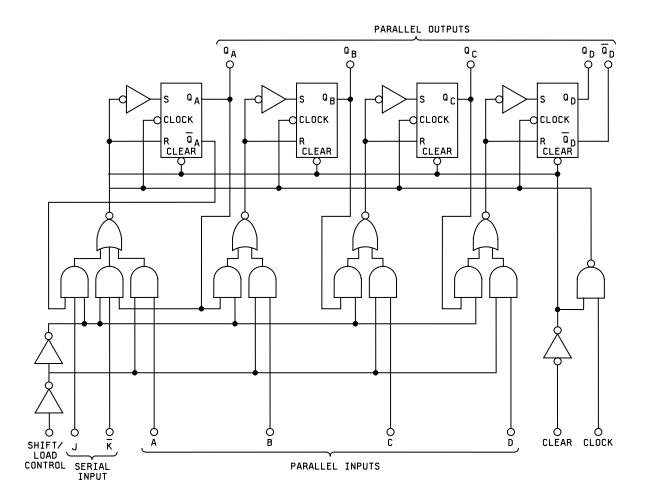
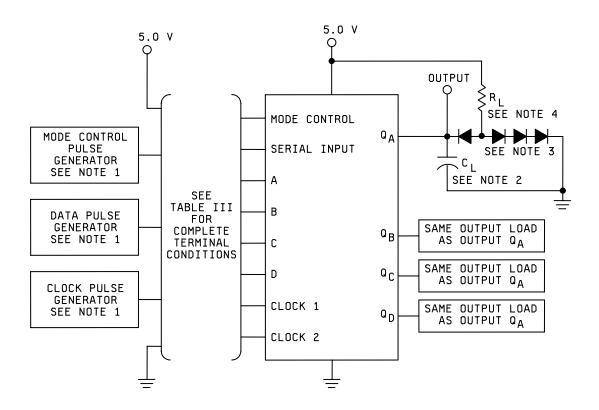
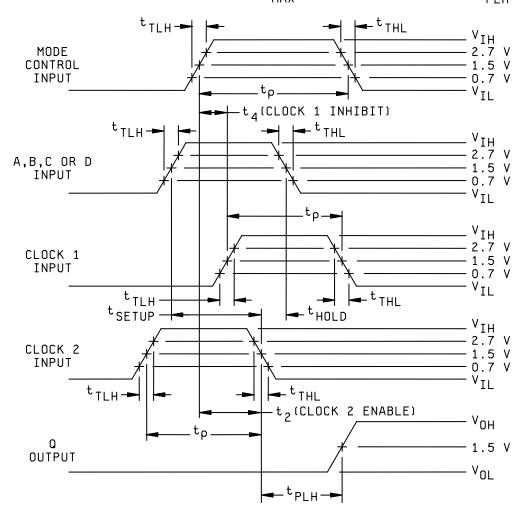
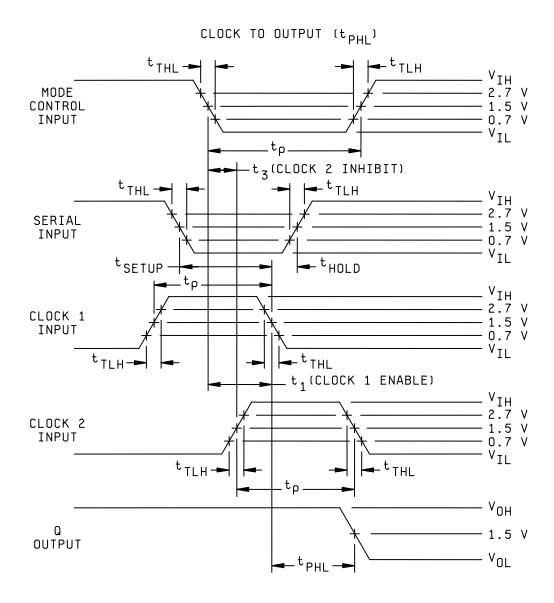




FIGURE 3. <u>Logic diagrams</u> - Continued.

- 1. Unless otherwise specified in the notes with the individual waveforms, all pulse generators shall have the following characteristics: $t_{TLH} \le 10$ ns, $t_{THL} \le 10$ ns, t_{THL}
- 2. $C_L = 50 \text{ pF}$ minimum including jig and probe capacitance.
- 3. All diodes are 1N3064 or equivalent.
- 4. $R_L = 400 \Omega \pm 5\%$.


FIGURE 4. Switching test circuits and waveforms for device type 01.

MAXIMUM SHIFT FREQUENCY (f_{MAX}) AND CLOCK TO OUTPUT ($t_{PI,H}$)

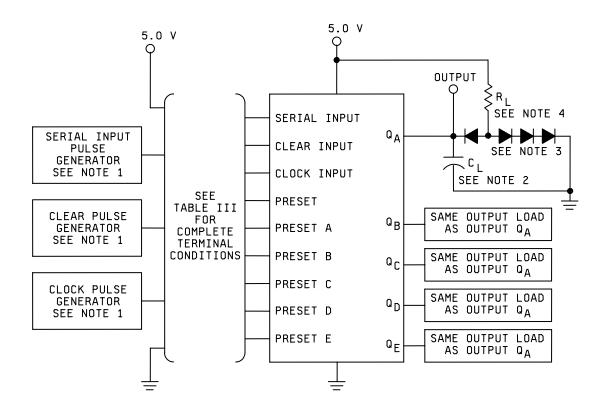

- 1. Mode control input characteristics: For f_{MAX} , PRR = 22 MHz at T_{C} = 25°C and PRR = 16 MHz at -55°C \leq $T_{C} \leq$ 125°C. For t_{PLH} , PRR = 1 MHz, t_{P} = 35 ns, t_{TLH} = $t_{THL} \leq$ 10 ns.
- 2. A, B, C, or D input characteristics: For f_{MAX} , PRR = 11 MHz at T_C = 25°C and PRR = 8 MHz at -55°C \leq T_C \leq 125°C. For t_{PLH} , PRR = 500 kHz, t_P = t_{SETUP} + t_{HOLD} . t_{SETUP} = 20 ns, t_{HOLD} = 5 ns, t_{TLH} = t_{THL} \leq 10 ns.
- 3. Clock 1 input characteristics: When testing f_{MAX} , PRR = 11 MHz at 25°C and PRR = 8 MHz at -55°C \leq T_C \leq 125°C. For t_{PLH} , PRR = 500 kHz, t_{P} = 20 ns minimum, t_{TLH} = t_{THL} \leq 10 ns.
- 4. Clock 2 input characteristics: When testing f_{MAX} , PRR = 22 MHz at 25°C and PRR = 16 MHz at -55°C \leq $T_C \leq 125$ °C. For t_{PLH} , PRR = 1 MHz, t_P = 20 ns minimum, $t_{TLH} = t_{THL} \leq 10$ ns.
- 5. Serial input = GND.
- 6. Except for input under test, all other data inputs are open.

FIGURE 4. Switching test circuits and waveforms for device type 01 - Continued.

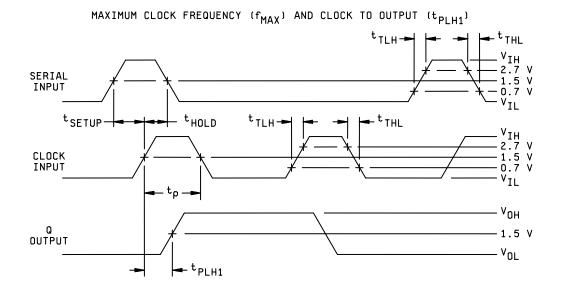
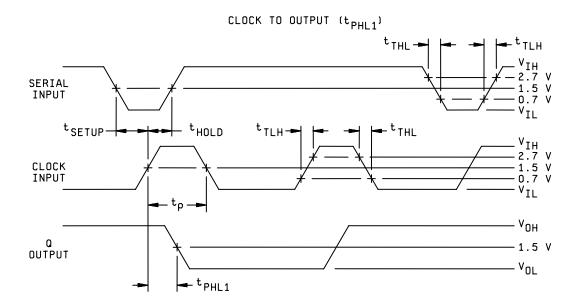
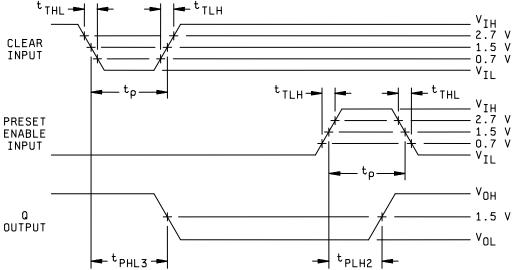

- 1. Mode control input characteristics: PRR = 1 MHz, t_P = 35 ns, t_{TLH} = t_{THL} \leq 10 ns.
- 2. Serial input characteristics: PRR = 500 kHz, t_P = t_{SETUP} + t_{HOLD} . t_{SETUP} = 20 ns, t_{HOLD} = 5 ns, t_{TLH} = t_{THL} \leq 10 ns.
- 3. Clock 1 input characteristics: PRR = 1 MHz, t_P = 20 ns minimum, $t_{TLH} = t_{THL} \le 10$ ns.
- 4. Clock 2 input characteristics: PRR = 500 kHz, t_P = 20 ns minimum, $t_{TLH} = t_{THL} \le 10$ ns.
- 5. Inputs A thru D = OPEN.

FIGURE 4. Switching test circuits and waveforms for device type 01 - Continued.

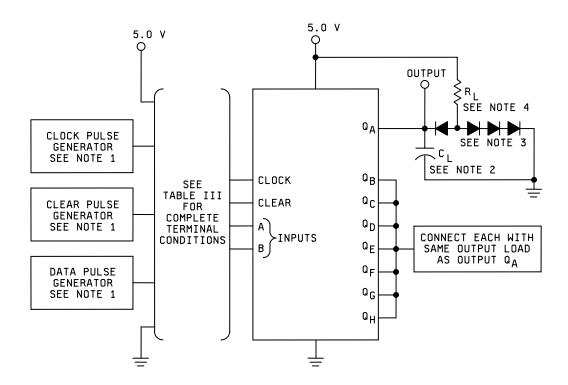


- 1. Unless otherwise specified in the notes with the individual waveforms, all pulse generators shall have the following characteristics: $t_{TLH} \le 10$ ns, $t_{THL} \le 10$ ns, t_{THL}
- 2. $C_L = 50$ pF minimum including jig and probe capacitance.
- 3. All diodes are 1N3064 or equivalent.
- 4. $R_L = 400 \Omega \pm 5\%$.

FIGURE 5. Switching test circuits and waveforms for device type 02.

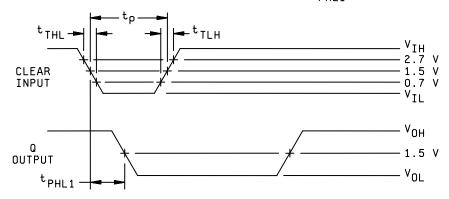

- 1. Serial input characteristics: For f_{MAX} , PRR = 5 MHz at T_C = 25°C, PRR = 3.5 MHz at -55°C \leq $T_C \leq$ 125°C. For t_{PLH1} , PRR = 500 kHz, t_P = t_{SETUP} + t_{HOLD} , t_{SETUP} = 30 ns, t_{HOLD} = 0 ns, t_{THL} = $t_{TLH} \leq$ 10 ns.
- 2. Clock input characteristics: For f_{MAX} , PRR = 10 MHz at T_C = 25°C, PRR = 7 MHz at -55°C \leq $T_C \leq$ 125°C. For t_{PLH1} , PRR = 1 MHz, t_P = 35 ns, t_{THL} = $t_{TLH} \leq$ 10 ns.
- 3. Clear = 4.5 V, preset enable = GND, preset A thru E = OPEN.

- 1. Serial input characteristics: PRR = 500 kHz, t_{THL} = $t_{TLH} \le 10$ ns t_P = t_{SETUP} + t_{HOLD} , t_{SETUP} = 30 ns, t_{HOLD} = 0 ns.
- 2. Clock input characteristics: PRR = 1 MHz, t_{THL} = $t_{TLH} \le 10$ ns, t_P = 35 ns..
- 3. Clear = 4.5 V, preset enable = GND, preset A thru E = OPEN.


FIGURE 5. Switching test circuits and waveforms for device type 02 - Continued.

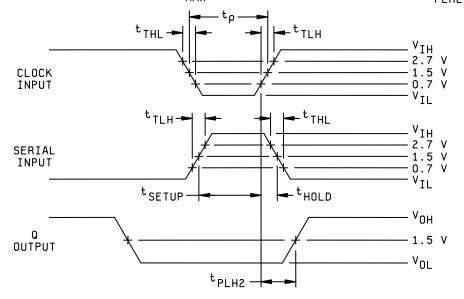
PRESET ENABLE TO OUTPUT (t_{PLH2}) AND CLEAR TO OUTPUT (t_{PHL3})

- 1. Clear input characteristics: PRR = 1 MHz, t_{THL} = $t_{TLH} \le 10$ ns, t_P = 30 ns.
- 2. Preset enable characteristics: PRR = 1 MHz, $t_{THL} = t_{TLH} \le 10$ ns, $t_P = 30$ ns.. 3. Preset A thru E = 4.5 V, clock = GND, serial = OPEN.

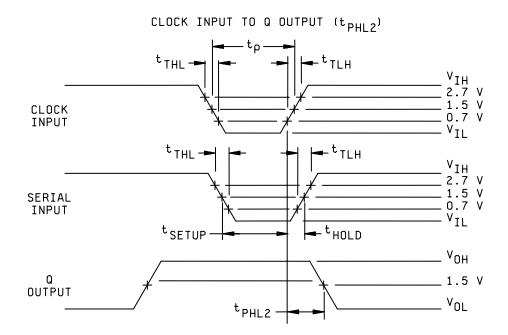

FIGURE 5. Switching test circuits and waveforms for device type 02 - Continued.

- 1. Unless otherwise specified in the notes with the individual waveforms, all pulse generators shall have the following characteristics: $t_{TLH} \le 10$ ns, $t_{THL} \le 10$ ns, $t_{IH} = 3.0$ V minimum, $t_{IL} = 0$ V, $t_{OUT} = 50$ $t_{OUT} = 50$
- 2. $C_L = 50$ pF minimum, including jig and probe capacitance.
- 3. All diodes are 1N3064 or equivalent.
- 4. $R_L = 800 \Omega \pm 5\%$.
- 5. QA outputs are illustrated in the individual waveforms. Relationship of serial input A and B data to other Q outputs is illustrated in the typical shift sequence.

FIGURE 6. Switching test circuits and waveforms for device type 03.


CLEAR INPUT TO Q OUTPUTS (tpHI 1)

NOTES:


- 1. Clear input characteristics: PRR = 1 MHz, t_{THL} = $t_{TLH} \le 10$ ns, t_P = 50 ns maximum.
- 2. Clock = GND, serial inputs A and B = OPEN.

MAXIMUM CLOCK FREQUENCY, (f_{MAX}) AND CLOCK INPUT TO Q OUTPUT ($t_{Pl \ H2}$)

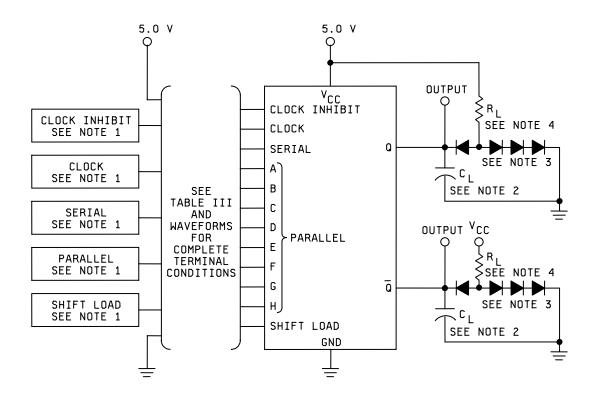
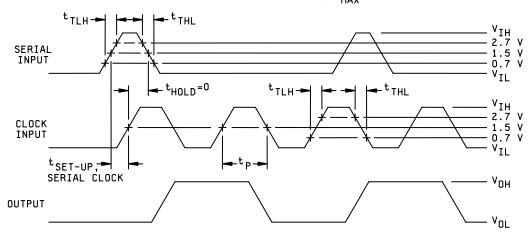

- 1. Clock input characteristics: For f_{MAX} , PRR = 22 MHz at T_C = 25°C, PRR = 18 MHz at -55°C \leq $T_C \leq$ 125°C. For t_{PLH2} , PRR = 1 MHz, t_P = 30 ns maximum, t_{THL} = $t_{TLH} \leq$ 10 ns.
- 2. Serial input characteristics: For f_{MAX} , PRR = 11 MHz at 25°C, PRR = 9 MHz at -55°C \leq $T_{C} \leq$ 125°C. For t_{PLH2} , PRR = 500 kHz, t_{P} = t_{SETUP} + t_{HOLD} , t_{SETUP} = 15 ns minimum, t_{HOLD} = 10 ns maximum, t_{THL} = $t_{TLH} \leq$ 10 ns.
- 3. Clear = 4.5 V.

FIGURE 6. Switching test circuits and waveforms for device type 03 - Continued.

