LIK													DATE (TK-MO-DA)			AFFROVED				
А							Pages 1, 2, 3, 4, 14, 15, 16, editorial changes. Pages 5, 6, 7 corrections. Page 18, added vendor.						81-12-09				M. A. Frye			
В	Add	Add device type 03. Type 02 inactive for new design: Use for case Q. Type 01 and new type 03 are still active.						Use M	1IL-M-3	8510/5	2002	83-04-06			M. A. Frye					
С		Add device types 04 and 05.									84-10-31				M. A. Frye					
D	Case	tempe	rature	to +125	5°C. Ad	dd LCC	packa	ge, ele	ctrical t	est imp	rovem	ents.		85-1	11-12			M. <i>A</i>	A. Frye	
Е	vend table	Change to military drawing format. Add device type 06, change vendor CAGE number 66958, delete vendor CAGE number 34 table I, changes to figures 1, 2, and 3. Editorial changes through Code Ident. No. to 67268.						34335,	change	es to		87-12-17			M. A. Frye					
F		Jpdate boilerplate to MIL-PRF-38535 requirements. Correct drawing title to ndicate device function CFS						to	03-06-11			-	Thomas M. Hess							
G	Corre MIL-F	Correct marking requirements in 3.5. Update boilerplate in a MIL-PRF-38535 requirements PHN.					ate in a	ccorda	nce wit	th		05-0)3-23		Thomas M. Hess					
THE ORIGINA	L FIRST	SHEE	T OF T	THIS DF	RAWIN	G HAS	BEEN	REPL/	ACED.											
THE ORIGINA	L FIRST	SHEE	T OF T	THIS DF	RAWIN	G HAS	BEEN	REPLA	ACED.											
	L FIRST	SHEE	T OF T	THIS DF	RAWIN	G HAS	BEEN	REPL/	ACED.											
REV	L FIRST	SHEE	T OF T	THIS DF	RAWIN	G HAS	BEEN F	REPL/	ACED.	F	F	F								
REV SHEET										F 24	F 25	F 26								
REV SHEET REV	F 15	F	F	F	F 19	F	F	F	F			<u> </u>	F	F	F	F	F	F	F	F
REV SHEET REV SHEET	F 15	F	F	F 18	F 19	F	F 21	F 22	F 23	24	25	26	F 7	F 8	F 9	F 10	F 11	F 12	F 13	F 14
REV SHEET REV SHEET REV STATUS	F 15	F	F	F 18 REV SHE	F 19	F 20	F 21 G	F 22 F	F 23 G	24 G	25 F	26 F		ļ -			1	1		1
REV SHEET REV SHEET REV STATUS OF SHEETS	F 15	F	F	F 18 REV SHE	F 19	F 20	F 21 G	F 22 F	F 23 G	24 G	25 F 5	26 F 6	7	8	9	10	11	12	13	1
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	F 15	F 16	F	F 18 REV SHE PREI Ray I	F 19 / EET	F 20	F 21 G	F 22 F	F 23 G	24 G	25 F 5	26 F 6	7	8 UPPL	9 .Y CE	10	11	12 - UMB	13	1
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	F 15	F 16	F	F 18 REV SHE PREI Ray!	F 19 / EET PARED	F 20	F 21 G	F 22 F	F 23 G	24 G	25 F 5	26 F 6	7 ISE SI	8 UPPL IBUS	9 .Y CE , OHI	10	11 R COI 218-3	12 - UMB	13	1
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A	F 15	F 16	F	F 18 REV SHE PREI Ray I	F 19 / EET PARED Monnin	F 20 D BY BY using	F 21 G	F 22 F	F 23 G	24 G	25 F 5	26 F 6	7 ISE SI	8 UPPL IBUS	9 .Y CE , OHI	10 INTER O 43	11 R COI 218-3	12 - UMB	13	1
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR.	F 15	F 16 RD CUIT G	F 17	F 18 REV SHE PREI Ray CHE Char	F 19 / EET PARED Monnin CKED CKED	F 20 D BY BY using D BY	F 21 G	F 22 F	F 23 G	24 G 4	25 F 5	26 F 6	7 ISE SI OLUM http	BUPPLIBUS	9 .Y CE , OHIO vw.ds	inter O 433 scc.dl	R COL 218-3 a.mil	12 -UMB 990	13 BUS	14
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR. THIS DRAWI FOR U DEPA AND AGE	F 15 ANDAF OCIRC AWINI ING IS A JSE BY A ARTMEN ENCIES C	F 16 CUIT G VAILARALL ITS DF THE	F 17	F 18 REV SHE PREI Ray I CHE Char	F 19 / EET PARED Monnin CKED cles Rec	F 20 D BY Using D BY Frye	F 21 G 1	F 22 F 2	F 23 G	G 4 MIC SIN	25 F 5 DI	26 F 6	7 ISE SI OLUM http	BUPPLIBUS	9 .Y CE , OHIO vw.ds	inter O 433 scc.dl	R COL 218-3 a.mil	12 -UMB 990	13 BUS	14
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR. THIS DRAWI FOR U DEPA	F 15 ANDAF OCIRC AWINI ING IS A JSE BY A ARTMEN ENCIES C	F 16 CUIT G VAILARALL ITS DF THE	F 17	F 18 REV SHE PREI Ray I CHE Char	F 19 / EET PAREE Monnin CKED cles Rec	F 20 D BY BY Using D BY Frye	F 21 G 1	F 22 F 2	F 23 G	G 4 MIC SIN	25 F 5	26 F 6	7 ISE SI OLUM http	BUPPLIBUS	9 .Y CE , OHIO vw.ds	inter O 433 scc.dl	R COL 218-3 a.mil	12 -UMB 990	13 BUS	14
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR. THIS DRAWI FOR U DEPA AND AGE DEPARTME	F 15 ANDAF OCIRC AWINI ING IS A JSE BY A ARTMEN ENCIES C	F 16 CUIT G VAILABALL TS DF THE DEFEN	F 17	F 18 REV SHE PREI Ray I CHE Char APP Mich	F 19 / EET PAREE Monnin CKED cles Rec	F 20 D BY Using D BY Frye APPRO	F 21 G 1	F 22 F 2	F 23 G	G 4 MIC SIN SIL	25 F 5 DI CROCIGLE ICON ZE	26 F 6	7 ISE SI OLUM http UIT, [P MIC	BUPPLIBUS.	9 .Y CE , OHIO vw.ds	inter O 433 scc.dl	218-3 a.mil	J2 LUMB 990 HANI MON	13 BUS	14
REV SHEET REV SHEET REV STATUS OF SHEETS PMIC N/A STA MICRO DR. THIS DRAWI FOR U DEPA AND AGE DEPARTME	F 15 ANDAF OCIRC AWIN ING IS A JSE BY A ARTMEN INCIES (INT OF I	F 16 CUIT G VAILABALL TS DF THE DEFEN	F 17	F 18 REV SHE PREI Ray I CHE Char APP Mich	F 19 / EET PAREE Monnin CKED PROVE ael. A.	F 20 D BY Using D BY Frye APPRO	F 21 G 1	F 22 F 2	F 23 G	G 4 MIC SIN SIL	25 F 5 DI CROCIGLE ICON ZE A	26 F 6	7 ISE SI DLUM http UIT, [BUPPLIBUS.	9 .Y CE , OHIO vw.ds	inter O 433 scc.dl	218-3 a.mil	12 -UMB 990	13 BUS	14

