IS74

AN1560
APPLICATION NOTE

Design Guide
UPSD3200 Family

MPCONTENTS

MPSD3200 Family
Overview

DK3200 Overview

DK3200 Development
Board

Entering Design in PSDsoft
Express

Watch it Run on DK3200
Using uVision2 and ISD51

Debugger from Keil
Software, Inc.

Conclusion

Appendix A: PSDsoft
Express Project Summary
File, DK3200_1.sum

Appendix B: PSDsoft
Express ABEL HDL File
DK3200_1.abl

Appendix C: PSDsoft
Express Fitter Report
DK3200_1.frp

Appendix D: DK3200 Board
Layout

Appendix E: DK3200
Schematics

August 2002

The uPSD3200 family is a series of 8051-class microcontrol-
lers (MCUs) containing an 8032 core with a large dual-bank
Flash memory, a large SRAM, many peripherals, programma-
ble logic, and JTAG In-System Programming (ISP). This docu-
ment shows the steps to create a design using the DK3200
development board, the software development tool PSDsoft
Express, and uVision2 8051 Integrated Development Environ-
ment (IDE) from Keil Software.

pPSD3200 FAMILY OVERVIEW

The pPSD3200 family is a standard 12-clock per instruction
8032 MCU capable of being clocked up to 40MHz at 5.0V and
24MHz at 3.3V at industrial operating temperature range. Cur-
rently there are seven family members that are different combi-
nations of Flash memory size, operating voltage, peripheral
set, and packaging (see datasheet). The fullest featured part,
MPSD3234A-40U6, is used in this Application Note. The term
MPSD is used throughout the remainder of the document for
brevity. See uPSD block diagram in Figure 1.

The uPSD has a unique memory structure that includes two in-
dependent Flash memory arrays (main and secondary) capa-
ble of read-while-write operation. This is ideal for In-Application
Programming (IAP) because the 8032 can fetch instructions
from one Flash memory array while erasing/writing the other
array. Individual sectors of each Flash memory array can be
mapped to virtually any 8032 address by the Decode PLD
(DPLD) for total flexibility. The uPSD also contains a Page
Register whose outputs feed the inputs of the DPLD. This al-
lows paging (or banking) of Flash memory to break the 8032’s
inherent limit of 64K byte addresses. The 8032 may write to the
Page Register at runtime.

For more complex designs, the pUPSD is capable of placing
each of the Flash memory arrays (Main or Secondary) into
8032 code address space, into 8032 data space, or into both
code and data space on the fly. Mapping flexibility like this sup-
ports IAP because either Flash memory array may be tempo-
rarily placed into data space while the firmware is updated,
then moved back into code space when finished, all under con-
trol of the 8032.

Many peripherals are available in this pPSD, including: USB

1/43

AN1560 - APPLICATION NOTE

v1.1l (low speed), two UART channels, four PWM channels, one 12C channel, four 8-bit ADC channels,
DDC (Data Display Channel for LCD monitors and projectors), a watchdog timer, low-Vcc detection with
reset-out, a general purpose PLD, and many GPIO.

All of the peripherals on Ports 1, 3, and 4 are controlled using 8032 Special Function Registers (SFRs). I/
O Signals on ports A, B, C, and D are controlled one of two ways: One, by a block of xdata memory
mapped control registers, whose base address (csiop) can be mapped anywhere using the DPLD; Two,
by the programmable logic.

The JTAG ISP channel on Port C is ideal for rapid code iterations during firmware development and for
Just-In-Time inventory management during manufacturing. JTAG ISP eliminates the need for sockets and
pre-programmed devices, and requires no participation of the 8032.

Figure 1. uPSD3234A Block Diagram

Port 3, UART, Port 1, Bit /O and 12C, Dedicated USB
Intr, Timers 2nd UART and ADC IR 3, (AU el PIDIE (i Pins
A A A A A 7'}
| _Port3 | |_Portl |
[8032 Core | 4 ADCs h 4 v y v
2 UARTs | [3Timer/Cntrs 12C PWM DDC USB 1.1
1 Moo 1 Master / w/ 256 Byte &
Interrupts 256B SRAM
L_nterupts | Slave 4 Channels SRAM Transceiver
[Porto__] | Port2 |
x 7'y
Dedicated DATA
Pins (80- [€ ADDR
pgﬂ?}gg X . A4 v A4 v A4 \ 4 R
<‘ ¢ 8032 Internal Bus '>
PSD M Interf
| S CU Interface 8032 reset
t A
I”Tow Vce Detect 1 Reset Input
PSD Page 128K or 256K 32K Byte 8K Bute (AR I iy
Register Byte Secondary SR Ayl:/I Reset Supervisor Dedicated
Main Flash Flash ImGe == ————q | ResetOutpul'| pins
Decode PLD L Watchdog Timer _ i -
> v > E E ¥ PSD Reset R
< PSD Internal Bus >
)) 4 i
VCC, GND,
JTAG ISP CPLD - 16 MACROCELLS XTAL
4 A A A A A
v \4 \ 4 \4 \ 4 v
UPSD3200 Port C, Port A, PLD Port B, PLD Port D Dedicated
JTAG,PLDIWO = WOand [—| 0and [‘5pio Pins
and GPIO GPIO GPIO
Al06868b