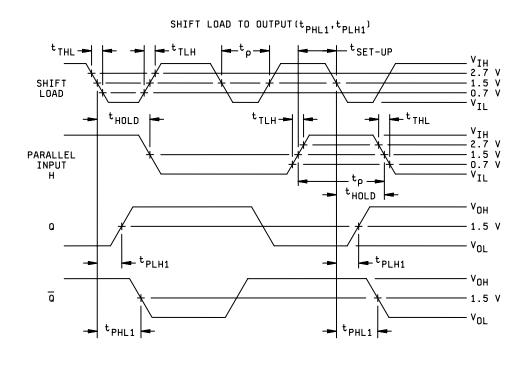
- 1.
- Clock input characteristics: PRR = 1 MHz, t_{THL} = $t_{TLH} \le 10$ ns, t_P = 30 ns maximum. Serial input characteristics: PRR = 500 kHz, t_P = t_{SETUP} + t_{HOLD} , t_{SETUP} = 15 ns minimum, t_{HOLD} = 10 ns 2. maximum, t_{THL} = $t_{TLH} \le 10$ ns.
- 3. Clear = 4.5 V.

FIGURE 6. Switching test circuits and waveforms for device type 03 - Continued.

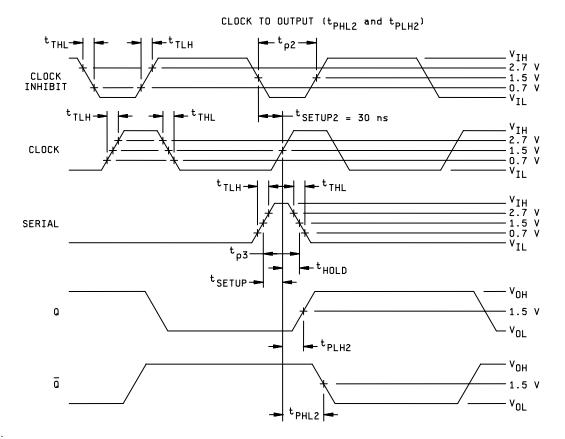


- 1. Unless otherwise specified in the notes with the individual waveforms, all pulse generators shall have the following characteristics: $t_{TLH} \le 10$ ns, $t_{THL} \le 10$ ns, $t_{IH} = 3.0$ V minimum, $t_{IL} = 0$ V, $t_{OUT} \approx 50$ $t_{OUT} \approx 50$
- 2. C_L = 50 pF minimum, including jig and probe capacitance
- 3. All diodes are 1N3064 or equivalent.
- 4. $R_L = 400 \Omega \pm 5\%$.

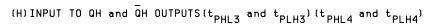
FIGURE 7. Switching test circuits and waveforms for device type 04.


MIL-M-38510/9E

MAXIMUM CLOCK FREQUENCY, f_{MAX}


NOTES:

- 1. Clock input characteristics: PRR = 18 MHz at T_C = 25°C, PRR = 14 MHz at -55°C \leq $T_C \leq$ 125°C, t_{THL} = $t_{TLH} \leq$ 10 ns, t_P = 20 ns minimum.
- 2. Serial pulse characteristics: PRR = 9 MHz at T_C = 25°C, PRR = 7 MHz at -55°C \leq $T_C \leq$ 125°C, t_P = t_{SETUP} + t_{HOLD} , t_{SETUP} = 35 ns minimum, t_{HOLD} = 0 ns, t_{THL} = $t_{TLH} \leq$ 5 ns.
- 3. Shift load characteristics: $t_{TLH} \le 10$ ns, $t_{SETUP} = 45$ ns.
- 4. Clock inhibit = GND, A through H = GND.



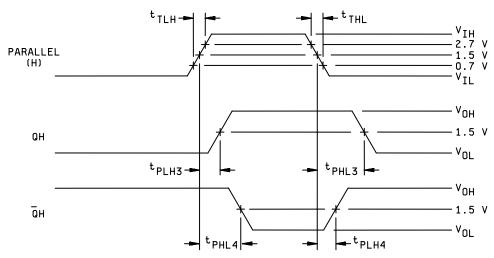
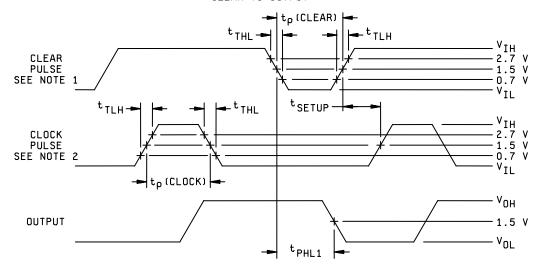

- 1. Shift load characteristics: PRR = 1 MHz, t_P = 25 ns, t_{THL} = $t_{TLH} \le 10$ ns.
- 2. Parallel input characteristics: PRR = 500 kHz, t_P = t_{SETUP} + t_{HOLD} = 40 ns, t_{SETUP} = 10 ns, t_{HOLD} = 30 ns , t_{THL} = \leq 10 ns.
- 3. Clock = clock inhibit = GND, A through G = GND, serial = open.

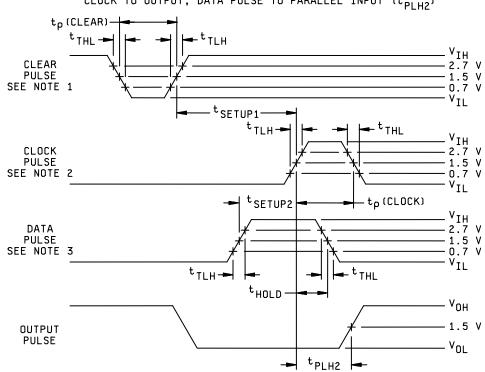
FIGURE 7. Switching test circuits and waveforms for device type 04 - Continued.


- 1. Clock inhibit characteristics: PRR = 1 MHz, t_{P2} = 50 ns, t_{THL} = $t_{TLH} \le$ 10 ns, t_{SETUP2} = 34 ns.
- 2. Clock pulse characteristics: PRR = 1 MHz, t_{P1} = 25 ns, t_{THL} = $t_{TLH} \le 10$ ns.
- 3. Serial pulse characteristics: PRR = 500 kHz, $t_{P3} = t_{SETUP} + t_{HOLD}$, $t_{SETUP} = 35$ ns, $t_{HOLD} = 0$, $t_{THL} = t_{TLH} \le 5$ ns.
- 4. Shift/load = 5.0 V.

- 1. (H) input characteristics: PRR = 1 MHz, 50% duty cycle, t_{THL} = $t_{TLH} \le 10$ ns.
- 2. Shift/load = GND, clock inhibit = GND, serial = GND, A thru G = GND, clock = GND...

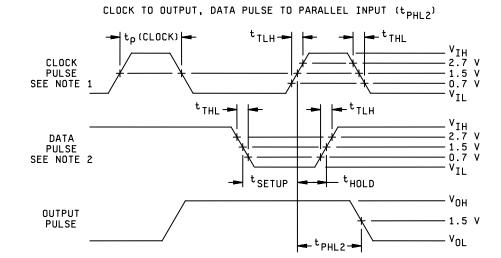

FIGURE 7. Switching test circuits and waveforms for device type 04 - Continued.

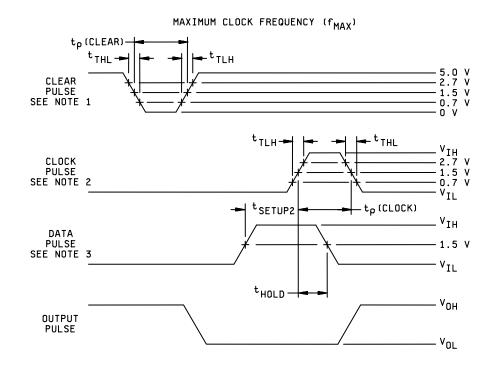
- 1. $C_L = 50$ pF minimum including probe and jig capacitance.
- All diodes are 1N3064, or equivalent.
 Unless otherwise specified in the notes associated with the individual tests, all pulse generators have the following characteristics: $Z_{OUT} \approx 50~\Omega,~t_{TLH} \leq 7~ns,~t_{THL} \leq 7~ns,~V_{IH}$ = 3.0 V minimum, V_{IL} = 0.
- 4. $R_L = 400 \Omega \pm 5\%$.


FIGURE 8. Switching test circuits and waveforms for device type 05.

CLEAR TO OUTPUT

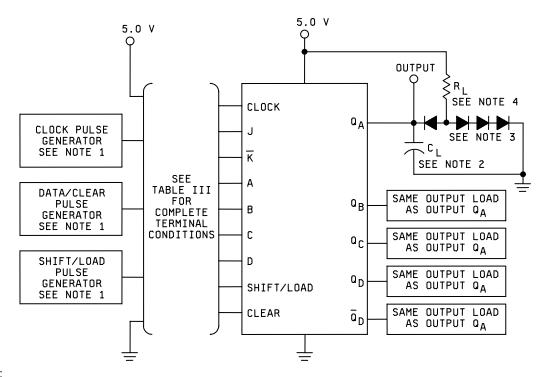
NOTES:


- 1. The clear pulse has the following characteristics: $t_{P(CLEAR)} = 20$ ns, $t_{SETUP} = 25$ ns, PRR = 1 MHz.
- 2. The clock pulse has the following characteristics: $t_{P(CLOCK)} = 20$ ns, PRR = 1 MHz.


CLOCK TO OUTPUT, DATA PULSE TO PARALLEL INPUT (tplH2)

- 1. The clear pulse is a momentary ground, then V_{IH} is applied to the input. $t_{P(CLEAR)} \le 75$ ns, $t_{THL} \le 15$ ns and $t_{TLH} \le 15$ ns, $t_{SETUP} = 25$ ns.
- 2. Clock pulse characteristics: $t_{P(CLOCK)} = 20$ ns, PRR = 2 MHz.
- 3. Data pulse characteristics: $t_{P(DATA)} = t_{(SETUP2)} + t_{HOLD}$, $t_{SETUP2} = 20$ ns, $t_{HOLD} = 7$ ns, PRR = 1 MHz.

FIGURE 8. Switching test circuits and waveforms for device type 05 - Continued.



- 1. Clock pulse characteristics: $t_{P(CLOCK)} = 20$ ns, PRR = 2 MHz.
- 2. Data pulse characteristics: $t_{P(DATA)} = t_{SETUP} = 20 \text{ ns}$, PRR = 1 MHz.

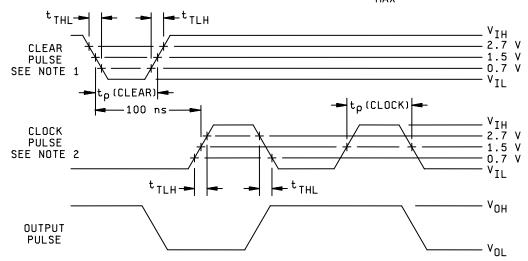
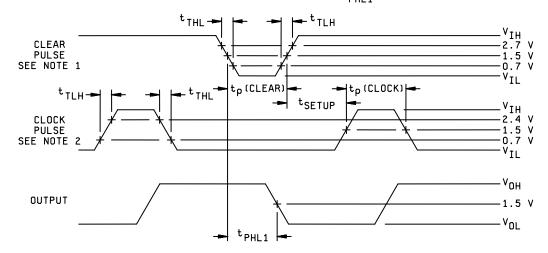
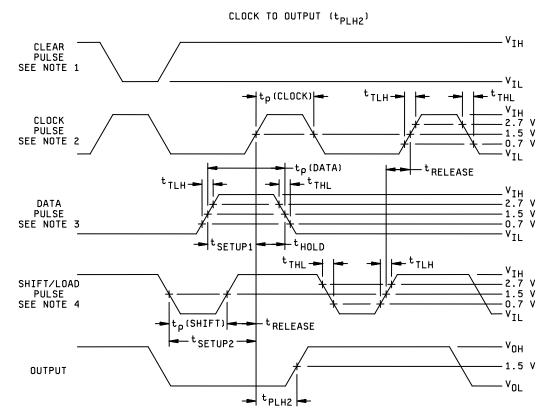

- 1. The clear pulse is a momentary GND, then V_{IH} is applied to the input, $t_{P(CLEAR)} \le 20$ ns, $t_{THL} \le 15$ ns, $t_{TLH} \le 15$ ns.
- 2. Clock pulse characteristics: $t_{P(CLOCK)}$ = 20 ns, PRR = 18 MHz at -55°C \leq T_C \leq 125°C (22 MHz at T_C = 25°C).
- 3. Data pulse characteristics: $t_{P(DATA)}$ = t_{SETUP} = 20 ns, PRR = 9 MHz at -55°C \leq T_C \leq 125°C (11 MHz at T_C = 25°C).

FIGURE 8. Switching test circuits and waveforms for device type 05 - Continued.

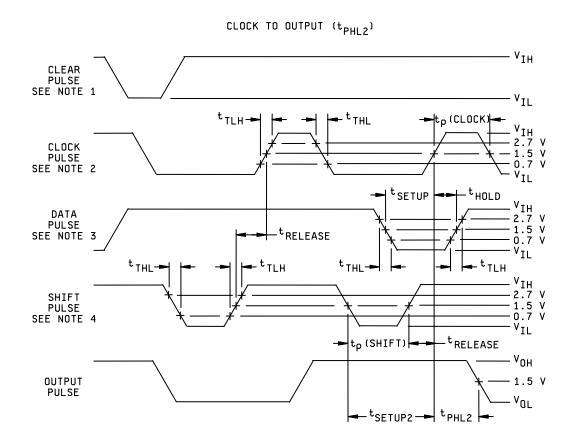
- 1. Unless otherwise specified in the notes with the individual waveforms, all pulse generators shall have the following characteristics: $t_{TLH} \le 7$ ns, $t_{THL} \le 7$ ns,
- 2. $C_L = 50$ pF minimum, including jig and probe capacitance.
- 3. All diodes are 1N3064 or equivalent.
- 4. $R_L = 400 \Omega \pm 5\%$.


MAXIMUM CLOCK FREQUENCY, f MAX

- 1. The clear pulse is a momentary GND, then V_{IH} is applied to the input. $t_{TLH} \le 15$ ns, $t_{THL} \le 15$ ns, $t_{P(CLEAR)} \le 75$ ns.
- 2. Clock pulse characteristics: $t_{P(CLOCK)}$ = 16 ns, PRR = 24 MHz at -55°C \leq T_C \leq 125°C (30 MHz at T_C = 25°C), V_{IH} = 3.0 V minimum, V_{IL} = GND.


FIGURE 9. Switching test circuits and waveforms for device type 06.

CLEAR TO OUTPUT (tpHL1)


NOTES:

- 1. Clear pulse characteristics: $t_{P(CLEAR)}$ = 12 ns, t_{SETUP} = 25 ns, PRR = 1 MHz.
- 2. Clock pulse characteristics: $t_{P(CLOCK)} = 16$ ns, PRR = 1 MHz.

- The clear pulse is a momentary GND, then $V_{\mbox{\tiny IH}}$ is applied to the clear input. 1.
- 2.
- Clock pulse characteristics: $t_{P(CLOCK)} = 16$ ns, PRR = 2 MHz. Data pulse characteristics: $t_{P(DATA)} = 25$ ns, $t_{SETUP1} = 25$ ns, $t_{HOLD} = 0$ ns, PRR = 1 MHz. 3.
- Shift/Load pulse characteristics: $t_{P(SHIFT)} = 17$ ns, $t_{RELEASE} = 10$ ns, $t_{SETUP2} = 27$ ns, PRR = 2 MHz.

FIGURE 9. Switching test circuits and waveforms for device type 06 - Continued.

- The clear pulse is a momentary GND, then V_{IH} is applied to the clear input. 1.
- 2.
- Clock pulse characteristics: $t_{P(CLOCK)}$ = 16 ns, PRR = 2 MHz. Data pulse characteristics: $t_{P(DATA)}$ = t_{SETUP} + t_{HOLD} = 25 ns, t_{SETUP1} = 25 ns, t_{HOLD} = 0 ns, PRR = 1 MHz. Shift/load pulse characteristics: $t_{P(SHIFT)}$ = 22 ns, $t_{RELEASE}$ = 10 ns, t_{SETUP2} = 32 ns, PRR = 2 MHz. 3.
- 4.

FIGURE 9. Switching test circuits and waveforms for device type 06 - Continued.