REVISIONS

DESCRIPTION

DATE (YR-MO-DA)

APPROVED

DSCC FORM 2233 APR 97

LTR

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
 - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Frequency</u>	Circuit function
01	Z8001	4.0 MHz	16-Bit N-channel single-chip microprocessor
02	Z8002	4.0 MHz	16-Bit N-channel single-chip microprocessor
03	Z8001A	6.0 MHz	16-Bit N-channel single-chip microprocessor
04	Z8001B	10.0 MHz	16-Bit N-channel single-chip microprocessor
05	Z8002B	10.0 MHz	16-Bit N-channel single-chip microprocessor
06	Z8002A	6.0 MHz	16-Bit N-channel single-chip microprocessor

1.2.2 <u>Case outline(s)</u>. The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Q	GDIP1-T40 or CDIP2-T40	40	Dual-in-line
U	CQCC1-N52	52	Square leadless chip carrier
Χ	See figure 1	48	Dual-in-line
Υ	CQCC1-N44	44	Square leadless chip carrier
Z	CQCC1-N68	68	Square leadless chip carrier

- 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.
- 1.3 Absolute maximum ratings.

Supply voltage range with respect to ground (V _{CC})	
Maximum power dissipation (P _D) (per device)	
Lead temperature (soldering, 5 seconds)	
Maximum junction temperature (T _J)	+150°C
Thermal resistance, junction-to-case (θ_{JC}):	
Case X	14°C/W
Cases Q, U, Y, Z	See MIL-STD-1835

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 2

1.4 Recommended operating conditions.

Supply voltage range (V _{CC})	. +4.5 V dc to +5.5 V dc
Logic inputs	$_{\cdot}$ +2.2 V dc to V _{CC} + 0.3 V dc
Clock input	$V_{\rm CC} - 0.4$ V dc to $V_{\rm CC} + 0.3$ V dc
RESET (NMI)	. 2.4 V dc to V_{CC} + 0.3 V dc
Maximum low level input voltage (V _{IL}):	
Logic inputs	0.3 V dc to +0.8 V dc
Clock input	0.3 V dc to +0.45 V dc
Frequency of operation:	
01, 02	. 0.5 MHz to 4.0 MHz
03, 06	. 0.5 MHz to 6.0 MHz
04, 05	. 0.5 MHz to 10.0 MHz
Case operating temperature range (T _C)	55°C to +125°C
Clock rise time (t _r):	
01, 02	. 20 ns maximum
03, 06	. 15 ns maximum
04, 05	. 10 ns maximum
Clock fall time (t _f):	
01, 02	. 20 ns maximum
03, 06	. 10 ns maximum
04, 05	. 15 ns maximum

2. APPLICABLE DOCUMENTS

2.1 Government specification, standards, and handbooks. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits, Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings. MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://assist.daps.dla.mil/quicksearch/ or http://assist.daps.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		G	3

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
 - 3.2.1 Case outlines. The case outlines shall be in accordance with 1.2.2 herein and on figure 1.
 - 3.2.2 <u>Terminal connections</u>. The terminal connections shall be as specified on figure 2.
 - 3.2.3 Logic functions. The logic functions shall be as specified on figure 3.
 - 3.2.4 Timing waveforms. The timing waveforms shall be as specified on figure 4.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full case operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked.
- 3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DSCC-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
 - 3.8 Notification of change. Notification of change to DSCC-VA shall be required for any change that affects this drawing.
- 3.9 <u>Verification and review</u>. DSCC, DSCC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBI

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

SIZE A		8003
	REVISION LEVEL G	SHEET 4

Test	Symbol	Conditions $-55^{\circ}\text{C} \le T_{\text{C}} \le +125^{\circ}\text{C}$	Group A	Device	Limits		Unit
Test	Symbol	+4.5 V \leq V _{CC} \leq +5.5 V unless otherwise specified	subgroups	type	Min Max		
Clock input low voltage	V _{IL1}	Driven by external clock generator.	1, 2, 3	All	-0.3 <u>1</u> /	0.45	V
Clock input high voltage	V _{IH1}		1, 2, 3	All	V _{CC} - 0.4	V _{CC} + 0.3	V
Input low voltage	V _{IL2}		1, 2, 3	All	-0.3 <u>1</u> /	0.8	V
Input high voltage	V _{IH2}		1, 2, 3	All	2.4	V _{CC} + 0.3	V
Reset input high voltage (NMI)	V _{IH3}		1, 2, 3	All	2.4	V _{CC} + 0.3	V
High level output voltage all outputs	V _{OH}	$I_{OH} = -250 \mu A$ $V_{CC} = 4.5 V$	1, 2, 3	All	2.4		V
Low level output voltage all outputs	V _{OL}	I_{OL} = +2.0 mA V_{CC} = 4.5 V	1, 2, 3	All		0.4	V
High-impedance (off-state) output current (High) (In Float)	I _{ZH}	$V_{IN} = 2.4 \text{ V}$ $V_{CC} = 5.5 \text{ V}$	1, 2, 3	All	–10	+10	μΑ
High-impedance (off-state) output current (Low) (In Float)	I _{ZL}	$V_{IN} = 0.4 \text{ V}$ $V_{CC} = 5.5 \text{ V}$	1, 2, 3	All	–10	+10	μΑ
High level input current (input and bi-directional)	I _{IH}	$V_{IN} = 2.4 \text{ V}$ $V_{CC} = 5.5 \text{ V}$	1, 2, 3	All	-10	+10	μΑ
Low level input current (input and bi-directional)	I _{IL}	$V_{IN} = 0.4 \text{ V}$ $V_{CC} = 5.5 \text{ V}$	1, 2, 3	All	-10	+10	μА
Low level input current (SEGT)	I _{ILS}	$0.4 \text{ V} \le \text{V}_{\text{IN}} \le 2.4 \text{ V}$ $4.5 \text{ V} \le \text{V}_{\text{CC}} \le 5.5 \text{ V}$	1, 2, 3	01, 03, 04		+200	μА
Supply current	Icc	V _{CC} = 5.5 V	1, 2, 3	All		400	mA
Functional tests		See 4.3.1c	7, 8	All			

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990

SIZE A		8003
	REVISION LEVEL F	SHEET 5

TARLEI	Electrical performance	characteristics -	Continued
	Lieutiluai perioriliariue	Ullalaulellollus -	· Continued.