DK3200 OVERVIEW

A picture of the DK3200 board is shown in Figure 2. Board layout and schematics are in the Appendix.
Connectors JP1, J3, J4, J5 provide easy access to all uPSD I/O signals for expansion or testing. JP1 ac-
cepts jumper shunts to wrap uPSD outputs back into uPSD inputs for testing. J3, J4, J5 can connect di-
rectly to standard Agilent (HP) Logic analyzer pods. UARTSs are available on P1 and P2. A USB host can
connect to the uPSD as a peripheral via J2. The FlashLINK JTAG ISP cable connects at J1. Connectors

2/43 ‘y_l

AN1560 - APPLICATION NOTE

JP2, JP3, JP4, JP5 allow direct connection of the In-Circuit Emulator from Nohau Corp, EMUL-
MPSD3200-PC. JP6 accepts jumpers to connect the switches (SW1, SW2) and the LEDs (LED1, LED2)
to PSD port B. LED D5 indicates JTAG ISP Programming. The DK3200 also has a 2-line 16 character
LCD interface and a full featured real-time clock with SNAPHAT snap-on battery/crystal pack.

Figure 2. DK3200 Development Board

' """!'l 1LPSD

DIR3Z00 REY. 0.0

DESIGN EXAMPLE BLOCK DIAGRAM

This simple design example is represented by the block diagram of Figure 3, and the memory map of Fig-
ure 4. All 16 macrocells of the PLD are used, Flash memory is paged, and few of the 8032 interfaces (ADC,
PWM, UART) are configured and used. The idea is to touch several aspects of the uPSD that may be un-
familiar to a typical 8051 user and to give you an idea of how to use the design tools and become familiar
with uPSD architecture.

J

3/43

AN1560 - APPLICATION NOTE

Figure 3. Design Block Diagram

uPSD3234A-40U6)
8 ADDR ADDR pins A0 - A1l
A8 - A15 [~ # S L
16
ﬁ 1 AN pATA 2 | pinsP00-PO7
in P4.7 (PMWO >
— () PWMO J N
A M6 ADDR
Y
pin P1.4 Latch 15] DPLD
(ADCO) 7> T
T ADCO Y 256KB Main = _fs0-fs7,
. Flash (data) — 8’ Page Reg
; ADO-AD7 [« / > - (from Control
DATA Regs)
. 13 csbootO -
pin _RESET RESET IN 77 32KB2ndary] gcshoot3
- - » Flash (code) = 4
8032 L% rs0 pin PCO (tms)
| SKBSRAM i pin PCL (tck)
pin XTAL1 pselO - pin PC3 (tstat)
XTALL = Data Bus _ psell ITAG .
_ Repeater 3 ISP pin PC4 (_terr)
40 MHz g - pin PC5 (tdi)
> 256 Control Regs pin PC6 (tdo)
pin XTAL2 L 1
XTAL2
5 pin PBO (al12_x)
. S Initial Count 16 PLD pin PB1 (a13_x)
pin P3.0 (RxD1) RxDL MarcocCells =
X -
pin P3.1 (TxD1) 01 ALE T Down- an PB2 (al4_x)
x M I Counter I I I I pin PB3 (al15_x)
pin PB4 (term_count) pin PB5 (LCD_rs) S ST
RS-232 Transceiver pin PB6 (LCD_rw)
READ/WRITE
pin PB7 (LCD_e)
| CHIP SELECT LCD
8 ins PAQ - PA7 (LDC_dO - LCD_d7
S—2b (the. 41 p0-07 MODULE

Al07073

Figure 3 shows the design implemented in this application note. Major elements are the uPSD, an LCD
module, and an RS-232 transceiver chip.

The 8032 outputs a repetitive PWM pulse train with a slowly varying pulse width to an RC network which
converts the pulse train into a slowly sweeping DC voltage (0 to 5V). This DC signal is looped back into
an ADC input. The 8032 will write the resulting Hexadecimal ADC conversion value to the LCD so you can
watch the results. The RC network and loop-back is implemented with two jumpers on the DK3200 board.

Additionally and independently, a 4-bit auto-reloading down-counter is created using PLD macrocells. The
8032 directly loads the initial count value into four macrocells, and that count is automatically loaded into
another four macrocells that create the 4-bit down-counter. Reloading occurs each time the counter reach-
es terminal count of zero. Terminal count is indicated externally by a pulse on a uPSD output pin. The
down-counter is clocked by ALE signal (ALE was random choice, could be any signal). The 8032 may load
a different initial count at anytime, creating a variable divider of the ALE signal.

Four more macrocells are used to output the high four 8032 address signals. The 80-pin uPSD only out-
puts the low twelve 8032 address signals on dedicated pins. If more address sighals are needed external-
ly, they have to be added this way using the PLD.

The LCD module is connected to the uPSD via a Port A for data and Port B for some glue logic and a chip-
select signal. Port A is operating is an special data bus repeater mode this example, called Peripheral I/O
mode. 8032 data will pass through port A only for a given address range specified in PSDsoft Express
(illustrated later).

