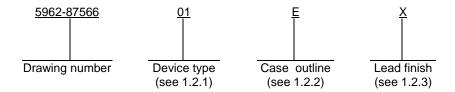
	REVISIONS		
LTR	DESCRIPTION	DATE (YR-MO-DA)	APPROVED
Α	Changes in accordance with NOR 5962-R068-92	91-12-05	Monica L. Poelkin
В	Changes in accordance with NOR 5962-R170-92	92-04-17	Monica L. Poelkin
С	Changes in accordance with NOR 5962-R131-93	93-04-12	Monica L. Poelkin
D	Revise for "QD" certification. New boilerplate. Editorial changes throughout ljs	00-02-17	Raymond Monnin
Е	Correct page 2 generic. Editorial changes on pages 1 and 4les	02-05-01	Raymond Monnin
F	Update drawing to current requirements. Editorial changes throughout gap	09-06-26	Charles F. Saffle
G	To change low level input current (IIL) limit at quiescent conditions to table I. Update boilerplate paragraphs as required by the MIL-PRF-38535 MAA	11-12-12	Thomas M. Hess
Н	Add device type 02. Add maximum limit of V_{OLA} and V_{OL} and minimum limit of low level input current I_{IL} to table I for device type 02. Update boilerplate paragraphs as required by the MIL-PRF-38535 MAA	13-02-04	Thomas M. Hess
J	To correct logic diagram to figure -2 and truth table to figure 3. Update device supplier information MAA	15-09-10	Thomas M. Hess

The original first sheet of this drawing has been replaced.


										SH	IEET	1 0	F 12							
AMSC N/A		REVISION LEVEL J					ZE A		GE CC 67268			ţ	5962-	8756	6					
FOR USE BY ALL DEPARTMENTS AND AGENCIES OF THE DEPARTMENT OF DEFENSE			_	DRAWING APPROVAL DATE 87-07-24				NONINVERTING MULTIPLEXER, MONOLITHIC SILICON												
THIS DRAWIN	THIS DRAWING IS AVAILABLE		BLE		ROVEI . A. Ha											ECL,		D 2-I	NPU ⁻	Г
STANDARD MICROCIRCUIT DRAWING				CHECKED BY D. A. DiCenzo				COLUMBUS, OHIO 43218-3990 http://www.landandmaritime.dla.mil												
PMIC N/A				PREPARED BY Monica L. Grosel) MAF		_				
OF SHEETS				SHE	ET		1	2	3	4	5	6	7	8	9	10	11	12		
REV STATUS				REV	,		J	J	J	J	J	J	J	J	J	J	J	J		
SHEET																				
REV																				
SHEET																				
REV																				

DSCC FORM 2233 APR 97

5962-E419-15

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for MIL-STD-883 compliant, non-JAN class level B microcircuits in accordance with MIL-PRF-38535, appendix A.
 - 1.2 Part or Identifying Number (PIN). The complete PIN is as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) identify the circuit function as follows:

Device type	Generic number	<u>Circuit function</u>
01	10H558	Quad, two-input, non-inverting multiplexer
02	10H558	Quad, two-input, non-inverting multiplexer

1.2.2 Case outline(s). The case outline(s) are as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
E	GDIP1-T16 or CDIP2-T16	16	Dual-in-line
F	GDFP2-F16 or GDFP3-F16	16	Flat package
2	CQCC1-N20	20	Square chip carrier

- 1.2.3 Lead finish. The lead finish is as specified in MIL-PRF-38535, appendix A.
- 1.3 Absolute maximum ratings.

Supply voltage range	-8.0 V dc to 0.0 V dc
Input voltage range	0.0 V to -5.2 V dc
Storage temperature range	-65°C to +165°C
Lead temperature (soldering, 10 seconds)	+300°C
Junction temperature (T _J)	+165°C
Maximum power dissipation (P _D)	320 mW
Thermal resistance, junction-to-case (θ_{JC})	See MIL-STD-1835

1.4 Recommended operating conditions.

Supply voltage range (V _{CC})	-5.46 V minimum to -4.94 V maximum
Ambient operating temperature range (T _A)	-55°C to +125°C
Minimum high level input voltage (V _{IH}):	
T _A = +25°C	-0.780 V dc
T _A = +125°C	-0.650 V dc
T _A = -55°C	-0.840 V dc
Maximum low level input voltage (V _{IL})	-1.950 V dc

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and handbooks</u>. The following specification, standards, and handbooks form a part of this drawing to the extent specified herein. Unless otherwise specified, the issues of these documents are those cited in the solicitation or contract.