TABLE III. Group A inspection for device type 01. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

±:		>	3	3	"	3	3	"	"	u	n	,	,,	_	3	3	3									μA	_	3	3	3	n	3	_	_	3	3	3	3 :	
- AcM		Ĺ	-	_	,	4		3	3	-1.5		_	_	_	_	_	_	<u> </u>					_	,	1	_	_	3	3	3			100	_			_		=
-		4				0.4	-	-	-	7	_	_		_	-	•	•	2	3	-	3	3	•	•	∕8	4	_	3	3	3	-	3	1		3	-	-		_
Mis		2.4																																					_
Meas.		Q	QB	တိ	QD	QA	QB	တိ	QD	S	∢	В	ပ	Ω	MC	CLK2	CLK1	S	∢	В	O	Ω	CLK2	CLK1	MC	IS	∢	В	ပ	Ω	CLK2	CLK1	S	∢	В	ပ	۵	CLK2	CLK
14	Vcc	4.5 V	-		=	=	-		=	=				=		-	-	5.5 V						=	=	=							=	-			-		:
13	ď	8 mA				16 mA																																	
12	QB		8 mA				16 mA																																
11	QC			8 mA				16 mA																															
10	QD				8 mA				16 mA																														
6	CLK1																-12 mA							0.4 V								2.4 V							5.5 V
8	CLK2	A <u>1</u> /	=	-			=	-	=							-12 mA							0.4 V		4.5 V						2.4 V							5.5 V	
7	GND	GND	-			=	-		-	=				=	=		-	=			-		=									-	=		-	=	-		:
9	MC	2.0 V	=	-			=		=						-12 mA			GND	4.5 V					GND	0.4 V	4.5 V	GND					4.5 V	4.5 V	GND	-		-	= 1	4.5 V
2	D				2.0 V				0.8 V					-12 mA								0.4 V								2.4 V							5.5 V		_
4	C			2.0 V				0.8 V					-12 mA								0.4 V								2.4 V							5.5 V			_
3	В		2.0 V				0.8 V					-12 mA								0.4 V								2.4 V							5.5 V				
2	4	2.0 V				0.8 V					-12 mA								0.4 V								2.4 V							5.5 V					
-	IS									-12 mA								0.4 V								2.4 V							5.5 V						
Case A,B,C,D	Test No.	_	2	က	4	2	9	7	8		10	7	12	13	41	15	16		18	19	20	21	22	23	24		26	27	28	29	30	31		33	34	35	36	37	38
MIL-	method	3006	я	71	n	3007	я	*	я									3009	ä	ä	я	3	3	n	n	3010	3	3	я	я	ä	3	3010	3	3	3	3	3 3	:
lode you		МОН	3	n	n	Vol	3	"	3	VIC	n	"	"	=	n	"	3	1		3	3	3	ä	n	IL2	IH1	=	3	3	3	3	3	l _{IH2}	-	3	ä	3	а :	:
Subarous	dpolificano	-	$T_C = 25^{\circ}C$	3	я	я	2	3	3.6	3	3	я	3	3	я	я	я	3	3	3	3	я	я	я	я	z	я	я	я	я	я	3	3	3	3	я	я	3 3	:

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01. - Continued Terminal conditions (pins not designated may be H \geq 2.0 V or L \leq 0.8 V or open).

±	<u> </u>	Ą	Ą	mA	3	3	и																																
×	Z Z	80	200	-57	ä	ä	п	72				<u>/9</u>																											
Z.	<u> </u>			-18	=		-																																
Meas.	<u> </u>	MC	MC	QA	QB	gc	QD	Vcc																															
14	Vcc	5.5 V		=	=		"				4.5 V		=	=	=	-						=	=				=		=		-	=						-	
13	QA			GND							×	×		=	=	-	I	I	I	٦	7	7	I	I	I	٦	٦	7	I	I	I	٦						-	
12	QB				GND						×	×	_	=	=					I	I	I	_	_	_	I	I	I	_	_	_	I	I	_	=		:	=	
11	Qc					GND					×	×	_	-	-	-	-	-	-	-	-	-	I	I	I	_	_	_	I	I	I	_	_	I	I	_	-	-	
10	g						GND				×	×	_	=	=							=	=			I	I	I	_	_	_	I	I	_	_	I	I	_	٦
6	CLK1							GND			В	-	=	=	=	∢	М	В	∢	В	В	∢	В	М	∢	В	М	∢	В	В	∢	В	∢	В	∢	М	∢	В	В
8	CLK2	GND	GND	4	=	=			tted.	ted.	В	∢	В	=	=	=	=		=	=	-	=	=	=		=	=	-	=	-	=	=	=	=	-	=	-	=	=
7	GND	GND	=	=	3	3	п		s are om	are omit	GND	=	-	-	-	-				=		-	-				=		-		-			=			=	-	=
9	MC	2.4 V	5.5 V	4.5 V					id V _{IC} test	and V _{IC} tests are omitted.	A	∢	∢	В	-	-	-		-			-	-	-			-				-		-			-		-	=
5	D			4.5 V				GND	125° C and V _{IC} tests are omitted.	= -55° C and	В					-	-		-					-			-				-		-			-		-	=
4	O			4.5 V	=	=	=	GND	1, except T _C =	1, except $T_C = -$	В	=	=	-	-	-						-	-				=		=		-	=					=	-	⋖
3	В			4.5 V	=	-		GND			В		=	=	-	=	=	=	=	=	=	=	=	=	=	=	-	=	=	=	=	-	=	=	=	=	-	=	
2	٨			4.5 V	-			GND	for subgro	for subgro	В	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	=	-	٨
1	S								limits as	limits as	В	-	=	=	∢	∢	∢	В	В	В	∢	∢	∢	В	В	В	∢	∢	∢	В	=	=	=		=	=	=	=	=
Case A,B,C,D	Test No.	39	40	41	42	43	44	45	Same tests, terminal conditions and limits as for subgroup	Same tests, terminal conditions and limits as for subgroup	46	47	48	49	50	51	52	53	54	55	56	57	58	59	09	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74
MIL- STD-883	method	3010	я	3011	3	3	п	3005	sts, termina	sts, termina	3014	я	3	3	3	3	3	я	3	3	3	3	3	3	я	3													
Odmy		I _{IH3}	IIH4	sol	3	3	п	Іссн	Same tes	Same tes	Truth	table	test	2/	3	n	-	я	я	я	я	3	3	я	я	3	-		3	3	n	3	я	я	я	я	3	3	я
allogadis	dpolificano	_	T _C = 25°C	3	я	я	£	n	2	3	7	T _C = 25°C	4, 7/	я	я	3	3	3	3	я	я	я	я	3	3	я	я	я	я	я	3	3	3	3	я	3	3	3	n

See footnotes at end of device type 01.

TABLE III. Group A inspection for device type 01. - Continued Terminal conditions (pins not designated may be H ≥ 2.0 V or L ≤ 0.8 V or open).

ţiu	0														MHz	SU	3	z	n	n	3	3	ä	MHz	SU	71	n	3	n	я	n	3	
Max	4		/ <u>9</u>													30	ı	n	-	35	я	n	n		42	3	я	-	49	я	n	3	
Min															11	10	ı	n	-	n	я	n	n	8	10	3	я	-	n	я	n	3	
Meas.															QD	QA	QB	OC	QD	QA	QB	QC	Q	QD	QA	QB	QC	QD	QA	QB	QC	QD	
14	Vcc	4.5 V	-	-	-	-	-	-	-	-	-		-		5.0 V	=	=	-	-	=	-	-		5.0 V	=	-	-	-	=	-	-	-	
13	QA	٦	_	I	I	I	_	٦	_	I	I	I	_			OUT				DUT					OUT				TUO				
12	QB	٦	-	=	-	-	I	-	-	-	-	-	7				DUT				OUT					OUT				OUT			
11	QC	٦	_	I	I	I	_	٦	_	I	I	Ι	7					DUT				OUT					OUT				OUT		
10	QD	7	-	-	-	-	I	-	-	-	-	=	_		TUO				DOT				OUT	OUT				OUT				OUT	
6	CLK1	В	-	-	-	-	-	-	-	-	-	=	-		Z	GND	=	-	-	Z	-	-	-	Z	GND	-	-	-	Z	=	-	-	
8	CLK2	В	∢	В	В	∢	В	В	∢	В	В	∢	В		Z	=	=	=	-	GND	=	=	=	N	н	=	=	=	GNĐ	=		=	
2	GNĐ	GN 9	=	=	=	=	=	=	=	=	=	=	=		GND	=	=	=	=	=	=	=	=	GN 9	н	=	=	=	и	=	=	=	
9	MC	٧	-	-	-	-	-		-	-		-			GND	5.0 V	=	-	-	GND	-	-	=	GNĐ	7 0.3		-	=	GND		-	=	
2	Q	В	В	В	۷	-	=		-	=	В	В	В						Z									Z					= -55°C.
4	Э	٧	∢	∢	В	В	В	∢	∢	⋖	В	В	В					Z									Z						p 10, except T _C :
3	В	В	В	В	∢	-	=	-	-	=	В	В	Ф				Z									Z							oup 10, e
2	Α	٧	⋖	∢	В	В	В	⋖	∢	⋖	В	В	В	: = -55° C		Z									Z								for subgr
1	SI	В	-	-	-	-	-	-	-	-	-	-	-	C and T _C	GND	=	=	-	-	Z	-	-	-	GND	=		-	=	Z	-	-	-	d limits as
Case A,B,C,D	Test No.	75	92	77	78	62	80	81	82	83	84	85	86	Repeat subgroup 7 at T_C = +125° C and T_C = -55°	87	88	88	06	91	92	93	94	92	96	26	86	66	100	101	102	103	104	Same tests, terminal conditions and limits as for subgrou
MIL- STD-883	method	3014	я	я	3	3	3	3	3	3	я	3	3	ubgroup 7	(Fig. 4)	3003	(Fig. 4)	3	я	я	я	3	я	(Fig. 4)	3003	(Fig. 4)	я	я	п	я	я	я	sts, termina
OdmyS	9	Truth	table	test	2	3	3	=	3	3	я	3	3	Repeat s	fMAX	tPLH	3	3	=	t _{PHL}	я	3	3	fMAX	t _{PLH}	я	я	=	tPHL	я	2	я	Same te:
Subgroup	dooleano	7	$T_C = 25^{\circ}C$	4, 7/	7	"	n	n	3	3	77	n	я	8	6	T _C = 25°C	3	3	3		я	"	96	10	T _C = 125°C	я	я	я	2	я	3	ž	11

See footnotes at end of device type 01.

Terminal conditions (pins not designated may be $H \ge 2.0 \text{ V}$ or $L \le 0.8 \text{ V}$ or open). TABLE III. Group A inspection for device type 01 - Continued.

- A = normal clock pulse, except for subgroups 7 and 8 (see $\frac{4}{2}$).
- For device type 01, with schematics incorporating a 4 k\O base resistor, the minimum and maximum limits shall be -0.5 and -1.4 mA, respectively. For schematics incorporating a 5 kΩ base resistor, the minimum and maximum limits shall be -0.5 and -1.4 mA, respectively. For schematics incorporating a 6 kΩ resistor, the minimum and maximum limits shall be -0.4 and -1.3 mA, respectively 1517
- For device type 01, with schematics incorporating a 4 k\Omega base resistor in the mode control input circuit, the minimum and maximum limits shall be -1.4 and -3.2 mA, respectively. For schematics incorporating a 5 kΩ base resistor, the minimum and maximum limits shall be -1.0 and -2.8 mA, respectively. For schematics incorporating a 6 kΩ resistor in the mode control input circuit, the minimum and maximum limits shall be -0.8 and -2.6 mA, respectively. 3
 - The tests in subgroups 7 and 8 shall be performed in the sequence specified. For subgroups 7 and 8, $A = V_{CC}$, B = GND, and X = Indeterminate. 41731931
 - Output voltages shall be either:
- (a) H = 2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator or
 - H > 1.5 V and L < 1.5 V when using a high speed checker single comparator.
 - Only a summary of attribute data is required. 7

TABLE III. Group A inspection for device type 02.
Terminal conditions (pins not designated may be H > 2.0 V or L < 0.8 V or open).

_	- 1	-																																					
		Unit	۸	3	3	3	3	n	n	3	3	7	33	3	3	3	-	-		n	3	МA	31	3	3	31	3	"	n	"	Αμ	ä	3	"	7	я	3	7	
Toet limite		Мах						9.4	з	3	3	-	-1.5	:				:		=		-1.6	3	3	3	=		-		-8.0	40		3	3	з	-			
F	-	Min	2.4	=		-	-															-0.7	-	-		-		-		-3.0									
	:	Meas. terminal	QA	QB	တ္မ	g	QE	QA	Q	တ္	g	QE	CLK	РА	PB	Pc	P _D	PE	P EN	S	CLR	CLK	РА	PB	Pc	P _D	PE	S	CLR	P EN	CLK	РА	P _B	Pc	P _D	PE	S	CLR	
4	T	CLR	2.0 V	-	-			V 8.0													-12 mA								0.4 V									2.4 V	
ŕ	<u>c</u>	QA	4 mA					16 mA													1																		
<u>-</u>	<u>†</u>	QB	-	4 mA				-	16 mA																														
Ferminal conditions (pins not designated may be H > 2.0 V or L < 0.8 V or open)	2	QC		?	4 mA				<u>~</u>	16 mA																													
7 0.8	7	GND	GND						_	16		-	=							=		=	-			-					=				-				
/ or L	+	Q _D	Э			4 mA					16 mA																												
≥ 2.0 V	+	QE (4	4 mA				16	16 mA																											
DeH	1						4					16								-12 mA								0.4 V									2.4 V		
d may		N.	>					>											μ	-12			>					7.0		^		₽					2.7		
ignatec		P EN	2.	-	-	-	-	0.8 V	-	-	-	-						Απ	-12 mA				4.5 V	-	-	-	->			V 0.4 V		GND	-	-		>			
ot des	<u> </u>	PE	2.	-	-	-	-										۲	-12 mA								>	0.4 V			V 4.5 V					>	2.4 V			
u suid)	٥	PD	/ 2.0 V		•	=	=										-12 mA					_				0.4 V				4.5 V					2.4 V				
Itions	n	Vcc			:	:	:	=	•	:	:	=	=	:	•	: <	•	:	:	=	•	5.5 V	=	:	•	=	:	=	=	=	=	:	•	=	=	=	-	=	
Cond	1	P _C	2.0 V		•										1	-12 mA									0.4 V					4.5 V				2.4 V					
erming	၁	PB	2.0 V	:	:	:	:								-12 mA									0.4 V						4.5 V			2.4 V						
	7	РА	2.0 V	:	:	:	:							-12 mA									0.4 V							4.5 V		2.4 V							
	-	CLK											-12 mA									0.4 V									2.4 V								02
1 303C)	Cases E, r	Test No.	-	2	က	4	22	9	7	œ	6	10	11	12	13	4	15	16	17	18	19	20	21	22	23	24	22	56	27	28	58	30	31	32	33	8	35	36	See footnotes at end of device type 02.
	IVIIL-	STD-883 method	3006	3	я	3	3	3007	я	3	3		я	3	3	3	-			3	я	3009	3	3	3	3	3	3		n	3010	я	3	я	3	3	3	77	at end of a
		Symbol	Vон	3	n	3	3	Vol	n	3	¥	=	VIC	3	3	n		=	=	3	n	111	3	3	3	3	3	3	=	I _{IL1}	Ħ	n	71	n	11	3	3	n	ofnotes a
		Subgroup	-	$T_C = 25^{\circ}C$	n	3	3	a.	n	×	3	n	"	3	3	n	n	3	3	3	n	3	ä	3	n	ä	n	3	ı	ä	3	n	n	ä	я	3	а	n	See fc

49

TABLE III. Group A inspection for device type 02 - Continued.

_		•			Ľ	ermina	condi	tions (p	Terminal conditions (pins not designated may be H > 2.0 V or L	design	ated m	ay be F	1 > 2.0	VorL		< 0.8 V or open).	en).		•				
		MIL-	Cases E, F	-	7	က	4	2	9	7	œ	6	10	Ξ	12	13	4	15	16			Test limits	s
Subgroup	Symbol	STD-883 method	Test No.	CLK	РА	PB	Pc	VCC	P _D	PE	P EN	IS	QE	g	GND	တိ	QB	QA	CLR	Meas. terminal	Min	Max	Unit
-	IIH2	3010	37	5.5 V				5.5 V							GND					CLK		100	Αμ
$T_C = 25^{\circ}C$		я	38		5.5 V			=			GND									РА		=	ä
ä	3	я	39			5.5 V		=			-									PB		3	ä
3	3	я	40				5.5 V				-									Pc		n	n
ä	3	я	41					=	5.5 V		-									P _D		3	ä
3	3	ä	42					=		5.5 V	-									PE		-	n
ä	3	я	43					=				5.5 V								S		=	ä
2	71	n	44																5.5 V	CLR		=	n
=	Інз		45		GND	GND	GND		GND	GND	2.4 V									P EN		200	
-	l _{IH4}	n	46		GN 9	GND	GND		GND	GND	5.5 V									P EN		200	n
E	sol	3011	47		4.5 V	4.5 V	4.5 V	"	4.5 V	4.5 V	4.5 V							GND	4.5 V	QA	-20	-22	hm
3	3	3	48			-			-	-	-						GND		-	QB		3	"
×	3	3	49		=		=	-	-	-	-					GND			-	g	-	n	3
я	3	3	20		=		:	=	-	-	-			GND					=	Q	-	3	77
3		-	51		=		-	=	-				GND						-	QE	-	=	3
ä	Іссн	3008	52	4.5 V	ш		=			-	-	GND			=				5.5 V	Vcc		89	n
п	ICCL	3005	53	GND			=				GND	GND							GND	Vcc		89	п
2	Same test	ts, terminal હ	Same tests, terminal conditions and limits as for subgroup 1, except	limits as	for subg	roup 1, e	xcept T _C :	; = +125°	C and V	c tests a	C and V _{IC} tests are omitted.	b.											
3	Same test	is, terminal લ	Same tests, terminal conditions and limits as for subgroup 1,	limits as	for subg	roup 1, e	except T _C	s = -55° C	and V _{IC}	and V _{IC} tests are omitted	omitted.												
7	Truth	3014	54	В	В	В	В	4.5 V	В	В	В	В	٦	_	GND	٦	_	٦	В				
$T_C = 25^{\circ}C$	table	я	22		⋖	В	В		-	-	∢	∢	=	=		_	_	I					
1, 4/	test	-	26	-	В	∢	В	-	-	-	-			=		_	I	_	=				
3	<u>اع</u>	-	22	-	=	В	⋖		-	-	-	:		=		I	_	-	-				
ä	=	-	28		=	-	В		4	-	-		=	I		_	-	-					
ä	a a	я	29	-	=	-	В	=	В	∢	-		I	_		-		-	-				
3	3	3	09			-	В	-	В		В	:	_	_					-			2/	
3	-	-	61	-	∢	∢	⋖		∢	-	В	В	_	_		-	-	-	∢				
3	3	3	62	-	=		=		-	-	∢	∢	I	I		I	I	I	В				
3	3	ä	63	-	=	-	:	=	-	В	В	∢	_	_		_	_	_	В				
3	3	3	64	-	=		:	=	-	-	В	В		_		_	_	_	∢				
2	3	3	92	=	=	-		=	-	-	∢	В		I		I	I	I	∢				
3	3	ä	99	-	=	-	:	=	-	-	В	∢		I		I	I	I	∢				
3	3	ä	29	-	=	-	:	=	В	-	В	∢		_		_	_	_	В				
3		-	89	=	=	=		=	В	-	В	В	-	_	-	_	_	_	∢				
See fr	: setoutor	at end of	See footnotes at end of device type 02	00														•					

See footnotes at end of device type 02.

