

STB5600

GPS RF FRONT-END IC

ONE CHIP SYSTEM TO INTERFACE ACTIVE ANTENNA TO ST20GP1 MICROCONTROLLER COMPLETE RECEIVER USING NOVEL DUAL CONVERSION ARCHITECTURE WITH SINGLE IF FILTER MINIMUM EXTERNAL COMPONENTS COMPATIBLE WITH GPS L1 SPS SIGNAL INTERNALLY STABILISED POWER RAILS Cit P: 2 CMOS OUTPUT LEVELS FROM 3.3 TO 5.9V SUPPLY VOLTAGE MARKING: **TQFP32 PACKAGE** STB5600 TRACEAP CODE DESCRIPTION ASSY CODE The STB5600, using STMicroelectronics HSB2, High Speed Bipolar technology, implements a Global Positioning System RF front-end. Pip CONNECTION (top view) The chip provides down conversion from the GPS LOGI(ESD (L1) signal at 1575 MHz via an IF of ?CMiHz to an ш ≌ ≌ output frequency of 4MHz suitable to: ST20GP1 VCC FZ+ FZ-VCC CND GND GND GPS processor. It uses a single external reference oscillator to obsolete Produ IF1+ CE generate both RF Iscal occillator signals and the VCC DRIVE IF1-23 72 22 🗌 21 🗌 VCC RF GND DRIVE RF+ DATA RF-GND DRIVE 20 5 VCC RF 6 19 N.C. E, VEE RF 18 🗖 CLOCK + GND RF VEE LOGIC 10 11 12 13 14 וחחחחר VCC RF LO IN+ LO IN-VCC RF VCC LOGIC 80 MHz+ 80 MHz-VCC LOGIC PC11932 20.46 MHz IF filter L1 @ 1575.42 MHz GPS IF

1/10

Clock

DQ

/5

ск

16.368 MHz

STB5600

5010890

August 1998

filter

1554.96 MHz

filter

81.84 MHz

LNA

Local Oscillator М

м

LO BUF

FUNCTIONAL DESCRIPTION

The STB5600 GPS front-end is fed with the signal from an active antenna, via a ceramic RF filter. The gain between the antenna element and the STB5600 is expected to be between 10dB and 35dB overall, made up of the antenna LNA gain, the feeder loss, connector loss, and the ceramic filter loss.

In order to use an off-the-shelf ceramic filter, conventionally 50 Ohms single ended, a matching circuit is used. (see appendix A.1), which provides a 300 Ohm differential drive to the STB5600. A similar circuit can be used to feed the LO signal if using the recommended low-cost oscillator circuit (appendix A.3).

Note that the STB5600 radio architecture and the oscillator described here are covered by various patents held by SGS-Thomson and by others. The use of the circuits described in this data-sheet for any other purpose may infringe such patents.

- RF SECTION

The differential input signal is amplified by the RF-Amp and mixed with the oscillator signal amplified from the LO+,LO- inputs to generate a balanced 20.46MHz IF signal. The LO buffer amplifier may be fed differential or single ended signals, at levels between -60dBm and -20dDm.

- IF SECTION

The 20MHz differential signal from the mixer is fed through an extended LC filter to suppress undesirable signals and mixer products. The multi-stage high-sensitivity liniting amplifier is connected to a D-type latch clocked by an internally derived 16MHz clock. The effect of sampling the 20MHz signal at 16MHz is to create a sub-sampling alias at 4MHz. This is fed to the output level-converters.

- DIVIDER SECTION

The 80MHz oscillator signal may be provided single-ended or differentially to the high impedance 80MHz+, 80MHz- inputs. Any unused inputs should be connected to GNDLOGIC via a 1nF capacitor. The 80MHz signal is amplified, then divided by 5 to create the 16.368MHz clock required by the ST20GP1 processor, also used to proceed to proceed to the STB5600.

- OUTPUT SECTION

The output latch samples the 20.46MHz intermediate frequency at a 16.368MHz rate, performing the dual function of second downconversion and latching. The downconversion occurs by sub-sampling aliasing, such that the digital output represents a 4.096MHz centre frequency

The output builders perform level translation from the internal ECL levels to CMOS compatible outputs referred to external ground.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC} DC Supply Voltage		5.9	V
RF+, RF-	RF Input	8	dBm
Tj	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-40 to 125	°C
$R_{thj-amb}$	Thermal Resistance Junction-ambient	80	°C/W