Test	Symbol	Conditions $ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \text{ V} \leq V_{CC} \leq +5.5 \text{ V} \\ \text{unless otherwise specified} $	Group A subgroups	Device type	Lir	nits Max	Unit
Clock pulse	t _{cyc}	See figure 4.	9, 10, 11	01, 02	250	2000	ns
Olock pulse	Сус	See Reference No. 1 2/	5, 10, 11	03, 06	165	2000	113
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	100	2000	1
Clock pulse width	t _{PWL1}	See figure 4.	9, 10, 11	01, 02	105	2000	ns
(Low)	1 1121	See Reference No. 2 2/	-, -,	03, 06	70		
,		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	40		
Clock pulse width	t _{PWH1}	See figure 4.	9, 10, 11	01, 02	105		ns
(High)		See Reference No. 3 2/	, ,	03, 06	70		1
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	40		1
Clock ↑ to segment	TdC(SNv)	See figure 4.	9, 10, 11	01		130	ns
number valid	<u>3</u> / <u>4</u> /	See Reference No. 6 2/		03		110	
		C_L = 50 pF to 100 pF ±10%, all outputs		04		90	
Clock ↑ to segment	TdC(SNn)	See figure 4.	9, 10, 11	01	20		ns
number not valid	<u>4</u> /	See Reference No. 7 2/		03	10		
		C_L = 50 pF to 100 pF ±10%, all outputs		04	0		
Clock ↑ to bus float	TdC(Bz)	See figure 4.	9, 10, 11	01, 02		65	ns
	<u>1</u> /	See Reference No. 8 2/		03, 06		55	
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		50	
Clock ↑ to address	TdC(A)	See figure 4.	9, 10, 11	01, 02		100	ns
valid		See Reference No. 9 2/		03, 06		75	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		65	
Clock ↑ to address	TdC(Az)	See figure 4.	9, 10, 11	01, 02		65	ns
float	<u>1</u> /	See Reference No. 10 2/		03, 06		55	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		50	
Address valid to	TdA(DR)	See figure 4.	9, 10, 11	01, 02		475	ns
data in required		See Reference No. 11 2/	<u>5</u> /	03, 06		305	
valid		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		180	
Data to CLK \downarrow	TsDR(C)	See figure 4.	9, 10, 11	01, 02	30		ns
setup time		See Reference No. 12 2/		03, 06	20		1
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	10		

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 6

TABLE I.	Electrical	performance characteristics	; -	Continued.

Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \ V \leq V_{CC} \leq +5.5 \ V \\ unless \ otherwise \ specified \end{array} $	Group A subgroups	Device type	Limits		Unit	
					Min	Max		
DS ↑ to address	TdDS(A)	See figure 4.	9, 10, 11	01, 02	80		ns	
active		See Reference No. 13 2/	<u>5</u> /	03, 06	45			
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	20			
Clock ↑ to data out	TdC(DW)	See figure 4.	9, 10, 11	01, 02		100	ns	
valid		See Reference No. 14 2/		03, 06		75		
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		60		
Data in to DS ↑	ThDR(DS)	See figure 4.	9, 10, 11	01, 02	0		ns	
hold time		See Reference No. 15 2/		03, 06	0			
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	0			
Data out valid to	TdDW(DS)	See figure 4.	9, 10, 11	01, 02	295		ns	
DS ↑ delay		See Reference No. 16 2/	<u>5</u> /	03, 06	195			
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	110			
Address valid to	TdA(MR)	See figure 4.	9, 10, 11	01, 02	55		ns	
MREQ ↓ delay		See Reference No. 17 2/	<u>5</u> /	03, 06	35			
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	20			
Clock ↓ to MREQ ↓	TdC(MR)	See figure 4.	9, 10, 11	01, 02		80	ns	
delay		See Reference No. 18 2/		03, 06		70		
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		50		
MREQ width (High)	TwMRh	See figure 4.	9, 10, 11	01, 02	210		ns	
		See Reference No. 19 2/	<u>5</u> /	03, 06	135			
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	80			
MREQ ↓ to	TdMR(A)	See figure 4.	9, 10, 11	01, 02	70		ns	
address not active	<u>1</u> /	See Reference No. 20 2/	<u>5</u> /	03, 06	35			
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	15			
Data out valid to	TdDW	See figure 4.	9, 10, 11	01, 02	55		ns	
DS ↓ (Write Delay)	(DSW)	See Reference No. 21 2/	<u>5</u> /	03, 06	35			
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	15			
MREQ ↓ to data in	TdMR(DR)	See figure 4.	9, 10, 11	01, 02		370	ns	
required valid		See Reference No. 22 2/	<u>5</u> /	03, 06		230		
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		140		

STANDARD MICROCIRCUIT DRAWING	SIZE A	
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL

COLUMBUS, OHIO 43218-3990

TABLE I.	Electrical	performance	characteristics	-	Continued.
----------	------------	-------------	-----------------	---	------------

