

SD2933-05

RF power transistor HF/VHF/UHF N-channel MOSFETs

Features

- Gold metallization
- Excellent thermal stability
- Common source configuration
- P_{OUT} = 300 W min. with 20 dB gain @ 30 MHz
- Thermally enhanced packaging for lower junction temperatures

Description

The SD2933-05 is a gold metallized N-channel MOS field-effect RF power transistor. It is intended for use in 50 V dc large signal applications up to 150 MHz. It's special low thermal resistance package, makes it ideal for ISM applications where reliability and ruggedness are critical factors.

Figure 1. Pin connection

Table 1. Device summary

Order code	Marking	Package	Packaging
SD2933-05	SD2933	M177	Plastic tray

July 2009

www.st.com

Contents

11	Electrical data	3
	1.1 Maximum ratings	3
	1.2 Thermal data	3
2	Electrical characteristics	4
	2.1 Static	4
	2.2 Dynamic	4
3	Impedance data	5
4	Typical performance	6
5	Test circuit	8
6	Circuit layout	9
7	Package mechanical data 1	0
8	Revision history1	1

Electrical data 1

1.1 **Maximum ratings**

Table 2.	Absolute maximum ratings ($T_{CASE} = 25 \ ^{\circ}C$)		
Symbol	Parameter	Value	Unit
V _{(BR)DSS}	Drain source voltage	130	V
V _{DGR}	Drain-gate voltage ($R_{GS} = 1 M\Omega$)	125	V
V _{GS}	Gate-source voltage	± 20	V
Ι _D	Drain current	40	А
P _{DISS}	Power dissipation	648	W
ТJ	Max. operating junction temperature	200	°C
E _{AS}	Avalanche energy, single pulse $(I_D = 60 A)$	1500	mJ
E _{AR} ⁽¹⁾	Avalanche energy, repetitive	50	mJ
T _{STG}	Storage temperature	-65 to +150	°C

ble 2.	Absolute	maximum	ratings	$(T_{CASE} = 25)$	°C)
			· • · · · · · · · · · · · · · · · · · ·	VULAGE	- /

1.

Repetitive rating: Pulse width limited by maximum junction temperature Repetitive avalanche causes additional power losses that can be calculated as: $P_{AV} = E_{AR} * f$

1.2 **Thermal data**

Table 3. Th	nermal data
-------------	-------------

Symbol	Parameter	Value	Unit
R _{thJC}	Junction - case thermal resistance	0.27	°C/W

2 Electrical characteristics

 $T_{CASE} = +25 \ ^{o}C$

2.1 Static

Table 4.	Static						
Symbol		Test conditions		Min	Тур	Max	Unit
V _{(BR)DSS} ⁽¹⁾	$V_{GS} = 0 V$	I _{DS} = 200 mA		130			V
I _{DSS}	$V_{GS} = 0 V$	$V_{DS} = 50 V$				100	μA
I _{GSS}	$V_{GS} = 20 V$	$V_{DS} = 0 V$				500	nA
$V_{GS(Q)}$	V _{DS} = 10 V	I _D = 250 mA		2.5		3.0	V
V _{DS(ON)}	V _{GS} = 10 V	I _D = 20 A				3	V
9 _{FS}	V _{DS} = 10 V	I _D = 10 A		10			mho
C _{ISS}	$V_{GS} = 0 V$	$V_{DS} = 50 V$	f = 1 MHz		1000		pF
C _{OSS}	$V_{GS} = 0 V$	$V_{DS} = 50 V$	f = 1 MHz		372		pF
C _{RSS}	$V_{GS} = 0 V$	V _{DS} = 50 0 V	f = 1 MHz		29		pF

1. $T_J = +150 \ ^{\circ}C$

2.2 Dynamic

Table	5.	Dynam	ic

Symbol	Test conditions	Min	Тур	Max	Unit
P _{OUT}	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA}$ $f = 30 \text{ MHz}$	300	400		W
G _{PS}	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA P}_{OUT} = 300 \text{ W} \text{ f} = 30 \text{ MHz}$	20	23.5		dB
h _D	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA P}_{OUT} = 300 \text{ W f} = 30 \text{ MHz}$	50	65	-	%
Load mismatch	$V_{DD} = 50 \text{ V}$ $I_{DQ} = 250 \text{ mA P}_{OUT} = 300 \text{ W} \text{ f} = 30 \text{ MHz}$ All phase angles	3:1			VSWR