DEPARTMENT OF DEFENSE SPECIFICATION

MIL-PRF-38535 - Integrated Circuits Manufacturing, General Specification for.

DEPARTMENT OF DEFENSE STANDARDS

MIL-STD-883 - Test Method Standard Microcircuits.

MIL-STD-1835 - Interface Standard Electronic Component Case Outlines.

DEPARTMENT OF DEFENSE HANDBOOKS

MIL-HDBK-103 - List of Standard Microcircuit Drawings.

MIL-HDBK-780 - Standard Microcircuit Drawings.

(Copies of these documents are available online at http://quicksearch.dla.mil or from the Standardization Document Order Desk, 700 Robbins Avenue, Building 4D, Philadelphia, PA 19111-5094.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing takes precedence. Nothing in this document, however, supersedes applicable laws and regulations unless a specific exemption has been obtained.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with MIL-PRF-38535, appendix A for non-JAN class level B devices and as specified herein. Product built to this drawing that is produced by a Qualified Manufacturer Listing (QML) certified and qualified manufacturer or a manufacturer who has been granted transitional certification to MIL-PRF-38535 may be processed as QML product in accordance with the manufacturers approved program plan and qualifying activity approval in accordance with MIL-PRF-38535. This QML flow as documented in the Quality Management (QM) plan may make modifications to the requirements herein. These modifications shall not affect form, fit, or function of the device. These modifications shall not affect the PIN as described herein. A "Q" or "QML" certification mark in accordance with MIL-PRF-38535 is required to identify when the QML flow option is used. This drawing has been modified to allow the manufacturer to use the alternate die/fabrication requirements of paragraph A.3.2.2 of MIL-PRF-38535 or other alternative approved by the qualifying activity.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-PRF-38535, appendix A and herein.
 - 3.2.1 <u>Case outlines</u>. The case outlines shall be in accordance with 1.2.2 herein.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
 - 3.2.3 Logic diagram. The logic diagram shall be as specified on figure 2.
 - 3.2.4 Truth table. The truth table shall be as specified on figure 3.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 3

- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.
- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-PRF-38535, appendix A. The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked. For packages where marking of the entire SMD PIN number is not feasible due to space limitations, the manufacturer has the option of not marking the "5962-" on the device.
- 3.5.1 <u>Certification/compliance mark</u>. A compliance indicator "C" shall be marked on all non-JAN devices built in compliance to MIL-PRF-38535, appendix A. The compliance indicator "C" shall be replaced with a "Q" or "QML" certification mark in accordance with MIL-PRF-38535 to identify when the QML flow option is used. For product built in accordance with A.3.2.2 of MIL-PRF-38535, or as modified in the manufacturer's QM plan, the "QD" certification mark shall be used in place of the "Q" or "QML" certification mark.
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-HDBK-103 (see 6.6 herein). The certificate of compliance submitted to DLA Land and Maritime-VA prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-PRF-38535, appendix A and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-PRF-38535, appendix A shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DLA Land and Maritime-VA shall be required for any change that affects this drawing.
- 3.9 <u>Verification and review</u>. DLA Land and Maritime, DLA Land and Maritime's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 4

TARLET	Flactrical	nerformance	characteristics.
I ADLE I.	Electrical	benormance	characteristics.