Continued.	
e type 02 -	
for devic	
A inspection for device	
Group A i	
TABLE III.	
•	

						Terminal conditions (pins not designated may be H >	Condit	ions (pi	ns not (designa	ited ma	y be H	> 2.0 \	2.0 V or L <	0.8 V	< 0.8 V or open)	ŀ	ļ	_	-		
		MIL-	Cases E, F	-	7	ო	4	2	9	7	∞	6	10	1	12	13 14	15	16			Test limits	Ø
ubgroup	Symbol	STD-883 method	Test No.	CLK	PA	PB	P _C	Vcc	P _D	PE	P EN	SI	QE	QD G	GND	Qc QB	B QA	A CLR	Meas.	Min	Max	Unit
7	Truth	3014		В	٧	∢	۷	4.5 V	В	В	A	В	٦	Г	٥	н						
C = 25°C	table	n	70	=			∢	-	-		В	∢					_	∢				
1/, 4/	test	-	7.1	=	=		В		-	-	В	4		-								
3	%∣	=	72	=	-		=	=			В	В		-								
3	=	=	73	=	-		=	=			⋖	В		-	_							
3	3	3	74	-	-		-	-	-	:	В	∢		-	-							
3	3	3	75	=	-	В	=	=			В	⋖		-	_			В			2/	
3	=	=	92	=	-		-	-	=	-	В	В		-	-		_	∢				
3	3	3	77	-	•		=		-	=	⋖	В		-			I					
3	3	3	78	-	•		=		-	=	В	⋖		-			I					
я	3	я	79	-	-		=		-	-	-	-		-				В				
я	3	я	80	-	-				-	-	-	-		-	_							
я	3	я	81	⋖	-		=		-	-	-	-		-								
я	3	я	82	Ф	-		=		-	-	-	-		-			-	=				
3	=	=	83	⋖	-		=		-	-	-	-		-				=				
	=	=	84	Ф	=		=	=	-	=	-	-		-		-	-	-				
	=	3	85	⋖	•		=		-	=		-		-	-	- 	-	=				
	=	=	98	В	-		-	-	=	-	-	-		-	-	-	=	=				
я	=	=	87	⋖	-		=		-	-	-	-		I			-	=				
3	=	=	88	В	В		=		-	=		-		-			-	=				
3	3	3	68	∢	-		-	-	=	-	-	-	I	-	-		=	=				
3	3	3	06	М	-	∢	-	-	=	-	∢	В		-	-		=	=				
3	=	=	91	∢	-	∢	-	-	-	:	-	-		-	-	-	_	=				
3	3	3	92	М	-	В	=	=				-		-	_		-	=				
я	3	3	93	⋖	=			=				-						=				
3	3	3	94	М	-		=	=	∢			-		-	_		-	=				
3	3	3	92	⋖	-		=	=	∢			-		-	-		-	=				
3	3	3	96	М	-		=	=	В	∢		-		-	_		-	=				
3	3	3	26	⋖	-		=	=		∢		-		_	_		-	=				
я	3	ä	86	Ф	=		=		-	В	В	-					-	=				
я	3	3	66	⋖	∢		=		-	-	-	-	_	-		-	-	-				
я	3	ä	100	Ф	=		=		-		-	4					-	=				
3	3	я	101	∢	-		=		-	=	-	⋖		-		-	I	=				
3	3	3	102	В	=	:		=	-	-	⋖	В		-	_		-	=				
3	=	=	103	∢	=		-	-	-	-	⋖	В		-			_	-				
See fo	ofnotes	at end of	See footnotes at end of device type 02	02																		

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

	Unit																						MHz	su	3	3	3	n	-	3	3	3	я
Test limits	Max							2/																40	3	3	3	п	=	3	3	3	3
Τ	Min																						2	8	3	3	3	п	=	3	3	3	3
	Meas. terminal																						QE	QA	QB	တ္မ	g	QE	QA	Q	တ္မ	Q	QE
16	CLR	٧	=	=											В	∢				В	В		4.5 V	n	з	з	з	n	n	3	3	3	п
15	QA	I	7										I			=				_	Γ			OUT					OUT				
14	QB	н			_							I	I	I	_	_	I	I	I	_	Γ				OUT					OUT			
13	Qc	٦	I				_			:		:	I			-				_	L					OUT					OUT		
12	GND	GND		=					-		-				-		-		-				GND							=	=	-	
11	QD	٦			I				_	_	_	I	I	I	_	_	I	I	I	_	Γ						OUT					TUO	
10	QE	Г					I			:	_	_	I	-		-				_	٦		OUT					OUT					OUT
6	SI	В										<				В				<	Α		N						=	-	-	-	-
8	P EN	٧								В	В	∢				=				В	В		GND	n	а	з	з	n	п	а	а	3	n
7	P _E	В						∢	∢	В				⋖		=																	
9	P _D	В				∢	∢	В		-	-	∢	∢	В	-	=		∢		-													
5	Vcc	4.5 V		-				-	-		-		-	-	-	-	-	-	-		=		5.0 V						=			=	=
4	P _C	В		∢	<	В								⋖		-							-										
3	P _B	٧	∢	В						-	=	∢	∢	В	=			∢		-													
2	РА	В												⋖		-						55° C.											
1	CLK	В	∢	В	∢	В	∢	В	<	В	<	В	∢	В	<	В	∢	В	<	В	Α	nd $T_{\rm C}$ = -	Z						=	=	=	-	
Cases E, F	Test No.	104	105	106	107	108	109	110	11	112	113	114	115	116	117	118	119	120	121	122	123	Repeat subgroup 7 at T $_{\rm C}$ = +125 $^{\circ}$ C and T $_{\rm C}$ = -55 $^{\circ}$	124	125	126	127	128	129	130	131	132	133	134
		14																				p7atT _C	(2)	33	(2)								
	I STD-883 method	3014	3	-	-	-	3	3	-	3	3	3	3	3	3	-	-	3	-	-		subgrou	(Fig 5)	3003	(Fig 5)	3	3	n	=	3	3	3	"
	Symbol	Truth	table	test	%	=	3	3	=	3	3	3	3	3	3	-	=	=	=	=	=	Repeat	fMAX	tPLH1	3	я	я	"	tPHL1	3	3	3	n
	Subgroup	2	$T_C = 25^{\circ}C$	1/, 4/	n	3	3	n	3	3	"	3	3	n	"	3	=	=	=	3	n	8	6	$T_C = 25^{\circ}C$	n	n	n	ĸ	=	я	я	я	u

See footnotes at end of device type 02.

TABLE III. Group A inspection for device type 02 - Continued.

	s	Unit	su	3	3	n	n	su	3	3	3	3	MHz	su	3	n	3	n	=	ä	n	n	n	=	3	3	ä	n	=	ä	n	я	n
	Test limits	Max	42	3	3	3	и	<u> </u>	3	n	3	n		99	3	ä	3	n		3	3	3	n	69	ı	n	n	п	22	n	n	3	n
	T	Min	8	я	3	я	п	=	3	n	я	ä	3.5	8	3	3	3	п		ä	3	3	п	8	3	з	я	п	=	3	я	я	и
_		Meas. terminal	QA	QB	တ္မ	g	QE	QA	QB	တ္မ	g	QE	QE	QA	QB	တ္ပ	g	Q_{E}	QA	QB	တ္	Q	Q_{E}	QA	QB	တ္မ	g	Q_{E}	QA	QB	တ္	g	Q_{E}
	16	CLR	Z	3	3	3	n	31	3	3	3	3	4.5 V	"	3	3	3	n	n	3	3	3	п	Z	3	3	3	n	"	3	3	3	n
	15	QA	OUT					OUT						OUT					OUT					OUT					OUT				
en).	14	QB		OUT					OUT						OUT					OUT					OUT					OUT			
I erminal conditions (pins not designated may be $H \ge 2.0 \text{ V}$ or $L \le 0.8 \text{ V}$ or open)	13	QC			OUT					TUO						OUT					OUT					OUT					OUT		
× 0.8	12	GND	GND		=			=	-	-				=		=	-			=	-	-		=					=	=			=
V Or L	11	QD				OUT					OUT						OUT					OUT					OUT					OUT	
7 2.0	10	QE					OUT					OUT	OUT					OUT					OUT					OUT					OUT
y be r	6	SI											N	-	:	:	:				:	:		=	:				-				=
red ma	8	P EN	Z	3	3	3	n	n	3	3	3	3	GND	n	3	3	3	n	п	3	3	3	n	Z	3	3	3	п	n	3	3	3	2
esigna	7	PE	4.5 V																					4.5 V									
s not o	9	P _D	_																					4.5 V									
uld) su	5	Vcc						=		-				-	:		-							=					-				
onditio	4	Pc	/																					4.5 V									
minaic	3	PB																						4.5 V									
leL	2	PA	_ /																					4.5 V									
-	1	CLK	GND 4					=	=				N	=			-							GND	=				=				=
	Cases E, F	Test No.	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155		157	158	159	160	161	162	163	164	165
		STD-883 method	3003	(Fig 5)	3	я	п	=	3	я	3	я	(Fig 5)	3003	(Fig 5)	3	3	п	=	3	3	3	п		=	3	3	п		3	я	я	п
		Symbol	tPLH2	3	3	ä	п	tPHL3	3	я	3	я	fMAX	tPLH1	3	3	3	п	tPHL1	я	3	3	п	фгнг	3	я	3	п	tPHL3	3	ä	3	п
		Subgroup	6	$T_C = 25^{\circ}C$	я	я		=	я	я	я	2	10	T _C = 125°C	я	я	я		=	я	я	я	r.	=	=	я	я		=	я	я	я	u

For subgroups 7 and 8, A = V_{CC} and B = GND.

For subgroups 7 and 8, A = V_{CC} and B = GND.

Output voltages shall be either: (a) H = 2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator, or (b) H ≥ 1.5 V and L < 1.5 V when using a high speed checker single comparator.

The tests in subgroups 7 and 8 shall be performed in the sequence specified.

Only a summary of attributes data is required.

છ! 4।

TABLE III. Group A inspection for device type 03. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

	Unit	>	. "	n	я	n	3		n	и	n	n	n	n	-	=	=	ä	n	n	n	n					hΑ	=	"			n	и	3
Test limits	Max										0.4	-				-	-		-1.5		=	=	/7			/8	40	=	=	100			/ 6	10/
_	Min	2.4	: i	-	=	-	-																											
	Meas. terminal	ć	§ 6	9 0	y 6	3 6) (ģ	Q	QH	QA	QB	g	Q	Q	Å	g	å	SIA	SIB	CLK	CLR	SIA	SIB	CLK	CLR	SIA	SIB	CLK	SIA	SIB	CLK	CLR	CLR
14	VCC	45 V		"	3	3	7		ä	п	n	3	3	3	-	3	3	3	n	ä	3	3	5.5 V	3	п	n	n	3	3	n	3	3	п	n
13	O	-								-0.4 mA								8 mA																
12	O	5							-0.4 mA								8 mA																	
11	Ö	5						-0.4 mA								8 mA																		
10	OF	3				-0.4 mA									8 mA																			
6	CLR	4 5 V) =	-		-	-		-			-	-	-	-	-	-					-12 mA				V 4.0							2.4 V	7 S.5
8	CLK	/1 A	1 -	=			-				"	-				=	=				-12 mA				0.4 V				2.4 V			5.5 V		
7	GND	GND) j	n	ä	¥	y		7	ш	n	31	"	"	"	77	77	¥	n	n	n	3	n	7	и	п	n	n	n	"	n	ä	и	n
9	G	3			-0 4 mA	<i>.</i>								8 mA																				
2	Ö	Ş		-0.4 mA	5								8 mA																					
4	OB	3	-0 4mA									8 mA																						
3	ć	-0 4 mA									8 mA																							
2	a S	20.7) =	-	Ē.	=			=		0.8 V	-				-	-	-		-12 mA			5.5 V	0.4 V			GND	2.4 V		GND	5.5 V			
~	Š.	700) =	-	=	=	=	:	=	=	0.8 V	=	=	=	=	=	=	=	-12 mA				0.4 V	5.5 V			2.4 V	GND		5.5 V	GND			
	A, B, C, D Test No.	-		۱ «	> 4	- rc) (o.	7	8	6	10	7-	12	13	4	15	16		18	19	20	21	22	23	24	25	26	27	28	59	30	31	32
MIL-	STD-883 method	3006	3	n	n	3	3		n	ш	3007	3	3	3	=	3	=	3					3009	3	и	п	3010	n	n		я	n	п	n
	Symbol	707	E 3	3	3	3	7		3	n	Vol	3	3	3		3	=	3	VIC	я	3	3	IL1	3	п	11.2	lH1	3	3	IHZ	3	3	ІНЗ	IIH4
	Subgroup	-	To = 25°C	2 1	3	3			я	*	7	я	я	3	я	3	3	я	я	я	з	3	я	3	я	я	я	я	3	3	я	я	3	я

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

П		1												_																						
	Unit	Δm	<u> </u>	3	3	3	3	3	=	n	n	3																								
Test limits	Мах	-27.5		=	=	-	-		=		44	54						<u>4</u> ।																		
ř	Min	-10	2 =	-	-	-	-																													
	Meas. terminal	خ ا	§ (# C) (2 6	<u>a</u> (<u></u>	o O	ОΉ	SC	Vcc																								
		+								0	>	>			>																					
14	72/	7 7		3	3	3	3		=	n	7	3			4.5 V	3	=	3	3	3	3	3	3	3	=	3	3	3	3	3	3	3	3	3	3	3
13	d	3								GND					٦	3	3	3	3	3	3	3	3	3	3	3	3	=	=	=	=	I	=	=	=	-
12	Ö	9							GND						٦	3	3	3	3	3	3	3	3	3	3	3	3	=	=	I	3	3	3	3	3	3
11	Ö	ķ					2	GIND							_	я	3	я	3	3	3	3	3	3	3	3	3	I	3	3	я	3	3	я	з	3
10	ď	Ŗ					פואם								٦	я	3	я	3	3	3	3	3	3	3	I	3	3	ä	я	я	3	3	3	3	3
6	CI R	45.7	> ; = f	-		-			-		B <u>2</u> /	В	7		В	∢	я	3	3	3	3	3	3	3	3	3	3	3	3	я	ä	3	3	3	3	3
8	CLK					-			=		0.4 V	2.4 V	C and V _{IC} tests are omitted.	omitted.	A	<	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	В	⋖	В	⋖	∢	В	⋖	В
7	GND	+	<u> </u>	3	3	3	3		=	и	"	3	tests are	and V _{IC} tests are omitted.	GND	n	3	n	3	3	3	3	3	3	3	3	3	3	3	3	n	3	3	7	"	3
9	0				CINC	<u> </u>							and V _{IC}	nd V _{IC} te) 	а	3	а	3	3	3	=	=	I	3	3	3	3	,	я	я	3	3	3	3	3
2	,			CINC									= +125° C	-55° C ar	_	3	3	3	2	=	2	_	2	3	2	2	2	=	-	3	3	2	=			*
					5								ot T _C = +	T _C =						_		_														
4	Ĉ		2	5									1, excep	1, except	_	3	3	3	3		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
က											_	_	bgroup	bgroup	_		_	I	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3		
2	ů.	_		-	=	-	-	•	•	=	GND	GND	as for su	as for su	⋖	ä	n	ä	n	"	3	n	n	n	n	n	n	"	3	n	я	3	"	3	ä	3
_	ď.	4 5 7	> :	=	=	-	-	•	•		GND	GND	d limits a	d limits a	٧	3	n	3	n	3	3	n	n	3	n	n	n	3	3	n	3	3	В	3	3	3
Cases	A, B, C, D Test No.	33	5 5	ן ע	S %	2 6	<u>ر</u>	000	39	40	41	42	Same tests, terminal conditions and limits as for subgroup 1, except Tc	Same tests, terminal conditions and limits as for subgroup	43	4	45	46	47	48	49	20	51	52	53	54	22	26	22	28	29	09	61	62	63	64
MIL-	STD-883 method	3011	3	¥	z	ı	3		3	n	3002	3005	ts, terminal c	ts, terminal c	3014	3	=	3	=	21	=	=	=	=	=	3	3	21	=	3	я	=	21	я	z	n
	Symbol	-	SO. 3	3	3	3	3		=	n	lcc1	lcc2	Same tes	Same tes	Truth	table	test	12/	=	3	=	3	3	3	=	3	3	=	=	3	3	=	3	n	=	=
	Subgroup	-		2 - 22 - 21	n	¥	2	**	3	×	я	3	2	3	7	$T_C = 25^{\circ}C$	/ <u>9</u> / <u>8</u>	3	3	я	я	3	3	3	3	3	3	n	77	n	я	я	3	я	3	n