Table 6. Gfs sorts

Marking	Min.	Max.
С	12	12.99
D	13	13.99
E	14	14.99

3 Impedance data

Figure 2. Impedance data

Table 7. Impedance data

Freq	Z _{IN} (Ω)	Ζ_{DL} (Ω)
30 MHz	1.8 - j 0.2	2.8 + j 2.3
108 MHz	1.9 - j 0.2	1.6 + j 1.4
175 MHz	1.9 - j 0.3	1.5 + j 1.6

4

80 85

4 Typical performance

Figure 3. Capacitance vs drain-source voltage

Figure 4.

Figure 5. Gate-source voltage vs case temperature

Drain current vs gate voltage

Figure 7. Output power vs input power

Figure 9. Power gain vs output power

5 Test circuit

|--|

Item	Description
C1,C9	0.01 μ F / 500 V surface mount ceramic chip capacitor
C2, C3	750 pF ATC 700B surface mount ceramic chip capacitor
C4	300 pF ATC 700B surface mount ceramic chip capacitor
C5,C10,C11,C14,C1	10000 pF ATC 200B surface mount ceramic chip capacitor
C6	510 pF ATC 700B surface mount ceramic chip capacitor
C7	300 pF ATC 700B surface mount ceramic chip capacitor
C8	175-680 pF type 46 standard trimmer capacitor
C12	47 μF / 63 V aluminum electrolytic radial lead capacitor
C13	1200 pF ATC 700B surface mount ceramic chip capacitor
C15	100 μF / 63 V aluminum electrolytic radial lead capacitor
R1,R3	1 K Ohm 1 W surface mount chip resistor
R2	560 Ohm 2 W wire-wound axils lead resistor
T1	HF 2-30 MHz surface mount 9:1 transformer
T2	RG - 142B/U 50 Ohm coaxial cable OD = 0.165[4.18] L 15"[381.00] covered
L1	1 3/4 turn air-wound 16 AWG ID = 0.219 [5.56] poly-coated magnet wire
L2	1 3/4 turn air-wound 12 AWG ID = 0.250 [6.34] bus bar wire
RFC1, RFC2	3 turns 14 AWG wire through fair rite toroid
FB1	Surface mount EMI shield bead
FB2	Toroid
PCB	Ultralam 2000. 0.030" thk, ϵr = 2.55, 2 Oz ED Cu both sides

Doc ID 15816 Rev 2

6 Circuit layout

Figure 14. 30 MHz test circuit photometer

Figure 15. 30 MHz test circuit

7 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

10/13

+

· · · · · · · · · · · · · · · · · · ·						
Dim.	mm.			Inch		
	Min	Тур	Max	Min	Тур	Max
А	5.72		5.97	0.225		0.235
В	6.73		6.96	0.265		0.275
С	21.84		22.10	0.860		0.870
D	28.70		28.96	1.130		1.140
Е	13.84		14.10	0.545		0.555
F	0.08		0.18	0.003		0.007
G	2.49		2.74	0.098		0.108
Н	3.81		4.32	0.150		0.170
I			7.11			0.280
J	27.43		28.45	1.080		1.120
K	15.88		16.13	0.625		0.635

 Table 9.
 M177 (.550 DIA 4/L N/HERM W/FLG) mechanical data

Figure 16. Package dimensions

8 Revision history

	Table 10.	Document revision histo	rv
--	-----------	-------------------------	----

Date	Revision	Changes
04-Jun-2009	1	First release
08-Jul-2009	2	Updated V _{(BR)DSS} voltage value from 125 V to 130 V on <i>Table 2 on page 3</i> and <i>Table 4 on page 4</i>

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

Doc ID 15816 Rev 2