Test	Symbol	Conditions $ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \text{ V} \leq V_{CC} \leq +5.5 \text{ V} \\ \text{unless otherwise specified} $	Group A subgroups	Device type	Limits		Unit	
					Min	Max		
Clock ↓ to MREQ ↑	TdC(MR)	See figure 4.	9, 10, 11	01, 02		80	ns	
delay		See Reference No. 23 2/		03, 06		60		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		50		
Clock ↑ to AS ↓	TdC(ASf)	See figure 4.	9, 10, 11	01, 02		80	ns	
delay		See Reference No. 24 2/		03, 06		60		
•		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		45		
Address valid to	TdA(AS)	See figure 4.	9, 10, 11	01, 02	55		ns	
AS ↑ delay		See Reference No. 25 2/	<u>5</u> /	03, 06	35			
•		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	20			
Clock ↓ to AS ↑	TdC(ASr)	See figure 4.	9, 10, 11	01, 02		90	ns	
delay		See Reference No. 26 2/		03, 06		80		
•		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		45		
AS ↑ to data in	TdAS(DR)	See figure 4.	9, 10, 11	01, 02		360	ns	
required valid		See Reference No. 27 2/	<u>5</u> /	03, 06		220		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		140		
DS ↑ to AS ↓	TdDS(AS)	See figure 4.	9, 10, 11	01, 02	70		ns	
delay		See Reference No. 28 2/	<u>5</u> /	03, 06	35			
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	15			
AS width (Low)	TwAS	See figure 4.	9, 10, 11	01, 02	85		ns	
		See Reference No. 29 2/	<u>5</u> /	03, 06	55			
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	30			
AS ↑ to address	TdAS(A)	See figure 4.	9, 10, 11	01, 02	70		ns	
not active delay	<u>1</u> /	See Reference No. 30 2/	<u>5</u> /	03, 06	45			
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	15			
Address float to DS	TdAz(DSR)	See figure 4.	9, 10, 11	01, 02	0		ns	
(Read) ↓ delay	<u>1</u> /	See Reference No. 31 2/		03, 06	0			
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	0			
AS ↑ to DS ↓	TdAS(DSR)	See figure 4.	9, 10, 11	01, 02	80		ns	
(Read) delay		See Reference No. 32 2/	<u>5</u> /	03, 06	55			
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	30			

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 8

TARLEI	Electrical performance	characteristics -	Continued
IADLL I.	Liectifical periorifiance	Unaraciensiles -	Continued.

Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \ V \leq V_{CC} \leq +5.5 \ V \\ unless \ otherwise \ specified \end{array} $	Group A subgroups	Device type	Lir	nits	Unit
					Min	Max	
DS (Read) ↓ to	TdDSR(DR)	See figure 4.	9, 10, 11	01, 02		205	ns
data in required		See Reference No. 33 2/	<u>5</u> /	03, 06		130	
valid		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		70	
Clock ↓ to DS ↑	TdC(DSr)	See figure 4.	9, 10, 11	01, 02		70	ns
delay		See Reference No. 34 2/		03, 06		65	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		50	
DS ↑ to data out	TdDS(DW)	See figure 4.	9, 10, 11	01, 02	75		ns
not valid	<u>1</u> /	See Reference No. 35 2/	<u>5</u> /	03, 06	45		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	25		
Address valid to	TdA(DSR)	See figure 4.	9, 10, 11	01, 02	180		ns
 DS (Read) ↓		See Reference No. 36 2/	<u>5</u> /	03, 06	110		
delay		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	65		
Clock ↑ to DS	TdC(DSR)	See figure 4.	9, 10, 11	01, 02		120	ns
(Read) ↓ delay		See Reference No. 37 2/		03, 06		85	
, , ,		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		65	
DS (Read) width	TwDSR	See figure 4.	9, 10, 11	01, 02	275		ns
(Low)		See Reference No. 38 2/	<u>5</u> /	03, 06	185		
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	110		
Clock ↓ to DS	TdC(DSW)	See figure 4.	9, 10, 11	01, 02		95	ns
(Write) ↓ delay		See Reference No. 39 2/		03, 06		80	
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		65	
DS (Write) width	TwDSW	See figure 4.	9, 10, 11	01, 02	185		ns
(Low)		See Reference No. 40 2/	<u>5</u> /	03, 06	110		
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	75		
DS (Input) ↓ to	TdDSI(DR)	See figure 4.	9, 10, 11	01, 02		330	ns
data in required		See Reference No. 41 2/	<u>5</u> /	03, 06		210	
valid		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		120	
Clock ↓ to DS	TdC(DSf)	See figure 4.	9, 10, 11	01, 02		120	ns
(I _O) ↓ delay		See Reference No. 42 2/		03, 06		90	
		C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		70	
		-					

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 9

TARLEI	Electrical performance	characteristics -	Continued
	Lieutiluai perioriliariue	Ullalaulellollus -	· Continued.

	Conditions 55°C CT C 1125°C						
Test	Symbol	-55° C ≤ T _C ≤ +125°C +4.5 V ≤ V _{CC} ≤ +5.5 V unless otherwise specified	Group A subgroups	Device type	Lir	nits	Unit
					Min	Max	
DS (I/O) width	TwDS	See figure 4.	See figure 4. 9, 10, 11		410		ns
(Low)		See Reference No. 43 2/	<u>5</u> /	03, 06	255		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	160		
AS ↑ to DS	TdAS(DSA)	See figure 4.	9, 10, 11	01, 02	1065		ns
(Acknowledge) \downarrow		See Reference No. 44 2/	<u>5</u> /	03, 06	690		
delay		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	410		
Clock ↑ to DS	TdC(DSA)	See figure 4.	9, 10, 11	01, 02		120	ns
(Acknowledge) ↓		See Reference No. 45 2/		03, 06		85	
delay		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		70	
—————————————————————————————————————	TdDSA(DR)	See figure 4.	9, 10, 11	01, 02		455	ns
to data in required		See Reference No. 46 <u>2</u> / <u>5</u> /		03, 06		295	
delay		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%, \text{ all outputs}$		04, 05		165	
Clock ↑ to status	TdC(S)	See figure 4.	9, 10, 11	01, 02		110	ns
valid delay		See Reference No. 47 2/	See Reference No. 47 2/			85	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		65	
Status valid to	TdS(AS)	See figure 4.	9, 10, 11	01, 02	50		ns
AS ↑ delay		See Reference No. 48 2/	<u>5</u> /	03, 06	30		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	10		
RESET to clock ↑	TsR(C)	See figure 4.	9, 10, 11	01, 02	180		ns
set-up time		See Reference No. 49 2/		03, 06	70		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50		
RESET to clock ↑	ThR(C)	See figure 4.	9, 10, 11	01, 02	0		ns
hold time		See Reference No. 50 2/		03, 06	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	0		
NMI width (Low)	TwNMI	See figure 4.	9, 10, 11	01, 02	100		ns
		See Reference No. 51 2/		03, 06	70		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50		
NMI to clock ↑	TsNMI(C)	See figure 4.	9, 10, 11	01, 02	140		ns
set-up time		See Reference No. 52 2/		03, 06	70		
<u></u>		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50		

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 10

TABLE I.	Electrical	performance	characteristics	-	Continued.