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

	Unit																																			
Test limits	Мах	_			;	4 1																														
Tes	Min																																			
	Meas. terminal																																			
4	V _{CC}		> F	:	n			n	з	ä	3	3	=	3	з	3	з	з	з	3	3	з	3	3	=	3	ä	3	з	3	я	я	3	3	3	n
13	Ā	<u> </u>	= 3	3	3	3		=	3	3	'n	'n	-		_	я	3	3	3	'n	3	3	'n	3	3	3	3	'n	"	'n	3	I	3	3	3	n
12	Q	3 =	= =	3	3	3		=	3	3	з	з	_	3	3	3	3	3	3	з	3	3	з	3	з	з	3	з	3	I	3	3	з	а	а	п
11	å	3 3	- "	n	"	"		=	3	n	Г	n	n	n	n	n	n	n	n	n	"	n	n	"	3	3	n	I	n	n	"	"	3	3	3	и
10	Q	, 	- 3	n	n	n		=	_	3	n	n	n	2	n	2	n	n	n	n	n	n	n	n	ä	I	3	n	3	n	n	n	ä	3	3	и
6	CLR	<	(=	n	n	n		=	3	3	n	n	n	z	n	z	n	n	n	n	n	n	n	n	ä	ä	3	n	3	n	n	n	ä	3	3	и
8	CLK	<	(α	1	_	> د	(В	∢	В	∢	В	∢	В	∢	<	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	∢	В	⋖	В
7	GND	CINC	<u> </u>	3	"			n n	3	я	я	я	3	3	3	3	3	3	3	я	я	3	я	я	з	з	я	я	3	я	я	я	з	я	я	и
9	S	3 =	_ 3	3	"	-	_	=	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	I	3	3	3	3	3	3	3	3	3	з	з	п
2	Ö	3 =	: -		×	3		=	3	3	n	n	n	n	n	n	n	n	n	n	ä	I	n	ä	3	3	3	n	n	n	ä	ä	3	3	3	п
4	Q	ਤੇ -] =	n	n	3		=	3	3	n	n	n	n	n	n	n	n	n	I	ä	n	n	ä	3	3	3	n	n	n	ä	ä	3	3	3	п
3	Q	ς –] =	n	n	3		=	3	3	n	n	n	n	n	-		I	n	n	ä	n	n	ä	3	3	3	n	n	n	ä	ä	3	3	_	٦
2	SIB	5 <	(3	n	3	ä		3	3	ä	n	n	n	n	n	n	n	n	n	n	n	n	n	n	ä	ä	ä	n	z	n	n	n	В	3	3	п
-	SIA	5 0	ב כ	z	3	я		=	3	3	я	я	z	3	z	∢	z	z	z	я	я	z	я	я	я	я	3	я	3	я	я	я	я	3	3	п
Cases	A, B, C, D Test No.	9	င် ၁	67	5 6	89 0	69	20	7.1	72	73	74	75	92	77	78	79	80	81	82	83	8	82	86	87	88	88	06	91	95	93	94	92	96	26	98
MIL-	STD-883 method	7706	<u>†</u>	=	"		:	ı	=	=	-	-	-	¥	n	¥	-	n	n	-	n	n	n	=	-	n	n	n	=	n	n	=	n	я	я	п
	Symbol	Tr. 145	1 4	100	į i	ି ।ର		z	:	n	3	3		3	n	=		n	n		n	n		n	-	3	n		=	3	n		3	3		:
	Subgroup	7	, I	2/ /2/	δl Šl		•	3	я	я	я	я	я	я	я	я	я	я	я	я	я	я	я	я	я	я	n	я	я	я	я	я	я	з	з	я

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

	Unit																																			
Test limits	Мах					4	1																													
Te	Min																																			
	Meas. terminal																																			
14	ر د و	╁	v		=	я	3	3	3	3	3	3	=	з	2	2	3	я	3	3	я	я	3	я	-	3	з	3	3	3	3	з	3	-	3	n
13	đ		E 3		3	3	2	3	3	2	2	3	-		_	3	2	3	2	2	3	3	3	3	3	3	3	3	3	3	3	I	3	3	3	и
12	Ö	9 -	E 3		3	3	"	3	3	"	7	3	_	3	3	3	"	3	"	7	3	3	3	3	3	3	3	3	3	I	3	3	3	3	3	и
1	Ğ	ķ =	E ₃		3	3	3	3	3	3	_	я	3	3	з	з	3	з	3	з	з	з	я	з	я	я	3	I	я	я	я	3	я	3	я	n
10	Ğ	ÿ -	L 3		3	3	n	3	_	n	n	3	3	3	n	n	n	n	n	n	n	n	3	n	3	I	3	n	3	3	3	3	3	3	3	n
6	CLR	i <	₹ ₹		3	3	я	3	3	я	я	3	3	3	я	я	я	3	я	я	3	3	3	3	3	3	3	я	3	3	3	3	3	3	3	и
80	CLK		<	m	∢	В	∢	В	<	В	∢	В	∢	В	∢	∢	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	В	⋖	∢	В	⋖	В
7	GND		0 10	:	3	я	3	3	3	3	3	я	я	я	z	z	3	я	3	3	я	я	я	я	я	я	я	я	я	я	я	я	я	з	з	п
9	6	3 -	E 3		3	n	_	z	3	z	ä	я	3	n	я	я	z	я	z	ä	я	я	я	I	я	я	n	я	я	я	я	n	я	ä	я	n
2	Ö) <u>-</u>	c :	<u> </u>	_	3	n	×	3	n	n	ä	3	3	n	n	n	n	n	n	n	I	ä	n	ä	ä	3	я	ä	ä	ä	3	ä	3	ä	n
4	o a	ğ -	_ "		3	3	n	3	3	n	n	3	3	3	n	n	n	3	n	I	3	3	3	3	3	3	3	ä	3	3	3	3	3	3	3	n
ဗ	ď	ý -	_ =		3	3	3	3	3	3	3	3	3	3	3			I	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	_	L
2	S	5 0	ים מ		3	3	я	3	3	я	я	3	3	3	3	∢	я	3	я	я	3	3	3	3	3	3	3	я	3	3	3	3	В	3	3	и
1	SIA	5	∢ ₃		3	3	я	3	3	я	я	я	3	3	я		я	я	я	я	я	я	я	я	я	я	3	3	я	я	я	3	В	3	я	и
Cases	A, B, C, D Test No.		n n	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132
MIL-	STD-883 method	2.00	4 00	:	=	3	=	3	=	=	=	=	-	3	я	я	=	я	3	=	я	я	я	=	=	я	3	я	=	я	я		я	я	з	и
	Symbol	A#1.12		table	test	2/	=	3	-	3	3	3	=	3	3	-	-	*	3		*	*	-	*	-	3	3	-	-	3	3		3	3		
	Subgroup	١	,	T _C = 25°C	3/ 6/	я	я	3	3	я	я	я	3	n	я	я	я	"	я	я	я	я	я	я	я	я	n	я	я	я	я	я	я	з	я	и

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

	Unit																																
Test limits	Мах				41																												
	Min																																
	Meas. terminal																																
14	VCC	4.5 V	n	=	ä	n	n	n	n	n	¥		n	3	ä	n	3	ä	ä	n	n	ä	n	=	3	3	3	ä	3	3	3	n	
13	Q	н	,	,	n	7	77	77	7	77	n		-	_	n	n	n	n	77	,	7	77	7	n	n	7	n	77	7	n	I	٦	
12	Q	ı	я	я	ä	ä	3	3	ä	3	z	_	я	3	ä	я	3	ä	3	я	ä	3	ä	3	3	3	3	3	I	3	3	_	
11	Q	I	3	3	я	3	3	3	3	_	я	я	3	я	я	3	я	я	3	3	3	3	3	3	3	3	I	3	3	я	3	_	
10	Q	Т	3	3	3	3	3	_	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	I	3	3	3	3	3	3	_	
6	CLR	A	3	3	"	3	3	3	3	3	n	"	"	3	"	"	3	"	3	3	3	3	3	3	3	3	3	3	3	3	3	В	
8	CLK	٨	В	∢	В	∢	В	∢	В	∢	В	4	В	∢	4	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	В	∢	4	
7	GND	GND	n	n	n	n	n	n	n	n	n	n	n	3	n	n	3	n	ä	n	n	ä	n	3	3	3	3	ä	3	3	ı	¥	
9	Q	I	n	n	n	_	ä	ä	n	ä	n	n	n	×	n	n	×	n	3	n	n	3	I	3	3	3	3	3	3	n	3	_	
2	Q	ı	I	_	n	3	3	3	3	3	n	n	n	3	n	n	3	n	3	3	I	3	3	3	3	3	3	3	3	n	3	_	
4	å	٦	n	n	n	n	ä	ä	n	ä	n	n	n	×	n	n	×	n	I	n	n	3	n	3	3	3	3	3	3	n	3	_	
3	Q	_	n	n	n	n	ä	ä	n	ä	n	n	n	×			I	n	3	n	n	3	n	3	3	3	3	3	3	n	3	_	
2	SIB	В	n	n	n	n	ä	ä	n	ä	n	n	n	×	∢	n	×	n	3	n	n	3	n	3	3	3	3	3	3	n	3	=	= -55° C.
-	SIA	В	3	3	"	3	3	3	3	3	n	"	"	3	4	"	3	"	3	3	3	3	3	3	3	3	3	3	3	3	3	=	and T _C =
Cases	A, B, C, D Test No.	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	Repeat subgroup 7 at T_C = +125° C and T_C = -55°
MIL-	STD-883 method	3014	я	=	я		я	=		=	=	=	я	3	я	=	3	я		я	я	я		=	3	3	3		3	3	=	3	bgroup 7 at
	Symbol	Truth	table	test	12/	=	n	=	n	n	n	=	n	3	=	=	3	n	=	n	n	=	n	=	ı	ı	=	=	ı	3	=	3	Repeat su
	Subgroup	7	T _C = 25°C	/SI %	ä	я	я	я	я	я	3	ä	ä	3	ä	ä	3	ä	я	3	я	я	я	3	3	3	3	п	73	7	n	7	8

See footnotes at end of device type 03.

TABLE III. Group A inspection for device type 03 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

_			_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_
(0)	Unit	MHz	su	n	n	n	n	3	×	n	=	n	3	n	3	3	n	n	=	n n	3	n n	n	n	ä	n	MHz	su	n	3	3	3	3	3	n
Test limits	Мах		49	=	-	-		-	-	-	30	-	-	-	-	-	-	-	37	=	-	=	-	=	-			63	=	-	-	-	=	=	-
	Min	11	12	=	=	=					10	=	=	=	=	-				=	=	=	=	=	:	=	6	12	=	=	=	=	=	=	=
	Meas. terminal	ΗЮ	QA	QB	တိ	g	Q	å	Q	å	QA	QB	တိ	g	QE	Å	Q _G	å	QA	QB	တွ	g	QE	Å	QG	Ą	QH	QA	QB	တ္မ	Q	Q	Å	QG	g
14	Vcc	5.0 V	n	n	n	n	n	n	n	n	n	n	n	n	n	ı	n	n	n	n	ı	n	n	n	n	n	=	n	n	3	3	3	ä	n	n
13	QH	TUO								OUT								OUT								OUT	OUT								OUT
12	QG								OUT								OUT								OUT									OUT	
11	QF							OUT								OUT								OUT									OUT		
10	QE						OUT								OUT								OUT									OUT			
6	CLR	4.5 V	Z	=	-	-		-	-	-	4.5 V	-	-	-	-	-	-	-	=	=	-	=	-	=	-		=	Z	=	-	-	-	=	=	-
8	CLK	N	GND	=	=	=		=		=	Z	=	:	:	:	=			=	=	=	=	=	=			=	GND		=	=	=	-	=	=
7	GND	GND	n	3	3	3	3	3	3	я	п	3	3	3	3	3	3	я	n	3	3	3	3	я	3	я	=	3	3	3	3	3	3	3	3
9	QD					OUT								OUT								OUT									OUT				
2	QC				OUT								OUT								OUT									OUT					
4	QB			OUT								OUT								OUT									OUT						
က	QA		OUT								OUT								OUT									DO							
2	SIB	Z									Z		=	=	=				=					=	:	=	Z								
-	SIA	Z									Z		-	-	-	-			=	=	=	=		-	:	-	Z								
Cases	A, B, C, D Test No.	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191	192	193	194	195	196	197
MIL-	STD-883 method	(Fig 6)	3003	(Fig 6)	я	я	3	3	3	я	=	=	7	7	7	3	3	я	=	=	3	3	3	n	3	я	(Fig 6)	3003	(Fig 6)	3	3	3	я	ı	3
-	Symbol	fMAX	tPHL1	3	3	3	3	3	3	3	tPLH2	я	3	3	3	3	3	я	tPHL2	3	3	3	3	3	3	я	fMAX	tPHL1	3	3	3	3	3	3	3
	Subgroup	6	$T_C = 25^{\circ}C$	3	3	3		ä	2	=	=	3	3	3		3	2	-		3	3	3		3	2	*	10	T _C = 125°C	z	3	3	*	3	=	*

See footnotes at end of device type 03.

Terminal conditions (pins not designated may be $H \ge 2.0 \text{ V}$ or $L \le 0.8 \text{ V}$ or open). Group A inspection for device type 03 - Continued.

Ş	10	5	su	3	3	3	3	3	3	3	=	3	3	3	3	3	3	n	
Test limits	2011	INIAX	42		=		=			=	25	-	=	-	-	-	-	=	
	2.17	I	10		=		=			=	=	-	=	-	-	-	-	=	
	Meas.	terminal	QA	Q	OC	Q	Q	Q	Q	Q	QA	Q	OC	Q	Q	Q	Q	QH	
14		Vcc	5.0 V	3	3	3	3	3	3	3	77	3	3	3	3	3	3	п	
13		QH								OUT								OUT	
12		Q_{G}							OUT								OUT		
11		QF						OUT								OUT			
10		QE					OUT								OUT				
6		CLR	4.5 V	-		-		-	-		=	-	-	-	-	-	-		
8		CLK	Z	-		-		-	-		=	-	-	-	-	-	-		
7		GND	GND	3	ä	3	а	ä	ä	а	"	3	3	3	ä	ä	ä	п	
9		Q_D				OUT								OUT					Ċ.
2		QC			OUT								OUT						° = -55°
4		QB		OUT								OUT							except T
3		QA	OUT								OUT								oup 10,
2		SIB	Z								=		-	-					for subgr
-		SIA	Z	-				-	-		-	-		-	-	-	-		limits as
Cases	A, B, C, D	Test No.	198	199	200	201	202	203	204	205	206	207	208	209	210	211	212	213	Same tests, terminal conditions and limits as for subgroup 10, except T $_{\!C}$ = -55 $^{\circ}$ C.
MIL-	STD-883	method	8008	(Fig 6)	n	n	n	n	n	n	=	=	n	3	n	n	n	n	sts, terminal c
	Symbol		tPLH2	n	n	n	n	n	n	n	tPHL2	n	n	ä	n	n	n	п	Same te
	Subgroup		10	T _C = 125°C	я	я		3	*	×	=	я	я	я	r.	я	*	36	11

A = normal clock pulse, except for subgroups 7 and 8 (see 3/).

B = momentary GND, then 4.5 V to clear register prior to test, except for subgroups 7 and 8 (see 3/)

For subgroups 7 and 8, A = V_{cc} and B = GND.

Output voltages shall be either:

(a) $H = 2.4 \, \text{V}$ minimum and L = 0.4 V maximum when using a high speed checker double comparator, or (b) $H \ge 1.5 \, \text{V}$ and L < 1.5 V when using a high speed checker single comparator.

 $H \geq 1.5\,V$ and L < 1.5 V when using a high speed checker single comparator.

The tests in subgroups 7 and 8 shall be performed in the sequence specified.

Only a summary of attributes data is required.