Test	Symbol	Conditions $-55^{\circ}C \le T_{A} \le +125^{\circ}C$			Device	Group A	Lim	nits	Unit
rest	Symbol	unless otherwise specified			types	subgroups	Min	Max	Offic
Cases E, F and 2	Quiescent conditions 1/								
High level output voltage	VoH	Outputs	V _{IH}	V_{IL}	01, 02	1	-1.010	-0.780	V
		terminated	-0.780	-1.950					
		through	-0.650	-1.950	01, 02	2	-0.860	-0.650	
		100 Ω to -2 V	-0.840	-1.950	01, 02	3	-1.060	-0.840	
Low level output voltage	Vol	$V_{CC} = 0.0 \text{ V}$ $V_{EE} = -5.2 \text{ V}$	-0.780	-1.950	01, 02	1	-1.950	-1.580	V
		3/	-0.650	-1.950	01, 02	2	-1.950	-1.565	
		<u>s</u> ,	-0.840	-1.950	01, 02	3	-1.950	-1.610	
High level threshold output	V_{OHA}		-1.110	-1.480	01, 02	1	-1.010	-0.780	V
voltage			-0.960	-1.465	01, 02	2	-0.860	-0.650	
			-1.160	-1.510	01, 02	3	-1.060	-0.840	
Low level threshold output	V_{OLA}		-1.110	-1.480	01, 02	1	-1.950	-1.580	V
voltage			-0.960	-1.465	01	2	-1.950	-1.565	
· ·			-0.960	-1.465	02	2	-1.950	-1.515	
			-1.160	-1.510	01, 02	3	-1.950	-1.610	
Power supply drain current	I _{EE}	Outputs terminat	ed through		01, 02	01,02	-48		mA
	<u>4</u> /	$100 \Omega \text{ to } -2 \text{ V}$ $V_{CC} = 0.0 \text{ V}$			·	2, 3	-53		
		$V_{EE} = -5.2 \text{ V}$	1						
High level input current	I _{IH1}	Outputs terminated	Sel	ect	01, 02	1, 2		295	μΑ
		through 100 Ω			01, 02	3		475	
	I _{IH2}	to –2 V	All in	puts		1, 2		320	μΑ
		$V_{EE} = -5.2 \text{ V}$			01, 02	3		515	
Low level input current	I _{IL}	$V_{CC} = 0.0 \text{ V}$	All in	puts	01	1, 3	-1.0		nA
·						2	-1.0		
			All in	puts	02	1, 2, 3	-200		nA
Cases E and F		DC rapid c	onditions	<u>2</u> /					
			V _{IH}	V_{IL}	01, 02				
High level output voltage	V _{OH}	Outputs	-0.793	-1.950	- /	1	-1.022	-0.793	V
G	011	terminated	-0.665	-1.950	01, 02	2	-0.874	-0.665	1
		through 100 Ω	-0.855	-1.950	01, 02	3	-1,074	-0.855	
		to -2.0 V V _{CC} = 0.0 V					,-		
Low level output voltage	V _{OL}	$V_{CC} = 0.0 \text{ V}$ $V_{EE} = -5.2 \text{ V}$	-0.793	-1.950	01, 02	1	-1.950	-1.584	V
		<u>3</u> /	-0.665	-1.950	01, 02	2	-1.950	-1.570	1
		_	-0.855	-1.950	01, 02	3	-1.950	-1.615	

See footnotes at end of table.