Test	Symbol	$ \begin{array}{c} Conditions \\ -55^{\circ}C \leq T_{C} \leq +125^{\circ}C \\ +4.5 \ V \leq V_{CC} \leq +5.5 \ V \\ unless \ otherwise \ specified \end{array} \qquad \begin{array}{c} Group \ A \\ subgroups \end{array} $		Device type	Limits		Unit
					Min	Max	
$\overline{VI}, \overline{NVI}$ to clock \uparrow	TsVI(C)	See figure 4.	See figure 4. 9, 10, 11		110		ns
set-up time		See Reference No. 53 2/	See Reference No. 53 2/		50		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%, \text{ all outputs}$		04, 05	40		
VI, NVI to clock ↑	ThVI(C)	See figure 4.	9, 10, 11	01, 02	20		ns
hold time		See Reference No. 54 2/		03, 06	20		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	10		
SEGT to clock ↑	TsSGT(C)	See figure 4.	9, 10, 11	01	70		ns
set-up time	<u>4</u> /	See Reference No. 55 2/		03	55		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04	40		
SEGT to clock ↑	ThSGT(C)	See figure 4.	See figure 4. 9, 10, 11		0		ns
hold time	<u>4</u> /	See Reference No. 56 2/		03	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04	0		
MI to clock ↑	TsMI(C)	See figure 4. 9, 10, 11		01, 02	180		ns
set-up time		See Reference No. 57 2/		03, 06	140		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	80		
MI to clock ↑	ThMI(C)	See figure 4.	9, 10, 11	01, 02	0		ns
hold time		See Reference No. 58 2/		03, 06	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	0		
Clock ↑ to MO	TdC(MO)	See figure 4.	9, 10, 11	01, 02		120	ns
delay time		See Reference No. 59 2/		03, 06		85	
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05		80	
STOP to clock ↓	TsSTP(C)	See figure 4.	9, 10, 11	01, 02	140		ns
set-up time		See Reference No. 60 2/		03, 06	100		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	50		
STOP to clock ↓	ThSTP(C)	See figure 4.	9, 10, 11	01, 02	0		ns
hold time		See Reference No. 61 2/		03, 06	0		
		$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	0		

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		F	11

TABLE I. Electrical performance characteristics - Continued	TABLE I. Electrical performance characteristics - Co
---	--

Symbol	$ \begin{array}{c cccc} & & & & & & & \\ & & -55^{\circ}C \leq T_{C} \leq +125^{\circ}C & & & & Group \ A \\ & & +4.5 \ V \leq V_{CC} \leq +5.5 \ V \\ & & unless \ otherwise \ specified \end{array} $		Device type			Unit
				Min	Max	
TsW(C)	See figure 4. 9, 10, 11		01, 02	50		ns
	See Reference No. 62 <u>2</u> /		03, 06	30		
	C_L = 50 pF to 100 pF ±10%, all outputs	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%, \text{ all outputs}$		20		
ThW(C)	See figure 4.	9, 10, 11	01, 02	10		ns
	See Reference No. 63 2/		03, 06	10		
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	5		
TsBRQ(C)	See figure 4.	9, 10, 11	01, 02	90		ns
	See Reference No. 64 <u>2</u> /		03, 06	80		
	$C_L = 50 \text{ pF to } 100 \text{ pF } \pm 10\%$, all outputs		04, 05	60		
ThBRQ(C)	See figure 4.	9, 10, 11	01, 02	10		ns
	See Reference No. 65 <u>2</u> /		03, 06	10		
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	5		
TdC(BAKr)	See figure 4.	9, 10, 11	01, 02		100	ns
	See Reference No. 66 2/		03, 06		75	
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		65	
TdC(BAKf)	See figure 4.	9, 10, 11	01, 02		100	ns
	See Reference No. 67 2/		03, 06		75	
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05		65	
TwA	See figure 4.	9, 10, 11	01, 02	150		ns
	See Reference No. 68 2/	<u>5</u> /	03, 06	95		
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	50		
TdDS(s)	See figure 4.	9, 10, 11	01, 02	80		ns
<u>1</u> /	See Reference No. 69 <u>2</u> /	<u>5</u> /	03, 06	55		
	C_L = 50 pF to 100 pF ±10%, all outputs		04, 05	30		
	TsW(C) ThW(C) TsBRQ(C) TdC(BAKr) TdC(BAKf) TwA	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Symbol -55°C ≤ Tc ≤ ±125°C ±4.5 V unless otherwise specified Group A subgroups Device type Lin TsW(C) See figure 4. See Reference No. 62 2/ Ct = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 50 30 04, 05 20 ThW(C) See figure 4. See Reference No. 63 2/ Ct = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 10 03, 06 10 04, 05 5 10 03, 06 10 04, 05 5 5 10 03, 06 10 04, 05 5 5 10 03, 06 10 04, 05 5 5 10 03, 06 10 04, 05 5 5 10 04, 05 5 6 04, 05 5 6 04, 05 5 6 04, 05 6 04, 05 6 04, 05 6 04, 05 6 04, 05 6 04, 05 6 04, 05 6 04, 05 10 04, 05 5 04, 05 5 04, 05 5 04, 05 05 04, 05 03, 06 <td< td=""><td>Symbol -55°C ≤ Tc ≤ +125°C +4.5 V ≤ V_{Cc} ≤ +5.5 V unless otherwise specified Group A subgroups Device type Limits TsW(C) See figure 4. See Reference No. 62 2/ C_L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 50 ThW(C) See figure 4. See Reference No. 63 2/ C_L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 10 TsBRQ(C) See figure 4. See Reference No. 64 2/ C_L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 90 ThBRQ(C) See figure 4. See Reference No. 65 2/ C_L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 90 TdC(BAKr) See figure 4. See Reference No. 66 2/ C_L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 10 TdC(BAKr) See figure 4. See Reference No. 66 2/ C_L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 100 TdC(BAKr) See figure 4. See Reference No. 67 2/ C_L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 100 TdC(BAKr) See figure 4. See Reference No. 68 2/ C_L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 100 TdC(BAKr) See figure 4. See Reference No. 68 2/ C_L = 50 pF to 100 pF ±10%, all output</td></td<>	Symbol -55°C ≤ Tc ≤ +125°C +4.5 V ≤ V _{Cc} ≤ +5.5 V unless otherwise specified Group A subgroups Device type Limits TsW(C) See figure 4. See Reference No. 62 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 50 ThW(C) See figure 4. See Reference No. 63 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 10 TsBRQ(C) See figure 4. See Reference No. 64 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 90 ThBRQ(C) See figure 4. See Reference No. 65 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 90 TdC(BAKr) See figure 4. See Reference No. 66 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 10 TdC(BAKr) See figure 4. See Reference No. 66 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 100 TdC(BAKr) See figure 4. See Reference No. 67 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 100 TdC(BAKr) See figure 4. See Reference No. 68 2/ C _L = 50 pF to 100 pF ±10%, all outputs 9, 10, 11 01, 02 100 TdC(BAKr) See figure 4. See Reference No. 68 2/ C _L = 50 pF to 100 pF ±10%, all output

See footnotes on next sheet.