For schematics incorporating 4.5 kΩ base resistors, the minimum and maximum limits shall be -0.6 and -1.5 mA, respectively. 1/16/12

For schematics incorporating 6 kΩ base resistors, the minimum and maximum limits shall be -0.4 and -1.3 mA, respectively. For device type 03, schematic circuits A, D, E and F, the minimum and maximum limits shall be -0.7 and -1.6 mA, respectively.

For schematic circuit B, the minimum and maximum limits shall be -0.8 and -2.6 mA, respectively. 8

For schematic circuit C, the minimum and maximum limits shall be -0.6 and -1.5 mA, respectively.

<u>9</u>/ For device type 03, schematics circuits A, C, D, E and F, the maximum limits shall be 40 μA. For schematic circuit B, the maximum limits shall be 80 μA. 10/ For device type 03, schematics circuits A, C, D, E and F, the maximum limits shall be 100 μA. For device type 03, schematics circuit B, the maximum limits shall be 200 μA.

TABLE III. Group A inspection for device type 04. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

	Unit	>	z	n	я	я	я	3	я	3	"	3	3	я	я			mA	я	я		я	я	я	3	я	я	n	=
Test limits	Max			0.4	0.4	-1.5		3	n	3	=	-	-	=		-		-3.9	-1.3		-	n	n	n	-			=	/9
-	Min	2.4	2.4															-1.2	-0.4										
	Meas. terminal	욮	Ŋ	ДH	Å.	S/L	CLK	S	CLKI	⋖	В	O	۵	Ш	ш	O	I	S/L	SI	CLKI	∢	В	O	Ω	Ш	ш	Ö	I	CLK
16	\ \ \			=	-	=	-	-	-	-	-	-	-	-	-	-	-	5.5 V	=	-	-	-	-	-	-	-	-	-	=
15	CLKI								-12 mA									4.5 V		0.4 V									
4	٥												-12 mA											V 4.0					
13	O											-12 mA											0.4 V						
12	В										-12 mA											0.4 V							
7	∢									-12 mA											0.4 V								
10	S							-12 mA											0.4 V										
6	å	8 mA			16 mA																								
80	GND		=	=	=	=								:				=	=									:	=
7	МД		8 mA	16 mA																									
9	I	2.0 V		2.0 V	0.8 V												-12 mA											0.4 V	
2	9															-12 mA											0.4 V		
4	4														-12 mA											0.4 V			
ဗ	В													-12 mA											0.4 V				
7	CLK						-12 mA											4.5 V											0.4 V
_	S/L	0.8 V	=	=	=	-12 mA												0.4 V		4.5 V	GND	-	-	-	-	-	-	-	4.5 V
Cases E, F	Test No.	_	2	3	4	5	9	7	8	6	10	7	12	13	14	15	16	17	18	19	20	21	22	23	24	25	56	27	28
MIL-	STD-883 method	3006	3006	3007	3007													3009	n	n	=	"	"	3	3	"	n		n
	Symbol	МОН		Vol	VoL	VIC		3	3	3			3	3	3	=		111	11.2	n		3	3	3	3	3	я	=	l _{II 3}
	Subgroup	-	$T_C = 25^{\circ}C$	3	3	3		3	=	3	3	3	3	3	"	3	3	3	3	"	3	3	3	3	3	3	"	n	2

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type $\overline{04}$ - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

2 9	н Он									2.4 V											5.5 V				4.5 V	GND GND	4.5 V	= +125°C and V_{IC} tests are omitted	= -55°C and V _{IC} tests are omitted	В	: Ф	: <	 V
7	О́Н																											/ _{LC} tests an	tests are	I	=	:	
80	GND	GND	:	= :	: :	=		=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	-		are omitte	re omitted	GND	=	=	•
6	å																								GND			ed.	j.	٦	-	-	
10	S	2.4 V										5.5 V															GND			∢	=	=	-
7	4			2.4 V										5.5 V													4.5 V			В	В	∢	⋖
12	В				2.4 \									>	5.5 V												4			В	Ф	∢	4
-															2 <	5.6											.5 V 4.5						
13	O						•									5.5 V											4.5 V			В	В	∢	⋖
4	٥					7 7 6	, ,										5.5 V										4.5 V			В	В	∢	4
15	CLKI		2.4 V										5.5 V										GND	GND	4.5 V	4.5 V	4.5 V			В	=	-	=
16	20	5.5 V	-				-	=	=		=	=	-	-	-	-	-		-	-	=	=	=	=	=	=	=			4.5 V	=	-	-
	Meas. terminal		CL	∢ ।	<u> </u>	ے ر 	Ш	ш	<u>o</u>		7	S	CL	∢	В	0	٥	Ш	ш	ڻ ص	I	CLK	S/L	S/L	σ	PO	Vcc						
			콕	4	m (١ (ااا د		(D		¥		국 -	4	m	()	0	111	lı .	(D		¥	٦/	٦/			၁						
19	Min																								-20	-20					/ଧ		
Test limits	Max	40	-	з :	3 3		=	3	3	=	=	100	-	3	3	3		=	3	3	=	=	120	300	-55	-55	63						
==	Unit	Αμ	я	з :	3 3	3	я	3	я	3	3	=	ä	3	3	3	3	з	3	3	3	n	n	"	mA	Αm	mA						

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

3 4	CLK E F	4	=	:	:	=	=	=	=	:	:	=	=	:	:	:	:	:	:	=	=	=	:	=	=	=	=	=	=	:	:	=	=	:	:	:
2	9			=	=	=		=	-	=	=	=		=	=	=	=	=	=	=	-	=	=	=	=	=	=	=		=	=	=	=	=	=	=
2 9	HQ H	Н	-	-		-	:	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-
80	GND	GND	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	-	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	-	=
6	죵	_	=	:	=	=	=	=	=	:	=	=	=	I	=	:	=	=	=	=	=	=	=	=	=	=	=	=	=	_	=	=	=	:	=	:
10	S	∢	=		=		=						=	∢	В	В	∢	∢	В	В	⋖	∢	В	В	∢	∢	В	В	∢		=				-	
=	<	<	-				-	-				-							=	-											-	-			=	
12	В	⋖					=																												=	
13	U	A																																		
14	D CLKI		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
15 16	K V		-		_		_	-	_	_	_	_	_	_	_	_	_	_	_	-	_				_		_			_	_	: 4	-	_		
	Meas.																																			
	II Min								%																											
Test limits	Max																																			
	Unit																																			

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

																																				$\overline{}$
6	Unit																																			
Test limits	Max																																			
	Min								% 																											
	Meas. terminal																																			
16	(I Vcc	4.5 V	_	-	_	-	_		_	-	_	-	_	-	_	-	_	_	_	_	_	-	_		_	_	_	_	_	-	_	-	_	_	_	
15	CLKI	В	-	=	-	-	=	-	-	-	-	-	•	-	-	-	=	-	•	-	⋖	⋖	В	-	-	-	-	-	-	-	•	-	-	-	_	=
41	О	٧	-	=	-	-	=	•	-	=	-	-	-	-	-	В	=	-	-	=	=	=	=	⋖	-	=	-	=	-	-	-	=	-	•	=	=
13	C	٧	-	=	=	-	=	-	=	=	-	-	=	-	=	=	=	=	=	=	=	=	=	-	=	=	-	=	-	-	=	=	=	=	=	=
12	В	Α					=			=			-			В	=		-	-	=	=	=	⋖		-		-			-	-			-	=
11	A	Α																														=		-	-	=
10	SI	В	В	∢	∢	В	В	∢	∢	В	В	∢	∢	В	В	∢	:	=		=	=		В	В	∢	∢	В	В	∢	∢	В	В	∢	⋖	В	В
6	QH	٦	I	I	_	_	I	I	_	_	I	I	_	_	I	_	=					:		I	I	_	_	I	I	_	_	I	I	_	_	I
8	GND	GND					=										=					:	:											-	-	=
7	БH	I	_	_	I	I	_	_	I	I	_	_	I	I	_	I		-						_	_	I	I	_	_	I	I	_	_	I	I	_
9	I	٧														В								∢								=		=	=	=
2	g	4		-			-										-	=		-		-												-	-	=
4	Ь	4		-			-									В	-	=		-		-		∢										-	-	=
3	Е	4	-							-	-					-					-	:	-				-		-			-		-	-	=
2	CLK	В	⋖	В	⋖	В	∢	В	∢	В	⋖	В	∢	В	∢	В	∢	В	⋖	В	⋖	∢	В	⋖	В	∢	В	∢	В	∢	В	⋖	В	⋖	В	⋖
-	S/L	٧				-	=			-		-		-		В	=			=	=	⋖	=			=		=		-		-		-	-	=
H.																																				
Cases E,	Test No.	96	96	26	98	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129
MIL-	STD-883 method	3014	я	3	я	я	3	я	3	3	я	я	ä	я	3	3	3	я	я	я	я	3	3	я	з	я	я	я	я	я	ä	я	з	я	3	n
	Symbol	Truth	table	test	4 1	=	=		=	=	=	=	=	=	=	=	=	=	=			=	=		=	=	=	=	=	=	=	=	=			=
	Subgroup	7	$T_C = 25^{\circ}C$	2/ 5/	я	=	=	я	=	=	=	=	ä	=	=	z	=	=	я	=	=	=	=	я	=	=	я	=	=	я	=	=	3	я	-	n

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

$\overline{}$																																				
	Unit																																			
Test limits	Max																																			
	Min								/ଧ																											
	Meas. terminal																																			
16	Vcc		=																					=									=	=	=	=
15	CLKI	В							∢	∢	В	:									:	:		-										-	-	=
14	D	∢								:	-	:									-	:		-										-	-	=
13	C	٧		В								<												=			-							=	-	=
12	В	∢																						=										-	-	=
11	4	4		В						-	-	∢	-	-				=		-	-	-	-											-	-	=
10	SI	∢									В																							=	:	=
6	QH	I	_	I								_	_	I	I	_	_	I	I	_	_	I	I	_										-	:	=
8	GND	GND	-			-				-	-	-									-	-		-								-		-		=
7	МH	٦	I	_								I	I	_	_	I	I	_	7	I	I	_	_	I										=		=
9	I	٧		=	=													=						=				=						=	=	=
2	Ŋ	٨	∢	В		-	-	-	-	=	=	∢	=	-	-	-	-	=	-	-	=	=	=	=	-	-		-	-	-	-	-	=	-	-	=
4	F	٧		=	=											=		=										=						=		=
3	Е	۷	∢	В		:					=	∢					:		:		=			=								:		=	=	=
2	CLK	В	<	В	∢	В	∢	В	∢	∢	В	∢	В	۷	В	∢	В	∢	В	۷	В	∢	В	<	В	∢	В	∢	В	∢	В	∢	В	⋖	В	۷
-	S/L	٧		В						∢																								=	=	=
Cases E, F	Test No.	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159	160	161	162	163	" " 164
	STD-883 method	3014	3	3	з	3	3	3	3	3	3	3	3	3	3	з	я	3	я	3	3	3	3	3	3	3	я	3	3	я	3	3	3	я	я	п
	Symbol	Truth		test	41	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
	Subgroup	7	$T_C = 25^{\circ}C$	2/ 5/	ä	=	-	3	=	=	=	=	3	=	=	n	-	=	ä	=	=	=	=	3	=	=	я	-	=	n	=	=	3	я	=	я

See footnotes at end of device type 04.

TABLE III. Group A inspection for device type 04 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

Symbol STD-883 Test No. SNL CLK E F G H GH Truth 3014 166 N A N A A A H GH	OND		α <	0 <	. 0 <	9) V CC V V V V V V V V V V V V V V V V V	Meas. terminal	Min Max	#
B				<	<	œ	> 6.			
N	I								<i>ૅ</i> ઝ∣	
N	I								જેં	
H A A A B B B B B B B B B B B B B B B B	. I								<u>ે</u>	
B B B B B B B B B B B B B B B B B B B	I								<i>ે</i> ંગ	
B B B B B B B B B B B B B B B B B B B									<i>ତ</i> ା	
									ે	
B B B B B B B B B B B B B B B B B B B		ω							ે	
H A A A B B B B B B B B B B B B B B B B										
B B B B B B B B B B B B B B B B B B B										
A A B B B B B B B B B B B B B B B B B B										
A A B B B B B B B B B B B B B B B B B B										
A A B B B B B B B B B B B B B B B B B B										
N							: :			
A A B B B B B B B B B B B B B B B B B B						-	=			
N				= =						
55° C				-	_		=			
= -55° C. = -55° C. N			-	_	:		=			
= -55° C.	=	-		-			=			
GND		:	-	=						
GND		-	-	-			=			
GND GND GND GND IN GND GND GND GND GND GND GND GND GND GN		-	-	=			=			
=-65° C. IN GND GND GND GND GND IN GND GND GND GND GND GND GND GND GND GN	I -	-	-	=	:		=			
=-55° C. IN GND GND GND GND GND GND IN GND GND GND IN GND GND GND IN IN IN IN IN GND GND GND IN I	Ξ -	=	=	=	=	=				
IN GND GND GND GND GND IN IN GND GND GND IN GND GND GND IN GND GND										
IN GND GND GND GND IN GND GND GND IN GND GND GND GND GND GND GND GND GND GN	GND OUT	IN GND	ID GND	GND	GND	GND	5.0 V	QH	18	MHz
5.0 V IN GND GND GND IN GND GND GND GND GND GND GND GND GND GN	TUO "	GND	ID GND	GND	GND	GND	=	S/L to Q _H	9 35	_
5.0 V IN GND GND GND IN	-	GND	ND GND	GND	GND	GND	=	S/L to QH	7	•
6ND GND GND GND IN	" OUT	z				z		CLK to QH	5 28	=
GND GND GND GND GND	-	Z				z	=	CLK to QH	9 35	=
-	" OUT	GND GND	ID GND	GND	GND	GND	=	H to QH		=
=	" OUT	-	-	=		=		H to QH	7 40	•
196 " " " OUT	. 5	-	-	=		=	=	Н то ⊡Н	6 31	=
196 " " " " OUT	. 5	-	-	=		=	=	H to QH	9	•

See footnotes at end of device type 04.

Terminal conditions (pins not designated may be $H \ge 2.0 \text{ V}$ or $L \le 0.8 \text{ V}$ or open). TABLE III. Group A inspection for device type 04 - Continued.

		MIL-	Cases E, F	_	2	3	4	2	9	7	8	6	10	11	12	13	41	15	16) T	Test limits	
Subgroup	Symbol	STD-883 method	Test No.	S/L	CLK	В	ь	ტ	I	ΏН	GND	Ą	SI	Α	В	ပ	О	CLKI	Vcc	Meas. terminal	Min	Мах	Unit
10	fMAX	(Fig 7)	197	Z	NI	GND	GND	GND	GND		GND	OUT	Z	GND	GND	GND	GND	GND	5.0 V	QH	14		MHz
$T_C = 125$ °C	t РLН1	3003	198	Z	GND	GND	GND	GND	Z		=	OUT		GND	GND	GND	GND	GND	=	S/L to Q _H	10	40	su
=	tPHL1	(Fig 7)	199	Z	GND	GND	GND	GND	Z	OUT	=			GND	GND	GND	GND	GND		S/L to QH	7	09	
"	tPLH2	n	200	5.0 V	Z						=	OUT	Z					Z		CLK to QH	9	37	
=	tPHL2	n	201	5.0 V	Z					DO	=		Z					Z	=	CLK to QH	10	47	-
=	фгнз	n	202	GND	GND	GND	GNĐ	GND	Z			OUT	GND	GND	GND	GND	GND	GND		H to QH	2	27	-
3	tPHL3	3	203	:	-	:		:	=		-	OUT	:	:	:	=	-	-	-	H to QH	7	25	-
=	tPLH4	3	204	:	-	=	=	-		DOLT			=	-	-	-	-		=	H to QH	10	4	
=	tPHL4	n	205	=	=	=	=	=		OUT			=	=	=	=	=	=	=	н ю ⊡н	10	41	=
11	Same te	sts, termina	Same tests, terminal conditions, and limits as for subgroup 10, except	nd limits a	as for sub	group 10), except	T_C = -55° C.	°.														

C = after all other input conditions, but prior to measurement, apply momentary GND, then 4.5 V.

For subgroups 7 and 8, $A = V_{CC}$ and B = GND. ઝા છા

Output voltages shall be either:

(a) H=2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator, or (b) $H \ge 1.5$ V and L < 1.5 V when using a high speed checker single comparator.

The tests in subgroups 7 and 8 shall be performed in the sequence specified.

Only a summary of attributes data is required.