.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 5

TABLE I. <u>Electrical performance characteristics</u> continued									
Test	Symbol	Cond -55°C ≤ T	ditions A ≤+125°	С	Device types	Group A subgroups		Limits Unit	
			unless otherwise specified			Subgroups	Min	Max	
Cases E and F DC rapid conditions 2/									
High level threshold	V_{OHA}	Outputs	V_{IH}	V_{IL}	01, 02				
output		terminated through 100 Ω to	-1.122	-1.484		1	-1.022	-0.793	V
voltage		-2 V	-0.974	-1.470	01, 02	2	-0.874	-0.665	
		$V_{CC} = 0.0 \text{ V}$	-1.174	-1.515	01, 02	3	-1.074	-0.855	
Low level threshold	V_{OLA}	$V_{EE} = -5.2 \text{ V}$	-1.122	-1.484	01, 02	1	-1.950	-1.584	V
output voltage		<u>3</u> /	-0.974	-1.470	01	2	-1.950	-1.570	
			-0.974	-1.470	02	2	-1.950	-1.520	
			-1.174	-1.515	01, 02	3	-1.950	-1.615	
Power supply drain current	I _{EE} 4/	Outputs terminate through 100 Ω to -			01, 02	1	-47		mA
	_	$V_{CC} = 0.0 \text{ V}$ $V_{EE} = -5.2 \text{ V}$				2, 3	-52		
High level input current	I _{IH1}	Outputs	Se	elect	01, 02	1, 2		280	μΑ
		terminated			01, 02	3		460	•
	I _{IH2}	through 100 Ω to -2 V	All i	nputs		1, 2		305	μΑ
		$V_{EE} = -5.2 \text{ V}$			01, 02	3		500	
Low level input current	I _{IL}	$V_{CC} = 0.0 \text{ V}$	All i	nputs	01	1, 3	0.5		μΑ
						2	0.3		
			All i	nputs	02	1, 2, 3	-200		nA
Case 2		DC rapid co	onditions	<u>2</u> /					
High level output	V _{OH}	Outputs	V _{IH}	V _{IL}	01, 02	1	-1.028	-0.800	V
voltage		terminated	-0.800	-1.950					
		through 100 Ω to -2 V	-0.671	-1.950	01, 02	2	-0.880	-0.671	
		$V_{CC} = 0.0 \text{ V}$	-0.861	-1.950	01, 02	3	-1,080	-0.861	
Low level output	V _{OL}	V _{EE} = -5.2 V	-0.800	-1.950	01, 02	1	-1.950	-1.586	V
voltage		<u>3</u> /	-0.671	-1.950	01, 02	2	-1.950	-1.572	
			-0.861	-1.950	01, 02	3	-1.950		
High level threshold	V _{OHA}	-	-1.128	-1.486	01, 02	1	-1.028	-0.800	V
output	0		-0.980	-1.472	01, 02	2	-0.880		
voltage			-1.180	-1.517	01, 02	3	-1,080		
Low level threshold	V_{OLA}	1	-1.128	-1.486	01, 02	1	-1.950		V
output voltage			-0.980	-1.472	01	2	-1.950		
			-0.980	-1.472	02	2	-1.950		
			-1.180	-1.517	01, 02	3	-1.950	-1.617	
Power supply drain current	I _{EE}	Outputs terminated through 100 Ω to -2 V V _{CC} = 0.0 V V _{EE} = -5.2 V		01, 02	1	-47		mA	
	_				2, 3	-52			
ee footnotes at end of tab	le.								
STANDARD MICROCIRCUIT DRAWING DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990				SIZE A				5962-8	37566
					REVI	SION LEVEL J		SHEET 6)

TABLE I. <u>Electrical performance characteristics</u>. - continued

Total	0	Conditions		Device	Group A	Lir	mits	Lloit
Test	Symbol	$-55^{\circ}C \le T_{A} \le +$ unless otherwise		types	subgroups	Min	Max	Unit
High level input current	I _{IH1}	Outputs	Select	01, 02	1, 2		280	μΑ
		terminated through 100 Ω to -		01, 02	3		460	
	I _{IH2}	2 V V _{EE} = -5.2 V	All inputs		1, 2		305	μΑ
		$V_{CC} = -3.2 \text{ V}$ $V_{CC} = 0.0 \text{ V}$			3		500	
Low level input current	I₁∟		All inputs	01	1, 3	0.5		μΑ
					2	0.3		
			All inputs	02	1, 2, 3	-200		nA
Cases E, F, and 2	•	AC test cond	itions					
Transition time	t⊤∟H	V _{EE} = -2.94 V		01, 02	9	0.70	2.00	ns
	t _{THL}	$V_{CC} = 2.0 \text{ V}$			10	0.70	2.20	
	t+, t-	$C_L \le 5 \ pF$			11	0.70	2.20	
Propagation delay time	t _{PHH1} ,	Load all outputs thr	ough 100		9	0.50	1.80	ns
	t _{PLL1} ,	Ω to GND			10	0.50	2.20	
	t _{PHL1} ,	See figure 4			11	0.50	1.90	
	t _{PLH1}							
Propagation delay time	t _{PHH2} ,				9	1.00	2.70	ns
	t _{PLL2} ,				10	1.00	3.00	
	t _{PHL2} ,				11	1.00	2.70	
	t _{PLH2}							