STANDARD
MICROCIRCUIT DRAWING
DEFENSE SUPPLY CENTER COLUMBUS
COLUMBUS, OHIO 43218-3990

SIZE A		8003
	REVISION LEVEL F	SHEET 12

$\label{thm:table I.} \ \underline{\mbox{Electrical performance characteristics}} \ \ - \ \mbox{Continued}.$

- Guaranteed, if not tested.
- The waveform reference number refers to the position where the parameter appears on figure 4.
- For waveform reference number 6, $C_L = 50 \text{ pF} \pm 10\%$. These parameters are for 01, 03, and 04 devices only.
- These waveform reference number parameters are clock dependent. The limits provided are at F_{MAX}. To determine the limits at other frequencies use the following equations:

Waveform reference number	Device types 01 and 02	Device types 03 and 06	Device types 04 and 05
11	2 t _{cyc} + t _{PWH1} - 130 ns	2 t _{cyc} + t _{PWH1} - 95 ns	2 t _{cyc} + t _{PWH1} - 60 ns
13	t _{PWL1} – 25 ns	t _{PWL1} – 25 ns	t _{PWL1} – 20 ns
16	t_{cyc} + t_{PWH1} – 60 ns	t _{cyc} + t _{PWH1} - 40 ns	t_{cyc} + t_{PWH1} – 30 ns
17	t _{PWH1} – 50 ns	t _{PWH1} – 35 ns	t _{PWH1} – 20 ns
19	t _{cyc} – 40 ns	t _{cyc} – 30 ns	t _{cyc} – 20 ns
20	t _{PWL1} – 35 ns	t _{PWL1} – 35 ns	t _{PWL1} – 20 ns
21	t _{PWH1} – 50 ns	t _{PWH1} – 35 ns	t _{PWH1} – 25 ns
22	2 t _{cyc} – 130 ns	2 t _{cyc} – 100 ns	2 t _{cyc} – 60 ns
25	t _{PWH1} – 50 ns	t _{PWH1} – 35 ns	t _{PWH1} – 20 ns
27	2 t _{cyc} – 140 ns	2 t _{cyc} – 110 ns	2 t _{cyc} – 60 ns
28	t _{PWL1} – 35 ns	t _{PWL1} – 35 ns	t _{PWL1} – 25 ns
29	t _{PWH1} – 20 ns	t _{PWH1} – 15 ns	t _{PWH1} – 10 ns
30	t _{PWL1} – 35 ns	t _{PWL1} – 25 ns	t _{PWL1} – 20 ns
32	t _{PWL1} – 25 ns	t _{PWL1} – 15 ns	t _{PWL1} – 10 ns
33	t _{cyc} + t _{PWH1} – 150 ns	t _{cyc} + t _{PWH1} – 105 ns	t_{cyc} + t_{PWH1} – 70 ns
35	t _{PWL1} – 30 ns	t _{PWL1} – 25 ns	t _{PWL1} – 15 ns
36	t _{cyc} – 70 ns	t _{cyc} – 55 ns	t _{cyc} – 35 ns
38	t_{cyc} + t_{PWH1} – 80 ns	t_{cyc} + t_{PWH1} – 50 ns	t_{cyc} + t_{PWH1} – 30 ns
40	t _{cyc} – 65 ns	t _{cyc} – 55 ns	t _{cyc} – 25 ns
41	2 t _{cyc} – 170 ns	2 t _{cyc} – 120 ns	2 t _{cyc} – 80 ns
43	2 t _{cyc} – 90 ns	2 t _{cyc} – 75 ns	2 t _{cyc} – 40 ns
44	4 t _{cyc} + t _{PWL1} – 40 ns	4 t _{cyc} + t _{PWL1} - 40 ns	4 t _{cyc} + t _{PWL1} – 30 ns
46	2 t _{cyc} + t _{PWH1} – 150 ns	2 t _{cyc} + t _{PWH1} – 105 ns	2 t _{cyc} + t _{PWH1} – 75 ns
48	t _{PWH1} – 55 ns	t _{PWH1} – 40 ns	t _{PWH1} – 30 ns
68	t _{cyc} – 90 ns	t _{cyc} – 70 ns	t _{cyc} – 50 ns
69	t _{PWL1} – 25 ns	t _{PWL1} – 15 ns	t _{PWL1} – 10 ns

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 13

Case Outline X

Device types 01, 03, and 04.

8003

14

SHEET

FIGURE 1. Case outlines.

STANDARD MICROCIRCUIT DRAWING	SIZE A		
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	

Case Outline X

Device types 01, 03, and 04.

	Inc	hes	Millimeters		
Symbol	Min	Max	Min	Max	Notes
А		.225		5.72	
b	.014	.023	0.36	0.58	7
b ₁	.030	.070	0.76	1.78	2, 7
С	.008	.015	0.20	0.38	7
D		2.480		62.99	
Е	.510	.620	12.95	15.75	
E ₁	.520	.620	13.21	15.75	6
е	.100	BSC	2.54 BSC		4, 8
L	.120	.200	3.05	5.08	
L ₁	.150		3.81		
Q	.020	.060	0.51	1.52	3
S		.098		2.40	5
S ₁	.005		0.13		5
S ₂	.005		0.13		9

Notes:

- Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer's identification shall not be used as a pin one identification mark.
- 2. The minimum limit for dimension b₁ may be .020 (0.51 mm) for leads number 1, 24, 25, and 48 only.
- 3. Dimension Q shall be measured from the seating plane to the base plane.
- 4. The basic pin spacing is .100 (2.54 mm) between centerlines. Each pin centerline shall be located within ±.010 (0.25 mm) of its exact longitudinal position relative to pins 1 and 48.
- 5. Applies to all four corners (leads number 1, 24, 25, and 48) (see MIL-STD-1835).
- 6. Lead center when α is 0°. E₁ shall be measured at the centerline of the leads.
- 7. All leads increase maximum limit by .003 (0.08 mm) measured at the center of the flat, when lead finish A is applied.
- 8. Forty-six spaces.
- 9. The top of the lead shall not exceed above the brazed pad top surface.