For device type 04, schematics incorporating a 4 k\O base resistor in the clock input circuit, the minimum and maximum limits shall be -0.7 and -1.6 mA, respectively. For schematics incorporating a 6 kΩ base resistor in the clock input circuit, the minimum and maximum limits shall be -0.4 and -1.3 mA, respectively. 4170190

TABLE III. Group A inspection for device type 05. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

_																											r -		
	Unit	۸	3	3	ä	"	3	3	3	n	3	3	3	3	3	=			3	Αm		я	ä	3	3	я	n	3	=
Test limits	Max					0.4		я	я	-1.5			=						=	-1.3		я	я	я			/7	/7	-1.6
-	Min	2.4																		-0.4							=		-0.7
	Meas. terminal	QA	QB	g	g	Q	g	o တ	g	CLR	SR	∢	В	O	Ω	SL	SO	S1	CLK	CLR	SR	∢	В	O	Ω	SF	SO	S1	CLK
16	Vcc	4.5 V				=		=	=	=			=						=	5.5 V							=		
15	QA	-0.8 mA				16 mA																							
4	QB	<u> </u>	-0.8 mA			_	16 mA																						
13	QC		Υ	-0.8 mA				16 mA																					
12	QD			Υ	-0.8 mA				16 mA																				
-	CLK	A 1/			<u>ې</u> -	=		-	-										-12 mA										0.4 V
10	S1	2.0 V				=		=	=									-12 mA	<u> </u>		GND	5.5 V						0.4 V	_
6	SO	2.0 V				=		=	=								-12 mA	7			_	5.5 V				GND	0.4 V		
8	GND	GND 3				=		=	=	=			=				-		=			=					=		
7	SL															-12 mA										0.4 V			
9	D	2.0 V				V 8.0	-		=						-12 mA	7									0.4 V	0			
2	ں ن	2.0 V 2				0.8 V 0		-	-					-12 mA	7									0.4 V	0				
4	В	2.0 V 2				>		_	_				-12 mA	7									0.4 V	0					
8		2.0 V 2.				>	-	-				-12 mA	1,									0.4 V	o						
2	SR	2				0					-12 mA										0.4 V	0							
_		2.0 V				=		_	_	-12 mA	7									0.4 V	0								5.5 V
Π,		2								-12										0									2
Cases E,	Test No.	1	2	က	4	2	9	7	80	6	10	7	12	13	4	15	16	17	18	19	20	21	22	23	24	25	26	27	28
MIL-	STD-883 method	3006	3006	-	-	3007														3009	-	я	я	я	а	я	я	-	п
	Symbol	Мон	=	-	-	Vol	=	я	3	Vıc	=		3	3	3	-	-	-	-	111	-	ä	3	7	3	ä	11.2	1112	I _{IL3}
	Subgroup	1	$T_C = 25^{\circ}C$	2	ä	n	2	я	36	7	3	n	3	7	3	z	я	2	я	3	3	я	3	3	3	я	3	я	2

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

																										—,		-							
	Unit	Рή	з	3	3	3	3	=	=	=	я	=	3	3	3	3	3	=		=	з	μM	-	3	я	3									
Test limits	Max	40		-	-	=	:	=		=		100				-	=				=	-57	:	n	"	63					∕ 4।				
_	Min																					-20													
	Meas. terminal	CLR	SR	∢	В	O	٥	SL	SO	S1	CLK	CLR	SR	∢	В	O	٥	SL	SO	S1	CLK	QA	QB	တ္	QD	Vcc		•							
16	Vcc				:	:			:	=		=				:									=				5.0 V						
15	QA																					GND								_	_	I			_
14	QB																						GND					•	_		=		=	-	I
13	Qc																							GND				•	_	_	_	I			_
12	QD																							_	GND				_		=		-	-	I
11	CLK										2.4 V										5.5 V	A			=	=		•	Y −	∢	В	∢	∢	В	∢
10	S1		5.5 V	GND	:		-			2.4 V			5.5 V	GND		:				5.5 V		5.5 V			=	=		•	∀		=		=	-	
6	80			GND	:		-	5.5 V	2.4 \					GND		:		5.5 V	2.5 V			>			=	=		•	- -		=		=	-	
80	GND	GND			-		-			-		:		-		-									=	=	tted.	ted.	GND		-		=	=	
7	SL							2.4 V										5.5 V								5.5 V	are omi	are omit	B <u>2</u> /		-		-	-	
9	D						2.4 V										5.5 V					5.5 V			=	GND	V _{IC} tests	/IC tests	B <u>2</u> /		=		A	-	
2	ပ					2.4 V										5.5 V						>				GND	125°C and V _{IC} tests are omitted	-55°C and V _{IC} tests are omitted	۸ ا		=	-	В	В	В
4	В				2.4 V										5.5 V							>				GND			B <u>2</u> /		=	-	∢	-	
3	⋖			2.4 V										5.5 V	-							>				GND	1 except	1 except	- -		=		В	В	В
2	SR		2.4 V										5.5 V									ì				5.5 V	ubgroup	ubgroup	B 2/		=		:	-	
-	CLR	2.4 V										5.5 V										5.5 V					mits as s	mits as s	B <u>2</u> /	∢	=	-	=	-	
S E, F	Test No.		30	31	32	33	34	35	36	37	38	39	40	14	42	43	44	45	46	47	48		20	51	52	53	terminal conditions, and limits as subgroup 1 except T _C =	ons, and li	54	22	99	25	58	59	09
Cases E,		(1	(,)	(1)	(+)	(,)	(1)	(1)	(1)	(,)	(1)	(1)	4	4	4	4	4	4	4	4	4	4	ų,	4,	4,	ш,	l conditio	l condition	u)	4,	<u>u</u>	4)	<u> </u>	<u> </u>	
-JIM	STD-883 method	3010	=	=	=		=		=		=	=	=	=	=	=		=	=	=		3011	=	3	я	3005	s, termina	Same tests, terminal conditions, and limits as subgroup 1 except T_{C} =	3014	=			=	=	=
	Symbol	lH1	=	=	ä	3	ä	=	=	=	=	l _{IH2}	=	=	n	3	ä	=	=	=	=	sol	=	n	n	lcc	Same tests,	Same test	Truth	table	test	2/	=	=	=
	Subgroup	_	T _C = 25°C	я	3	3	3	я	я	3	я	=	=	я	я	3	ä	я	я	3	я	31	я	3	z	и	2	က	7	$T_C = 25^{\circ}C$	/ <u>9</u> / <u>8</u>	3	я	я	я

See footnotes at end of device type 05.

TABLE III. Group A inspection for device type 05 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

S.	Unit																																		
Test limits	Max			4 I																															
	Min																																		
	Meas. terminal																																		
16	Vcc	5.0 V		=	=	-				=		=				=					=	=	-						-					-	=
15	QA	٦	_	I	=	=			_								I	I	I	_	_	_	I	I	I	_	_	_	I	I	I	_		-	=
14	Q_{B}	I							_	=		=				=				I	I	I	٦	_	_	I	I	I	٦	_	_	I	I	_	=
13	Qc	٦	_	I		:			_													=	I	I	I	_	_	_	I	I	I	_	_	I	I
12	QD	I							_													=				I	I	I	_	_	_	I	I	_	_
11	CLK	٧	В	∢	<	<	В	<				В	<	<	<	В	<	⋖	В	<	⋖	В	⋖	<	В	4	∢	В	∢	∢	В	4	В	∢	В
10	S1	٧			В			-	-				-					-		-	-	-	-			-	-		-		-			-	=
6	SO	٧			В			-	-				-	∢				-		-		-	-			-	-		-		-			-	=
8	GND	GND			-																	=													=
7	SL	В		=	=						<		:		В			=				=													=
9	D	∢		=	=	В		=					=					=			-	:	-			-			-						=
2	C	∢		=	:	-	-	=	-	-	-		:		В	-	-	=	-	-	-		-	-		-	-	-	-	-				-	=
4	В	∢		=	=	В		=			∢		=		В			=		-		-	-						-					-	
3	A	4		=	=			=					=		В			=																	=
2	SR	В		=	=			=					=		∢	∢	∢	В	В	В	∢	<	∢	В	В	В	∢	∢	∢	В					
-	CLR	۷		=	=			=	В	∢			=					=																	=
Cases E, F	Test No.	61	62	63	64	65	99	29	89	69	70	7.1	72	73	74	75	9/	77	78	62	80	81	82	83	84	85	98	87	88	88	06	91	92	93	94
MIL-	STD-883 method	3014	=	=		=		=				=	-										=		=				=				=	-	
	Symbol	Truth	table	test	2/	=	=	=		=		=	=	=	=	=	=	=		=		=	=	=	=		=	=	=	=	=	=	=	=	
	Subgroup	7	$T_C = 25^{\circ}C$	3/ 6/	3	3	ä	3	ä	3	ä	ä	3	ä	n	3	3	3	ä	3	3	3	3	3	3	ä	3	3	3	3	3	"	3	ä	n

TABLE III. Group A inspection for device type 05 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

$\overline{}$		_																													
	Unit																														
Test limits	Max			41																											
_	Min																														
	Meas. terminal																														
16	Vcc	5.0 V							:	=	:		:															-			
15	QA	_							:	=	:		:				I	I	I	_	_	_	I	I	_	_	I	I	_	L	
14	QB	_				-	-	-	-		-	-	-	I	I	I	_	_	_	I	I	I	_	_	I	I	_				
13	တိ	_				-	-	-	-		I	I	I	_	_	_	I	I	I	_	_	_	I	I	_						
12	g	I	I	_		-	-	I	I	I	_	_	_	I	I	I	_	_	_	I	I	I	_								
11	CLK	∢	В	∢	∢	⋖	В	⋖	∢	В	∢	∢	В	∢	∢	В	∢	∢	Ф	∢	∢	В	∢	В	∢	В	∢	В	∢	В	
10	S1	В			∢				=		=		=																	В	
6	S0	∢		=	Ф		:		-	=	=		=									=								=	
8	GND	GND									=	-	=	=	-	-	-				-				-	-	-				
7	SL	В				∢	<	∢	В	В	В	∢	∢	4	В	В	В	4	4	4	В			-	-						
9	O	В		=																								:	=	ш	
5	ပ	В		=			=		=																	:		=		=	
4	В	В		=	=		:		=	:	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=				=		
3	∢	В		-			-		-	=	-	-	-	:				:	:	:	:	=	:	-	-	-			-		
2	SR	В		=			:		=	:	=	=	=			=	=	=	=	=	=	=		=	:				=		.55°C.
1	CLR	٧																										=		В	nd T _C = .
Cases E, F	Test No.	92	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	Repeat subgroup 7 at $T_C = 125^{\circ}C$ and $T_C = -55^{\circ}C$.
MIL-	STD-883 method	3014	=	=	=	=	=	=	=	-	=	-	=	=	-	=	-	=	=	=	=	=	=	=	=	=	-	=	-		bgroup 7 at
	Symbol	Truth	table	test	12/	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	Repeat su
	Subgroup	7	$T_{\rm C} = 25^{\circ}{\rm C}$	/9 /8	я	я	я	я	я	я	я	я	я	я	я	я	я	я	я	я	я	n	я	и	я	а	я	я	я	п	8

See footnotes at end of device type 05.

HZ St

TABLE III. Group A inspection for device type 05 - Continued.

rie Hz s

	ģ	Ü	MΗ̈́	SU	=	=	=	=	=	:	=	=	-	-	=	MH	SU	=	-	=	=	-	-	•	:	=	:	=	
	Test limits	Max		34	=	=	=	26	=	=	"	32	:	:	=		48	=	=	n	36	=	=	=	44	=	=	=	
		Min	11	7		=	=				"	=	-	-	=	6	7	=		"					=				
=		Meas. terminal	Q	CLR to QA	CLR to QB	CLR to Qc	CLR to QD	CLK to QA	CLK to QB	CLK to Q _C	CLK to QD	CLK to QA	CLK to QB	CLK to Qc	CLK to QD	QA	CLR to QA	CLR to QB	CLR to Qc	CLR to QD	CLK to QA	CLK to QB	CLK to Qc	CLK to QD	CLK to QA	CLK to QB	CLK to Q _C	CLK to Q _D	
•	16	VCC	5.0 V	=	=	-	-		-	-	=	=	-	-	=		=		-	=	=	-	-	-	=	=	-	=	Ī
•	15	ď	OUT	OUT				OUT				OUT				OUT	OUT				OUT				OUT				
	4	g			TUO				OUT				OUT					OUT				OUT				OUT			
oben)	13	တိ				OUT				OUT				OUT					OUT				OUT				OUT		
Terminal conditions (pins not designated may be $H \ge 2.0 \mathrm{V}$ or L $\le 0.8 \mathrm{V}$ or open)	12	g				_	OUT			_	OUT			_	OUT				_	OUT			_	OUT				OUT	
r L < 0	=	CLK	Z	=	=			=	-		"	=	-	-	-	N	=				=	-	-	-	=	=	=	-	
.0 V o.	10	S1	GND	5.0 V	_							-			_	GND	5.0 V		_							_	_	_	
H > 2	ნ	SO OS	5.0 V G	5.	_	_	_	_				_				5.0 V G	5		_		_			_		_			
nay be	ω	GND	GND 5.0	_				_		_	-	_			_	, 5.0	_				_	_	_		_			_	
nated r											-				_	OI											_	_	
desigr	7	SF	D GND	>								^	>	>		D GND	^								>	>	>		
ns not	9	٥	CND	/ 5.0 V	-	-	-	-	-	-	Z >	7 5.0 V	/ 5.0 V	5.0 V	Z >	CND	7 5.0 V	-	-	-	=	-	-	Z	/ 5.0 V	/ 5.0 V	5.0 V	<u>Z</u>	ر
ins (pi	2	O	GND	7 5.0 V	=	-	-	=	•	Z	7 5.0 V	7 5.0 V	5.0 V	Z	, 5.0 V	GND	7 5.0 V	=	-	=	=	-	Z	, 5.0 V	7 5.0 V	5.0 V	Z	, 5.0 V	_c = -55°
condition	4	В	GND	5.0 V	=	=	=	=	Z	5.0 V	5.0 V	5.0 V	Z	5.0 V	5.0 V	GND	5.0 V	=	=		=	Z	5.0 V	5.0 V	5.0 V	Z	5.0 V	5.0 V	except 1
minal c	ო	∢	GND	5.0 V	=	=	=	Z	5.0 V	5.0 V	5.0 V	Z	5.0 V	5.0 V	5.0 V	GND	5.0 V	=	-		Z	5.0 V	5.0 V	5.0 V	Z	5.0 V	5.0 V	5.0 V	oup 10,
Ter	2	SR	Z													Z													as subgr
	_	CLR	В	Z	=	-	-	В	:		=	5.0 V	:	:		В	Z	-	=		В	:	:	=	5.0 V	=	=	=	d limits
	Cases E, F	Test No.	124	125	126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	Same tests, terminal conditions and limits as subgroup 10, except T _C = -55°C.
•	MIL-	STD-883 method	(Fig 8)	£00£	(Fig 8)	=	=	и	=	=		и	=	=	=	(Fig 8)	8008	(Fig 8)	=		и	=	=	=	н	=	=	=	sts, terminal
		Symbol	fMAX	tPHL1				tPLH2	-		"	tPHL2	-	-		fMAX	tPHL1	-	-	"	tPLH2	-	-		tPHL2		=	=	Same te
ŀ		Subgroup	6	T _C = 25°C	=	я	я	=	=	я	я	=	=	я	я	10	$T_C = 125^{\circ}C$	=	з	я	=	=	з	я	=	=	я	я	11

For subgroups 1, 2 and 3, $V_{IN} = V_{CC}$; for subgroups 9, 10 and 11, $V_{IN} = 3.0 \text{ V}$ minimum (see figure 8). A = normal clock pulse, except for subgroup 7 and 8 (see $\underline{3}$). B = momentary GND, then V_{IN} (except for subgroups 7 and 8). For subgroups 7 and 8, A = V_{CC} and B = GND. Output voltages shall be either: <u></u>191919141

(a) H = 2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator, or
 (b) H ≥ 1.5 V and L < 1.5 V when ווsinn a high speed

(b) H \ge 1.5 V and L < 1.5 V when using a high speed checker single comparator. The tests in subgroups 7 and 8 shall be performed in the sequence specified.

Only a summary of attributes data is required.