<u>ل</u>حک

PIN CONFIGURATION

Pin	Symbol	Typ. DC Bias	Dexription	External circuit
1	IF1+	3.6 V	Mixer Output 1	see application circuit
2	IF1-	3.6 V	Mixer Output 2	see application circuit
3	V _{CCRF}	5 V	RF Power Supply	100 nF to V _{EERF}
4	RF+	3.5 V	RF Input	AC Coupled
5	RF-	3.5 V	RF Input	AC Coupled
6	Vccrf	5 V	RF Power Supply	100 nF to VEERF
7	V _{EERF}	2 V	RF Voltage Reference	100 nF to VCCRF
8	GNDRF	0 V	RF Ground	C.C.
9	VCCRF	5 V	RF Power Supply	100 nF נז VEERF
10	LO+	3.5 V	Local Oscillator Input	AC Coupled
11	LO-	3.5 V	Local Oscillator Input	AC Coupled
12	V _{CCRF}	5 V	RF Power Supply	100 nF to VEERF
13	Vcclogic	5 V	Logic Power Supply	100 nF to VEELOGIC
14	80 MHz+	4 V	80 MHz Clock Input	AC Coupled
15	80 MHz-	4 V	80 MHz Clock Input	AC Coupled
16	Vcclogic	5 V	Logic Fower Supply	100 nF to VEELOGIC
17	VEELOGIC	2 V	Logic Voltage Reference	100 nF to VCCLOGIC
18	CLOCK+	0.3 V or 3 V	16 MHz Clock CMOS Output	7 pF to GND _{DRIVE}
19	Not Connected	4	5	
20	GND _{DRIVE}	2.0	CMOS Drive Ground	
21	DATA	0.: v or 3 V	4 MHz Data CMOS Output	7 pF to GND _{DRIVE}
22	GNDDRIVE	0 V	CMOS Drive Ground	
23	VCCDRIVE	3 V	CMOS Drive Power Supply	
24	C:F	3 V	Chip Enable	
25	GND	0 V	Substrate Ground	
26	GNDLOGIC	0 V	Logic Ground	
27	GNDIF	0 V	IF Ground	
28	VEEIF	2 V	IF Voltage Reference	100 nF to VCCIF
29	VCCIF	5 V	IF Power Supply	100 nF to VEEIF
30	IF2-	4 V	Limiting Amplifier Input	see application circuit
31	IF2+	4 V	Limiting Amplifier Input	see application circuit
32	V _{CCIF}	5 V	IF Power Supply	100 nF to VEEIF

Apply 5V at the CE, V_CCRF, V_CCIF, V_CCLOGIC pins, apply 3 V at the V_CCDRIVE

STB5600

ELECTRICAL SPECIFICATION (V_{VCCRF} = 3.3 V ...5.9 V; V_{VCCIF} = 3.3 V ...5.9 V; V_{VCC LOGIC} = 3.3 V ...5.9 V V_{VCCDRIVE} = 3 V; $T_a = 25$ °C unless otherwise specified) LNA MIXER

Symbol	Parameter	Note	Min.	Тур.	Max.	Unit
IVCCRF	Supply Current	VVCCRF = 5 V	20		25	mA
Zin	Differential Input Impedance	@ 1575 MHz AC Coupled at RF+ RF- inputs		300 1		Ω pF
Zout	Differential Output Impedance	@ 20 MHz AC Coupled at IF1+ IF1- outputs		70 3		Ω pF
Gc	Voltage Conversion Gain	$R_L > 3K\Omega$, $P_{IN} = -80 \text{ dBm}$ (V _{in} = 75 μVp on 300 Ω)	35			dB
IIP1	Input Compression Point (1dB)	(see application circuit)	-60			JBm
NF	Noise figure			Ξ		dB
frf	Input Signal Frequency (L1)		~	1.75		MHz
f _{IF}	Output Signal Frequency	.0		20	C'L	MHz
LO INPUT	BUFFER	colete	~	O_{Q_I}	7	-

LO INPUT BUFFER

Symbol	Parameter	No.a	Min.	Тур.	Max.	Unit
Z _{in}	Differential Input Impedance	@ 1555 MHz AC Coupled at LO+ LO- inputs		300 1		Ω pF
	Input Signal Level	16	-60	-40	-20	dBm

JC

LIMITING AMPLIFIER

Symbol	Parameter	Note	Min.	Тур.	Max.	Unit
IVCCIF	Supply Su rent	VVCCIF = 5 V	2.5		3.5	mA
Zin	Differential Input Inopedance	@ 20 MHz AC Coupled at IF2+ IF2- inputs		15		KΩ
В	Bandwidth 3dB		5		80	MHz
Serie	Limiter sensitivity	Input Signal @ 20 MHz AC Coupled		100		μVp
VINMAX	Maximum Input Signal	Input Signal @ 20 MHz AC Coupled			0.5	Vp
~	×0					