- 1/ The quiescent limits are determined after a device has reached thermal equilibrium. This is defined as the reading taken with the device in a socket with ≥ 500 LFPM of +25°C air blowing on the unit and with power applied at least four minutes before the reading is taken.
- The dc rapid test forcing functions and limits are used for all dc testing. These limits are determined for each device type based on the power dissipation and package type. The rapid test (delta V) limits and forcing functions are skewed allowing rapid testing to be performed at standard temperatures without the addition of delta T's.
- $\underline{3}$ / The high and low level output current varies with temperature, and shall be calculated using the following formulas: $I_{OH} = (-2.0 \text{ V} V_{OH})/100 \Omega$, $I_{OL} = (-2.0 \text{ V} V_{OL})/100 \Omega$
- 4/ The IEE limits, although specified in the minimum column, shall not be exceeded, in magnitude, as a maximum value.

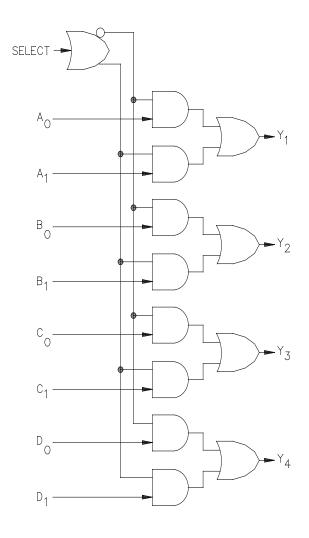
STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 7

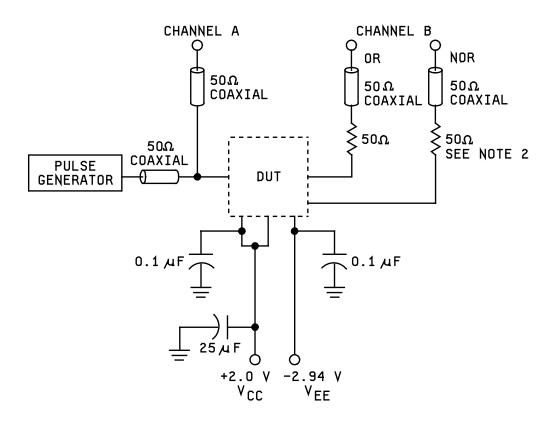
Case outlines	Е	F	2			
Terminal number		Terminal symbol				
1	Y ₁	C ₁	NC			
2	Y ₂	Y ₄	Y ₁			
3	B ₀	Y ₃	Y ₂			
4	B ₁	V _{CC}	B ₀			
5	A ₀	Y ₁	B ₁			
6	A ₁	Y ₂	NC			
7	NC	B ₀	A ₀			
8	V _{EE}	B ₁	A ₁			
9	SELECT	A ₀	NC			
10	D ₀	A ₁	V_{EE}			
11	D ₁	NC	NC			
12	C ₀	V _{EE}	SELECT			
13	C ₁	SELECT	D_0			
14	Y ₄	D ₀	D_1			
15	Y ₃	D ₁	C_0			
16	V _{CC}	C ₀	NC			
17			C ₁			
18			Y ₄			
19			Y ₃			
20			V _{CC}			

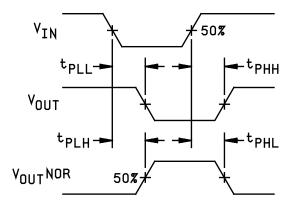
NC = No internal connection

FIGURE 1. <u>Terminal connections</u>.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 8




FIGURE 2. Logic diagram.