For device type 05, schematic circuits A and B, the minimum and maximum limits shall be -0.4 and -1.3 mA, respectively. For schematic C, the minimum and maximum limits shall be -0.7 and -1.6 mA, respectively. 14ાહાઇ

TABLE III. Group A inspection for device type 06. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

								_													-									_
	7.51	Onit	>	3	3	3	3	n	3	я	3	3	n	3	3	3	=	-	=	3		mA								MA
Test limits		Max						0.4	3	3	-	-	-1.5		-		-		-			-1.3		/7						-1.6
ř		Min	2.4	=			=															-0.4								-0.7
	Meas.	terminal	Q	g B	တ္မ	g	۱۵	QA	QB	g	g	۱۵	CLR	7	١×	∢	В	O	Ω	SF	CLK	CLR	ſ	١×	∢	Ф	O	Ω	SL	CLK
16	0	222	4.5 V				-	=			-	-	=		-				:			5.5 V		-	:					
15			-0.8 mA					16 mA																						
4	(QB	Υ	-0.8 mA				`	16 mA																					
13	(OC		Υ	-0.8 mA					16 mA																				
12	(QD			P_	-0.8 mA				_	16 mA																			
7		٥p				<u> </u>	-0.8 mA				_	16 mA																		
9	2	CLK	A 1				<u>-</u>					-									-12 mA			∢						0.4 V
0	7	-	0.8 V				-	=				=								-12 mA	-	5.5 V	5.5 V	5.5 V	GND				0.4 V	
∞		-	GND	-	-		-	=	-			-	=		-					-					-					
7			2.0 V				0.8 V	=				2.0 V							-12 mA									0.4 V		
9	(+	2.0 V		-		0.8 V	=	-		=	2.0 V						-12 mA	1								0.4 V			
2	c		2.0 V				0.8 V				-	2.0 V					-12 mA	<u>``ı</u>								0.4 V				
4	<	+	2.0 \ 7				0.8 V	=			=	2.0 \				-12 mA	7							5.5 V	0.4 V	_				
က	1:	×													-12 mA	7								0.4 V	_					
2	-	ſ												-12 mA	7								0.4 V	5.5 V (
_		CLK	2.0 V				=	=				=	-12 mA	7								0.4 V	GND (B 2/						5.5 V
Cases E, F		lest No.	-	2	3	4	2	9	7	80	6	10	11 -1	12	13	4	15	16	17	18	19	20 (22	23	24	25	56	27	28
MIL-	0)	method	3006	-	=	-	=	3007	=	-	=	=										3009	n	3	3	3	3	3	=	n
	Symbol		Vон	=	=		=	VOL	ı	n	ı	=	VIC	n	3	n	:		:		=	I _{IL1}	1112	n	3	n	n		=	113
	Subgroup		_	$T_{\rm C} = 25^{\circ}{\rm C}$	3	з	3	E .	3	×	3	3	3	3	3	3	3	3	3	3	n	ä	я	n	3	3	3	3	3	3

See footnotes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be H \geq 2.0 V or L \leq 0.8 V or open).

ıits		Unit	Рη	=	=	=	-	=	=	=	=	=	=	=	=	=	=	=	=	=	Αm	n	n	n	3	n	
Test limits		Мах	40	•	-	•	•	•	•	=	=	100	•	-	=	=	•	=	•	=	-57	•	•	•	-	63	
		Min																			-20		:		-		
	Meas.	terminal	CLR	7	١×	∢	В	O	Ω	SL	CLK	CLR	7	١×	∢	В	O	Ω	SF	C LK	QA	QB	g	g	١ở	Vcc	
16		Vcc	5.5 V		=							=		-				=							=	=	
15		QA																			GND						
14		QB																				GND					
13		Q																					GND				
12		Q																						GND			
11		١٥																							GND		
10		CLK		∢							2.4 V		∢							5.5 V	4					4	
6		S		GND	GND	5.5 V			-	2.4 V			GND	GND	5.5 V		-	=			GND					GND	
8		GND	GND		=				-		:	-	=	-	:		-	=							=	=	itted.
7		۵							2.4 V									5.5 V			5.5 V					GND	s are or
9		O						2.4 V									5.5 V				5.5 V					GND	Vic test
2		В					2.4 V									5.5 V					5.5 V	-	-	-		GND	25°C and
4		∢		5.5 V		2.4 V							5.5 V		5.5 V						5.5 V					GND	1 Tr = 1
3		Ι¥			2.4 V									5.5 V												GND	1 excer
2		7		2.4 V									5.5 V													GND	subarour
-		CLR	2.4 V	5.5 V	GND						GND	5.5 V	5.5 V	GND						GND	5.5 V				GND	5.5 V	imits as
Cases E, F		Test No.		30		32	33	8	35	36	37		39	40	14	42	43	4	45	46	47	48	49	20	51	52	Same tests, terminal conditions, and limits as subgroup 1 except $T_C = 125^{\circ}C$ and V_{IC} tests are omitted
MIL-	STD-883	method	3010	я	ä	ä	3	ä	3	=	=	=	3	3	ä	я	3	3	-	-	3011	-	-	-	=	3005	s. terminal co
	Symbol		IH	-	3	3	3	3	=	=	=	IH2	=	3	3	3	3	=	-	-	sol	=	=	=	=	lcc	Same tests
	Subgroup		-	$T_C = 25^{\circ}C$	ä	n	3	n	7	3	=	=	=	я	3	3	7	3	n	-	-	=	n	n	3	E	2

See footnotes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be H > 2.0 V or L < 0.8 V or open).

4	14 15 16 Test limits	Meas. V _{CC} terminal Min Max Unit	5.0 V				/ 1																											
4	15 16	Meas. V _{CC} terminal Min	^				/1																											
0,7	15 16	Meas.	>				4 I																											
	15 16))	>																															
	15))	>																															
r.			0.	-	_	_	_	_	_	_	_	_	_	_	_		_	_	-	_	-	_	-		-	_	_	_	_	_	-		-	
		ď	L 5			I	_	_	_	_	=	_	_	_		_	_	_			_		_	_			_		_				ェ	т
. ,		 		_				_			_													_								_		
obe —				_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_		_		_	_	_		
.8 V O	13	ဗိ	_	-	-	-	-	-	-	エ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	Ι	Ι
) V V	12	<u>ලි</u>	_	-	-	=	-	=	-	=	=	Ι	-	-	•	=	-	-	-	=	=	=	=	=	-	=	=	=	-	_	=	=	-	=
0 V or	11	lö	Ι	=	=	=	=	=	=	=	=	_	=	=	:	=	=	=	=	=	=	=	=	=	=	=	=	=	=	I	=	=	=	=
Τ Σ	10	CLK	∢	∢	М	⋖	М	⋖	М	⋖	М	∢	⋖	В	∢	В	⋖	В	4	В	4	∢	В	4	В	⋖	В	∢	М	∢	4	В	4	Α
ay be	6	S	∢	=	=	=	=	=	=	=	=	=	=	=		=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	В	=	=	=
ated m	8	GND	GND	-	-	=	-	=	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
esign	7	۵	В	-	-	=	-	=	-	=	-		-		-		-			-						-	-		-		-		-	Α
s not c	9	O	В	=	-	=	-	=	-	=	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	⋖	⋖	⋖	В
is (pin	2	В	В	_	-	=	-	=	-	-	-		_				_			_						_	_		_					A
nditior -	4	⋖	В	_	_	_	_	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	⋖	⋖	⋖	В
امر ام	က	١×	8	<	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	В	_	_	_	_	_	_	_	_	_	_	_	
'																																		
-	2	~	В	∢									В		_	_	_		_		_		_	_	_		_		_		_	_	_	-
	T	CLR	В	⋖	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	Cases E, I	Test No.	53	75	22	26	22	28	29	09	19	62	63	49	65	99	29	89	69	70	71	72	73	74	75	92	77	78	79	80	81	82	83	84
152	MIL-	STD-883 method	3014	3	3	7	3	7	3	=	=		3	71	77	ä	3	71	=	=	=		=	=	=	=			=		-	=	-	
		Symbol	Truth	table	test	2)	3	ı	=	=	=	=	=	n	2	n	3	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=	=
		Subgroup	7	$T_C = 25^{\circ}C$	3/ 6/	3	3	3	3	3	=	=		я	3	я	я	я	я	=	-	-	я	я	я	-		=	3	я	n	n	я	"

See footnotes at end of device type 06.

TABLE III. Group A inspection for device type 06 - Continued. Terminal conditions (pins not designated may be H \ge 2.0 V or L \le 0.8 V or open).

																l													
s		Unit															MHz	us	-	-		=	=	=	=	=	-	=	-
Test limits		Мах																30	=	=		24	=	=	=	29	=	=	=
		Min					41										15	7	=	=	"	н	-		=		=		-
	Meas.	terminal															QA	CLR to QA	CLR to QB	CLR to Q _C	CLR to QD	CLK to QA	CLK to QB	CLK to Q _C	CLK to QD	CLK to QA	CLK to QB	CLK to Q _C	CLK to QD
16		V _{CC}	5.0 V			=		:		=	-	=		=	=		5.0 V	=	=	:		=	:	=	=	=	=	=	=
15		QA	н	_	_	_	I	٦		-		-		-	I		OUT	OUT				OUT				OUT			
4		QB	٦	I		-		_		-	-	-		-	-				OUT				OUT				OUT		
13		တ္မ	ェ	_	_	_	I	_		-	-	-		-	-					OUT				DUT				DUT	
12		g	٦	I		-		_		-	-	-		=	-						OUT				OUT				DUT
11		Ιĝ	I	_				I																					
10		CLK	В	∢	∢	В	∢	В	⋖					В	<		Z									=			-
6		SF	В									⋖					5.0 V	GND				Z							-
8		GND	GND														GND	GND								-			
7		٥				=				-		-		В	В		_	5.0 V	=						Z				Z
9		O	В	В	∢	_								В	В			5.0 V 5	_					Z				Z	
2		В	⋖			_				_		_		В	В			5.0 V 5	_				z				z		
4		∢	В	В	∢	_			_	_	_	_	_	В	В			5.0 V 5.	_			Z				Z			
3		۱ ۲	В							<							GND	5.											
2			В	_												= -55°C	5.0 V G												
		<u>,</u> حز														and Tc		_											
F 1		CLR	A	-	-	-	-	Δ	В	В	∢	В	۹.	⋖	٩	= 125°C	В	Z	-	-	=	В	-	-	-	-	-	-	_
Cases E,		Test No.	85	98	87	88	88	06	91	92	93	94	92	96	26	except T _C	86	66	100	101	102	103	104	105	106	107	108	109	110
MIL-	STD-883	method	3014	я	я	3	я	3	3	=	=	=	3	3	3	Repeat subgroup 7 at except $T_C = 125^{\circ}C$ and $T_C = -55^{\circ}C$.	(Fig 9)	3003	(Fig 9)	=		=	=		=	=	=	=	=
	Symbol		Truth	table	test	2/	я	3			=	=		3	3	Repeat sui	fMAX	tPHL1		=		tPHL2	=			tPHL2	=	=	=
	Subgroup		7	T _C = 25°C	/ ₀ / ₀	3	я	3	я	я	=	=	=	3	3	80	6	$T_C = 25^{\circ}C$	я	3	=	=	=	3	я	=	=	я	3

See footnotes at end of device type 06.

Terminal conditions (pins not designated may be $H \ge 2.0 \text{ V}$ or $L \le 0.8 \text{ V}$ or open). TABLE III. Group A inspection for device type 06 - Continued.

		MIL-	Cases E, F	_	7	က	4	2	9	7	œ	6	10	7	12	13	4	15	16			Test limits	
Subgroup	Symbol	STD-883																		Meas.			
		method	Test No.	CLR	7	×	∢	В	O	۵	GND	S	CLK	١٥	g	တ္	QB	QA	Vcc	terminal	Min	Мах	Unit
10	fMAX	(Fig 9)	111	В	5.0 V	GND					GND	5.0 V	Z					OUT	5.0 V	QA	12		MHz
$T_C = 125^{\circ}C$	tPHL1	3003	112	Z			5.0 V	5.0 V	2.0 V	5.0 V	GND	GND	=					OUT	=	CLR to QA	7	34	su
31	=	(Fig 9)	113	-			=		-	=		=	=				OUT		=	CLR to QB		=	=
я	=	-	114	=			=		-		-	=				OUT				CLR to Q _C			
=	=	=	115	-			=		-			=			DUT					CLR to Q _D			
=	tPHL2	=	116	В			Z				=	Z						OUT	=	CLK to QA		28	=
=	=	-	117	-				Z			-	=	=				DOT			CLK to QB		-	
21	=	-	118						Z			=	=			OUT				CLK to Q _C		-	=
3	=	-	119	-						Z	-	=	=		DOUT					CLK to QD		-	
=	tPHL2	=	120	=			Z				=	=	=					OUT	=	CLK to QA		34	
=	=	-	121	-				Z			-	=	=				DOT			CLK to QB		-	
я	=	=	122	-					Z			=				OUT				CLK to Q _C			
я	=	-	123							Z		=	=		OUT					CLK to QD		-	
2	Same te	sts, termina	Same tests, terminal conditions, and limits as subgroup 10 except T_C = -55°C.	nd limits a	s subgro	up 10 ex	cept Tc =	: -55°C.															

_1919141

A = normal clock pulse, except for subgroup 7 and 8 (see 3/).

B = momentary GND, then V_{IN} except for subgroups 7 and 8. For subgroups 1, 2 and 3, V_{IN} = V_{CC} ; for subgroups 9, 10 and 11, V_{IN} = 3.0 V minimum (see figure 11). For subgroups 7 and 8, A = V_{CC} and B = GND.

Output voltages shall be either:

(a) H≥ 2.4 V minimum and L = 0.4 V maximum when using a high speed checker double comparator, or
 (b) H≥ 1.5 V and L < 1.5 V when using a high speed checker single comparator.
 The tests in subgroups 7 and 8 shall be performed in the sequence specified.

1/16/12

Only a summary of attributes data is required. For device type 06, schematic crouits A and B, the minimum and maximum limits shall be -0.4 and -1.3 mA, respectively. For schematic C, the minimum and maximum limits shall be -0.7 and -1.6 mA, respectively.

5. PACKAGING

5.1 <u>Packaging requirements.</u> For acquisition purposes, the packaging requirements shall be as specified in the contract or order (see 6.2). When packaging of materiel is to be performed by DoD or in-house contractor personnel, these personnel need to contact the responsible packaging activity to ascertain packaging requirements. Packaging requirements are maintained by the Inventory Control Point's packaging activity within the Military Service or Defense Agency, or within the military service's system command. Packaging data retrieval is available from the managing Military Department's or Defense Agency's automated packaging files, CD-ROM products, or by contacting the responsible packaging activity.

6. NOTES

(This section contains information of a general or explanatory nature that may be helpful, but it not mandatory)

- 6.1 <u>Intended use.</u> Microcircuits conforming to this specification are intended for original equipment design applications and logistic support of existing equipment.
 - 6.2 Acquisition requirements. Acquisition documents should specify the following:
 - a. Title, number, and date of the specification.
 - b. PIN and compliance identifier, if applicable (see 1.2).
 - c. Requirements for delivery of one copy of the conformance inspection data pertinent to the device inspection lot to be supplied with each shipment by the device manufacturer, if applicable.
 - d. Requirement for certificate of compliance, if applicable.
 - e. Requirements for notification of change of product or process to acquiring activity in addition to notification to the qualifying activity, if applicable.
 - f. Requirements for failure analysis (including required test condition of method 5003), corrective action and reporting of results, if applicable.
 - g. Requirements for product assurance options.
 - h. Requirements for carriers, special lead lengths or lead forming, if applicable. These requirements shall not affect the part number. Unless otherwise specified, these requirements will not apply to direct purchase by or direct shipment to the Government.
 - i. Requirements for "JAN" marking.
 - j. Packaging requirements (see 5.1).
- 6.3 <u>Qualification</u>. With respect to products requiring qualification, awards will be made only for products which are, at the time of award of contract, qualified for inclusion in Qualified Manufacturers List QML-38535 whether or not such products have actually been so listed by that date. The attention of the contractors is called to these requirements, and manufacturers are urged to arrange to have the products that they propose to offer to the Federal Government tested for qualification in order that they may be eligible to be awarded contracts or purchase orders for the products covered by this specification. Information pertaining to qualification of products may be obtained from DSCC-VQ, 3990 E. Broad Street, Columbus, Ohio 43123-1199.
- 6.4 <u>Superseding information</u>. The requirements of MIL-M-38510 have been superseded to take advantage of the available Qualified Manufacturer Listing (QML) system provided by MIL-PRF-38535. Previous references to MIL-M-38510 in this document have been replaced by appropriate references to MIL-PRF-38535. All technical requirements now consist of this specification and MIL-PRF-38535. The MIL-M-38510 specification sheet number and PIN have been retained to avoid adversely impacting existing government logistics systems and contractor's parts lists.

MIL-M-38510/9E

6.5 <u>Abbreviations, symbols and definitions.</u> The abbreviations, symbols, and definitions used herein are defined in MIL-PRF-38535 and MIL-HDBK-1331, and as follows:

GND	Electrical ground (common terminal)
V _{IN}	Voltage level at an input terminal
I _{IN}	Current-flowing into an input terminal

- 6.6 <u>Logistic support.</u> Lead materials and finishes (see 3.3) are interchangeable. Unless otherwise specified, microcircuits acquired for Government logistic support will be acquired to device class B (see 1.2.2), lead material and finish A (see 3.4). Longer lead lengths and lead forming should not affect the part number.
- 6.7 <u>Substitutability</u>. The cross-reference information below is presented for the convenience of users. Microcircuits covered by this specification will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges or reliability factors equivalent to MIL-M-35810 device types and may have slight physical variations in relation to case size. The presence of this information should not be deemed as permitting substitution of generic-industry types for MIL-M-38510 types or as a waiver of any of the provisions of MIL-PRF-38535.

Device type	Commercial type
01	5495
02	5496
03	54164
04	54165
05	54194
06	54195

6.8 <u>Changes from previous issue.</u> Marginal notations are not used in this revision to identify changes with respect to the previous issue due to the extensiveness of the changes.

Custodians: Army - CR Navy - EC Air Force - 11 DLA - CC Preparing activity: DLA - CC

(Project 5962-2091)

Review activities:

Army - MI, SM

Navy - AS, CG, MC, SH, TD

Air Force - 03, 19, 99

NOTE: The activities listed above were interested in this document as of the date of this document. Since organizations and responsibilities can change, you should verify the currency of the information above using the ASSIST Online database at http://assist.daps.dla.mil.