FIGURE 1. Case outlines - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 15

Case outlines X and Q

Device types: 01, 03, and 04				
Terminal	Terminal	Terminal	Terminal	
number	symbol	number	symbol	
1	AD_0	25	SN₁	
2 3	AD_9	26	$_SN_0$	
3	AD_{10}	27	<u>BUSRQ</u>	
4	AD_{11}	28	<u>WAIT</u>	
5	AD_{12}	29	BU <u>SA</u> K	
6	<u>AD₁₃</u>	30	R/ <u>W</u>	
7	S <u>TO</u> P	31	N <u>/S</u>	
8	M_l	32	B/W	
9	AD ₁₅	33	<u>NC</u>	
10	AD_{14}	34	AS	
11	V _C c	35	CLOCK	
12	<u>VI</u>	36	GND	
13	<u>NVI</u>	37	SN_2	
14	S <u>EG</u> T	38	AD_1	
15	<u>NMI</u>	39	AD_2	
16	R <u>ES</u> ET	40	AD_3	
17	M _O	41	AD_5	
18	M <u>RE</u> Q	42	SN ₄	
19	DS	43	AD_4	
20	ST ₃	44	AD_6	
21	ST_2	45	AD_7	
22	ST ₁	46	SN₅	
23	ST_0	47	SN_6	
24	SN ₃	48	AD ₈	

Device types: 02 and 05				
Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	AD ₉ AD ₁₀ AD ₁₁ AD ₁₂ AD ₁₃ STOP M ₁ AD ₁₅ AD ₁₅ AD ₁₄ V _{CC} VI NMI RESET M ₀ MREQ	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	ST ₀ BUSRQ WAIT BUSAK R/W N/S B/W NC AS CLOCK GND AD ₁ AD ₂ AD ₃ AD ₅ AD ₄	
17 18	DS ST₃	37 38	AD ₆ AD ₇	
19	ST ₂	39	AD ₈	
20	ST ₁	40	AD_0	

FIGURE 2. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 16

Case outline U

Device types: 01, 03, and 04				
Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1	AD ₀	27	SN ₁	
2	AD_9	28	SN_0	
3	AD ₁₀	29	BUSRQ	
4	AD ₁₁	30	WAIT	
5	AD ₁₂	31	BUSAK	
6	AD ₁₃	32	NC	
7	NC	33	NC	
8	STOP	34	R/W	
9	$\overline{M_{I}}$	35	N/S	
10	AD ₁₅	36	B/W	
11	AD ₁₄	37	RESERVED	
12	V _{CC}	38	AS	
13	NC	39	CLK	
14	VI	40	GND	
15	NVI	41	SN_2	
16	SEGT	42	AD ₁	
17	NMI	43	AD_2	
18	RESET	44	AD_3	
19	$\overline{M_O}$	45	AD ₅	
20	MREQ	46	SN ₄	
21	DS	47	AD_4	
22	ST ₃	48	AD_6	
23	ST ₂	49	AD_7	
24	ST₁	50	SN ₅	
25	ST ₀	51	SN_6	
26	SN ₃	52	AD ₈	

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 17

Case outline Z

Device types: 01, 03, and 04			
Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	GND	35	SN ₁
2	+5V	36	SN_0
3	AD_0	37	BUSRQ
4	AD_9	38	WAIT
5	AD ₁₀	39	BUSAK
6	AD ₁₁	40	NC
7	AD_{12}	41	NC
8	AD ₁₃	42	NC
9	NC	43	NC
10	NC	44	NC
11	STOP	45	R/W
12	$\overline{M_{I}}$	46	N/S
13	AD ₁₅	47	B/W
14	AD ₁₄	48	RESERVED
15	+5V	49	AS
16	+5V	50	GND
17	GND	51	CLK
18	GND	52	+5V
19	VI	53	GND
20	NVI	54	SN_2
21	SEGT	55	AD_1
22	NMI	56	AD_2
23	RESET	57	AD ₃
24	Mo	58	AD ₅
25	MREQ	59	SN ₄
26	NC	60	NC
27	NC	61	NC
28	NC	62	NC
29	DS	63	AD_4
30	ST ₃	64	AD_6
31	ST ₂	65	AD ₇
32	ST₁	66	SN₅
33	ST ₀	67	SN_6
34	SN ₃	68	AD ₈
1			

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 18

Case outline Y

Device types: 02, 05, and 06				
Terminal number	Terminal symbol	Terminal number	Terminal symbol	
1	AD ₉	23	ST ₀	
2	AD ₁₀	24	NC	
3	AD ₁₁	25	NC	
4	AD ₁₂	26	BUSRQ	
5	AD ₁₃	27	WAIT	
6	NC	28	BUSAK	
7	STOP	29	R/W	
8	$\overline{M_{I}}$	30	N/S	
9	AD ₁₅	31	B/W	
10	AD ₁₄	32	RESERVED	
11	Vcc	33	AS	
12	NC	34	CLK	
13	VI	35	GND	
14	NVI	36	AD ₁	
15	NMI	37	AD_2	
16	RESET	38	AD_3	
17	$\overline{M_O}$	39	AD_5	
18	MREQ	40	AD_4	
19	DS	41	AD_6	
20	ST ₃	42	AD ₇	
21	ST ₂	43	AD ₈	
22	ST ₁	44	AD_0	

FIGURE 2. <u>Terminal connections</u> - Continued.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		8003
		REVISION LEVEL F	SHEET 19

Device types 02, 05, and 06 AD15 BUS TIMING AD14 MREQ AD13 READ/WRITE AD12 NORMAL/SYSTEM AD11 BYTE/WORD AD10 STATUS ST3 AD9 ST2 AD8 ADDRESS/ DATA BUS ST1 STO AD7 AD6 CPU CONTROL AD5 AD4 AD3 BUSAK CONTROL AD2 AD1 ADO MULTIMICRO CONTROL CLK RESET GND FIGURE 3. Logic functions - Continued. SIZE **STANDARD** 8003 Α MICROCIRCUIT DRAWING **DEFENSE SUPPLY CENTER COLUMBUS REVISION LEVEL** SHEET

F

21

COLUMBUS, OHIO 43218-3990

FIGURE 4. Timing waveforms - Continued.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		8003
		REVISION LEVEL F	SHEET 23

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	
Final electrical test parameters (method 5004)	1*, 2, 3, 7, 8, 9
Group A test requirements (method 5005)	1, 2, 3, 7, 8, 9, 10, 11**
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

^{*} PDA applies to subgroup 1.