Select	X ₁	X ₀	Output
L	ф	L	L
L	ф	Н	Н
Н	L	ф	L
Н	Н	ф	Н

 ϕ = Don't care X = A, B, C or D

FIGURE 3. Truth table.`

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 9

NOTES:

- 1. Pulse generator characteristics: PRR = 1 MHz, $t_{THL} = t_{TLH} = 1.0 \pm 0.2$ ns (20% to 80%), duty cycle = 50 percent.
- 2. The 50 Ω resistor in series with the 50 Ω coaxial constitutes the 100 Ω load.

FIGURE 4. Test circuit and switching waveforms.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME COLUMBUS, OHIO 43218-3990		REVISION LEVEL J	SHEET 10

4. VERIFICATION

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with MIL-PRF-38535, appendix A.
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with MIL-STD-883, method 5005, table I)
Interim electrical parameters (method 5004)	1
Final electrical test parameters (method 5004)	1*, 2, 3, 7*, 9
Group A test requirements (method 5005)	1, 2, 3, 7, 9, 10, 11
Groups C and D end-point electrical parameters (method 5005)	1, 2, 3

^{*} PDA applies to subgroup 1.

- 4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 4, 5, 6 and 8 in table I, method 5005 of MIL-STD-883 shall be omitted.
 - c. Subgroups 7 and 8 shall include verification of the truth table.

STANDARD MICROCIRCUIT DRAWING	SIZE A		5962-87566
DLA LAND AND MARITIME		REVISION LEVEL	SHEET
COLUMBUS, OHIO 43218-3990		J	11

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition A, B, C or D. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ}C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.

5. PACKAGING

- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-PRF-38535, appendix A.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.
- 6.3 <u>Configuration control of SMD's</u>. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished using DD Form 1692, Engineering Change Proposal.
- 6.4 <u>Record of users</u>. Military and industrial users shall inform DLA Land and Maritime when a system application requires configuration control and the applicable SMD. DLA Land and Maritime will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DLA Land and Maritime-VA, telephone (614) 692-8108.
- 6.5 <u>Comments</u>. Comments on this drawing should be directed to DLA Land and Maritime-VA, Columbus, Ohio 43218-3990, or telephone (614) 692-0547.
- 6.6 <u>Approved sources of supply</u>. Approved sources of supply are listed in MIL-HDBK-103. The vendors listed in MIL-HDBK-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DLA Land and Maritime-VA.

STANDARD				
MICROCIRCUIT DRAWING				
DLA LAND AND MARITIME				
COLUMBUS, OHIO 43218-3990				

SIZE A		5962-87566
	REVISION LEVEL J	SHEET 12

STANDARD MICROCIRCUIT DRAWING BULLETIN

DATE: 15-09-10

Approved sources of supply for SMD 5962-87566 are listed below for immediate acquisition information only and shall be added to MIL-HDBK-103 and QML-38535 during the next revision. MIL-HDBK-103 and QML-38535 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DLA Land and Maritime-VA. This information bulletin is superseded by the next dated revision of MIL-HDBK-103 and QML-38535. DLA Land and Maritime maintains an online database of all current sources of supply at http://www.landandmaritime.dla.mii/Programs/Smcr/.

Standard	Vendor	Vendor
microcircuit drawing	CAGE	similar
PIN <u>1</u> /	number	PIN <u>2</u> /
5962-8756601EA	0C7V7	10H558/EA
	<u>3</u> /	10558/BEAJC
5962-8756601FA	0C7V7	10H558/FA
	<u>3</u> /	10558/BFAJC
5962-87566012A	0C7V7	10H558/2A
	<u>3</u> /	10558M/B2CJC
5962-87566022A	0C7V7	QP10H558/2A
5962-8756602EA	0C7V7	QP10H558/EA
5962-8756602FA	0C7V7	QP10H558/FA

- 1/ The lead finish shown for each PIN representing a hermetic package is the most readily available from the manufacturer listed for that part. If the desired lead finish is not listed contact the vendor to determine its availability.
- <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.
- 3/ Not available from an approved source of supply.

Vendor CAGE
__number Vendor name
__and address

0C7V7

e2v, Inc.
__dba QP Semiconductor, Inc.
__765 Sycamore Drive
__Milpitas, CA 95035

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in the information bulletin.