CLOCK INPUT BUFFER

Symbol	Parameter	Note	Min.	Тур.	Max.	Unit
IVCCLOGIC	Supply Current	VVCC LOGIC = 5 V	5		7	mA
Z _{in}	Differential Input Impedance	@ 80 MHz AC Coupled at 80 MHz+ 80 MHz- inputs		8 2		KΩ pF
	Input Signal Level	@ 80 MHz AC Coupled at 80 MHz+ 80 MHz- inputs	5		100	mVp
Ν	Division Ratio			5		

roduc

ELECTRICAL CHARACTERISTICS (Continued)

OUTPUT SECTION

Symbol	Parameter	Note	Min.	Тур.	Max.	Unit
IVCCDRIVE	Supply Current	$V_{VCCDRIVE} = 3 V$		8		mA
V _{OH}	High output voltage	$Vp = V_{VCCDRIVE} = 3 V$	Vp-0.4		Vp	V
V _{OL}	Low output voltage	Vn = GNDDRIVE	Vn		Vn+0.4	V
tr	Rise Time	C _{LOAD} = 7 pF		6		ns
t _f	Fall Time	C _{LOAD} = 7 pF		2		ns

APPLICATION CIRCUIT

A typical application circuit is shown in figure 1. The RF input from the antenna downless is fed via a ceramic filter and matching circuit to the RF+,RF- pins. The external LNA in the antenna should have between 10 and 35dB of amplifier gain, so the noise measured in a one MHz band with should be

-114dBm for kTB in 1 MHz

+ 2dB LNA noise figure

+10/35 dB LNA gain (net)

Total -102/77dBm at connector.

Allowing 2dB for filter loss, -104/-79 is available at the matching circuit. ete.

Fig. 1 Typical Application Circuit

5/10

STB5600

A.1 Matching Network

The **matching circuit** may be a 50 Ohm / 300 Ohm balun transformer (figure 2), but a more economical solution is a tuned match as shown below. A single 10nH inductor is optimal in cost, but may not meet the users tolerance requirements over spreads of silicon and pcb material, as it has only around 1pF tuning capacitance (2pF in series with 2pF inside the package).

Fig. 2 Matching Network with Balun

The first example (figure 3) increases the capacitance with a discrete capacitor, and uses a lower inductance value. Both examples assume that the ceramic filter is dc blocking, both input to output, and output to ground.

Fig. 3 Matching Network with two elements

The second (figure 4) example allows optimum matching by rationing the capacitors appropriately to achieve voltage gain commensurate with the impedance translation. While it has a higher component count, it is the version most tolerant of component variations and board capacitance.

Fig. 4 Matching Network with four elements

A.2 IF Filter

The recommended **IF filter** is shown in figure 5. The stop band or the filter is to reject the alias images around 12MHz, and around 28MHz, where it should have at least 15dBc rejection.

Note that the mixer output is low impedance, (70 Charls), and the IF input is high impedance (15kOhms), so considerable voltage gain is achieved in the impedance matching filter.

The filter also sets the bandwidth of the sciencer, using the load impedance with the L/C ratio to set the filter Q. If desired, an external resistor may be added in parallel to reduce the Q. Note that the bandwidth must be much wider than the 2MHz needed to pass the power of the GPS signal... it must maintain linear phase across the 2MHz, even at the extremes of component tolerance.

A.3 Reference Oscillator

The recommended dual output oscillator shown in figure 6 generates both the 81.84MHz signal that is divided down for the CPU 16.368MHz clock, but also the low amplitude 1555MHz first local oscillator signal .

Note that some 2 volts of the 82MHz signal is available, and the capacitive tap on the tank circuit is used to reduce the amplitude to prevent excessive radiation.

Note that the transistor must be a high frequency type, Ft of 8 GHz or greater, and that the collector inductor must have a self resonant frequency of 2.5GHz or higher.

Fig. 6 Reference Oscillator

DIM.		mm			inch	
Dini.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
А			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
В	0.30	0.37	0.45	0.012	0.015	0.018
С	0.09		0.20	0.004		r.618
D		9.00			0.354	
D1		7.00			0.276	0
D3		5.60			0 220	
е		0.80			0.031	Y S
E		9.00		10	0.354	10,
E1		7.00		76.	0.276	5
E3		5.60			0.220	
L	0.45	0.60	<i>5.75</i>	0.018	0.024	0.030
L1		1.00		40	0.039	
К			0 [°] (min.),	7 [°] (max.)		

TQFP32 MECHANICAL DATA

Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s) Obsolete Product(s) - Obsolete Product(s)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics

© 1998 STMicroelectronics – Printed in Italy – All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco - The Netherlands -Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.