4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.

4.3.1 Group A inspection.

- a. Tests shall be as specified in table II herein.
- b. Subgroups 4, 5, and 6 in table I, method 5005 of MIL-STD-883 shall be omitted.
- c. Subgroup 4 (C_{IN} measurement) shall be measured only for the initial test and after process or design changes which may affect input capacitance.
- d. Subgroups 7 and 8 shall include verification of the functionality of the device. It forms a part of the vendor's test tape and shall be maintained and available from the approved sources of supply.

STANDARD MICROCIRCUIT DRAWING	SIZE A		8003
DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990		REVISION LEVEL F	SHEET 24

^{**} Subgroups 10 and 11, if not tested, shall be guaranteed to the specified limits in table I.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C, or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform Defense Supply Center Columbus (DSCC) when a system application requires configuration control and the applicable SMD. DSCC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DSCC-VA, telephone (614) 692-0544.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DSCC-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DSCC-VA.

6.7 Pin descriptions.

<u>Name</u>	<u>Description</u>
AD ₀ – AD ₁₅ (Address/Data Bus)	$\underline{Inputs/outputs,\ active\ High,\ three-state}.\ \ These\ multiplexed\ address\ and\ data\ lines\ are\ used\ for\ both\ I/O\ and\ to\ address\ memory.\ \ AD_{15}=MSB.$
AS (Address Strobe)	Output, active Low, three-state. The rising edge of \overline{AS} indicates addresses are valid.
BUSAK (Bus Acknowledge)	Output, active Low. A low on this line indicates the CPU has relinquished control of the bus. This occurs after completion of the current machine cycle. BUSAK goes inactive one clock cycle after the synchronization of BUSRQ being released.

STANDARD MICROCIRCUIT DRAWING DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990	SIZE A		8003
		REVISION LEVEL F	SHEET 25

6.7 Pin descriptions - Continued.

<u>Name</u> **Description**

BUSRQ Input, active Low. This line must be driven Low to request the bus from the CPU. It is

(Bus Request) sampled for being active at the beginning of each machine cycle. When it is released, it

is synchronized with the next rising clock edge.

DS

(Data Strobe)

Output, active Low, three-state. This line times the data in and out of the CPU.

MREQ

(Memory Request)

Output, active Low, three-state. A low on this line indicates that the address/data bus

holds a memory address.

 \overline{MI} . \overline{MO} (Multi-Micro In, Multi-Micro Out) Input and output, active Low. These two lines form a resource-request daisy chain that allows one CPU in a multi-microprocessor system to access a shared resource. MI is sampled on the rising edge of T₃ of the last machine cycle of any instruction and

Internally latched.

 \overline{NMI}

(Non-Maskable Interrupt)

Edge triggered, input, active Low. A high-to-low transition on NMI request a non-maskable interrupt. The NMI interrupt has the highest priority of the three types of interrupts. The internal $\overline{\text{NMI}}$ latch is sampled on the rising edge of T_3 of the last machine

cycle of any instruction.

 \overline{NVI}

(Non-Vectored Interrupt)

Input, active Low. A low on this line requests a non-vectored interrupt. It is sampled on

the rising edge of T₃ of the last machine cycle of any instruction.

(System Clock)

Input. CLK is a 5 V single-phase time-base input.

RESET (Reset)

Input, active Low. A low on this line resets the CPU. RESET must be active for at least

five clock cycles.

 R/\overline{W} (Read/Write) Output, Low = Write, three-state. R/W indicates that the CPU is reading from or writing

to memory or I/O.

 $ST_0 - ST_3$

Outputs, active High, three-state. These lines specify the CPU status.

(Status)

STOP (Stop) Input, active Low. This input can be used to single-step instruction execution. It is sampled on the last falling clock edge preceding any first instruction fetch cycle.

 $\overline{\nabla}$ I

(Vectored Interrupt)

Input, active Low. A low on this line requests a vectored interrupt. It is sampled on the rising edge of T₃ of the last machine cycle of any instruction.

WAIT (Wait) Input, active Low. This line indicates to the CPU that the memory or I/O device is not ready for data transfer. It is sampled on the falling edge of T₂ and any subsequent WAIT states.

 $B\overline{W}$

Output, Low = word, three-state. This signal defines the type of memory reference on the 16-bit address/data bus.

(Byte/Word)

<u>Output, Low = system mode, three-state</u>. N/\overline{S} indicates the CPU is in the normal or

N/S

(Normal/System Mode)

system mode.

 $SN_0 - SN_6$

(Segment Number)

Outputs, active High, three-state. These lines provide the 7-bit segment number used to address one of 128 segments by the memory management unit. Outputs by the 01, 03,

and 04 parts only. $SN_6 = MSB$.

SEGT

(Segment Trap)

Input, active Low. The memory management unit interrupts the CPU with a low on this line when the MMU detects a segmentation trap. Input on the 01, 03, and 04 parts only.

It is sampled on the rising edge of T₃ of the last machine cycle of any instruction.

STANDARD MICROCIRCUIT DRAWING

DEFENSE SUPPLY CENTER COLUMBUS COLUMBUS, OHIO 43218-3990

SIZE A		8003
	REVISION LEVEL F	SHEET 26

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 05-03-23

Approved sources of supply for SMD 80003 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DSCC-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DSCC maintains an online database of all current sources of supply at http://www.dscc.dla.mil/Programs/Smcr/.

Standard microcircuit drawing PIN 1/	Vendor CAGE number	Vendor similar PIN <u>2</u> /
8000301UA	0C7V7	Z0800104LMB
8000301XA	0C7V7	Z0800104CMB
8000301ZA	<u>3</u> /	Z8001K2/883
8000302QA	0C7V7	Z0800204CMB
8000302YA	0C7V7	Z0800204LMB
8000303UA	0C7V7	Z0800106LMB
8000303XA	0C7V7	Z0800106CMB
8000303ZA	<u>3</u> /	Z8001AK2/883
8000304UA	0C7V7	Z0800110LMB
8000304XA	0C7V7	Z0800110CMB
8000304ZA	<u>3</u> /	Z8001BK2/883
8000305QA	0C7V7	Z0800210CMB
8000305YA	0C7V7	Z0800210LMB
8000306QA	0C7V7	Z0800206CMB
8000306YA	0C7V7	Z0800206LMB

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from an approved source of supply.

Vendor CAGEVendor namenumberand address

0C7V7

QP Semiconductor 2945 Oakmead Village Court Santa Clara, CA 95051

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.