J

4/43

AN1560 - APPLICATION NOTE

Figure 4. 8032 Memory Map

Code Space (_PSEN) | Data Space (_RD and _WR)

Page X i Page 0 Page 1 Page 2 Page 3 Page 4 Page 5 Page 6 Page 7
FFFF . FFFF

fsO fsl fs2 fs3 fs4 fs5 fs6 fs7
32K bytes uPSD | 32K bytes uPSD 32K bytes uPSD | 32K bytes uPSD | 32K bytes uPSD | 32K bytes uPSD | 32K bytes uPSD | 32K bytes uPSD
Main Flash Main Flash Main Flash Main Flash Main Flash Main Flash Main Flash Main Flash
(xdata) (xdata) (xdata) (xdata) (xdata) (xdata) (xdata) (xdata)

nothing mapped

800Q 8000

7FFF 7FFF
cshoot3
8K bytes uPSD I
Secondary Flash
6000 nothing mapped
5FFF .
csboot2
8K bytes uPSD I Common
4000 Secondary Flash ' o . 4000
3FFF emory I
csbootl | 10 , 8K bytes PSD SRAM (xdata) Across All 2000 - 3FFF
8K bytes uPSD
oo | imemiee ‘ DataPages ___ |
| nothing mapped 0400 - 1FFF
1FFF csboot0 . LCD_e and psel chip select and data bus repeater for LCD module 0300 - 03FF
8K bytes uPSD . CSIOp , cntl regs for ports A, B, C, D (xdata _— 0200 - 02FF

0000 Secondary Flash | 8032 SFRs and idata SRAM 0000 - 00FF

AlO7074

The memory map in Figure 4 shows that the 32K byte secondary Flash memory is used for 8032 code,
and the 256K byte main Flash memory is used for 8032 data, banked over eight pages. The nomenclature
fsx, csbootx, rs0, csiop, and pselin Figure 4 refer to the individual internal uPSD memory segments. The
MPSD main Flash memory has a total of eight 32K byte segments (fs0..fs7). The uPSD secondary Flash
memory has a total of four 8K byte segments (csboot0-csboot3). The uPSD 8K byte SRAM has a single
segment (rs0). A group of UPSD control registers which control /O ports A, B, C, and D lie in a 256-byte
xdata address space whose base address is named csiop. The uPSD has a data bus repeater feature that
is enabled over a given address range as specified by psel. Figure 4 also shows one external memory
select signal, LCD_e, for the LCD module. This memory map is specified using the software tool PSDsoft
Express. Each memory segment can be placed at virtually any address, which provides an infinite number
of mapping schemes. This is just one example.

We'll keep things simple for this particular application note, meaning the 8032 will “boot” and run code con-
tained completely within the 32K byte secondary Flash memory in code space and we'll treat the 256K
byte main Flash memory as data only. However, this memory map may grow with the needs of your
project. For example, if a large Flash memory is needed for code space and IAP is required, a slight vari-
ation of the map in Figure 4 can accomplish this. The 8032 can boot from secondary Flash memory (sec-
ondary Flash memory resides in code space from 0-7FFF as in Figure 4), then the 8032 can calculate a
checksum on the main Flash memory and then program the main Flash memory if necessary (main Flash
memory resides in data space from 8000-FFFF on eight pages as in Figure 4). After the contents of main
Flash memory are verified, the 8032 can write to special register, called the VM register within the csiop
register block, to “reclassify” the main Flash memory from data space to code space. After which, the 8032
will have access to 256K bytes of Flash memory for code in code space, paged across eight code pages
in upper memory (8000-FFFF), and the 8032 will have access to 32K bytes of Flash memory for code in
code space common to all pages in lower memory (0-7FFF). At that point no Flash memory will reside in
data space. Upon reset, the memory map is reset to look like Figure 4 again. The VM register can be ac-
cessed by the 8032 at runtime to perform a variety of manipulations. PSDsoft is used to set the initial value
of the VM register upon power-up. Future Application notes will illustrate various memory schemes.

Ly_l 5/43

AN1560 - APPLICATION NOTE

ENTERING DESIGN IN PSDSOFT EXPRESS

Highlights of the design process will be given here. The steps are simple and navigation through PSDsoft
Express is easy. Invoke PSDsoft Express and follow along if you wish. PSDsoft Express is included in the
DK3200 CD, but you should check for latest updates. Updates are available from our website at
www.st.com/psm, in the “Software Downloads” area.

Invoke PSDsoft Express and Create Project

* Install PDSsoft Express (from the web or the included CD)
* Start PSDsoft Express

* Create a new project

* Select your project folder and name the project (in this example, name the project “DK3200_1" in the
folder PSDexpress\my_project).

Select MCU and Initial Placement of Flash in Code Space or Data Space
* Select an MCU. In this case it is STMicroelectronics, then uPSD32xx, then uPSD3234A.

* Select the main Flash memory to reside in 8032 data space at power-up (means that the 8032 _RD and
_WR signals are routed to the main Flash memory array)

* Select the secondary Flash memory to reside in 8032 code space at power-up (means that the 8032
_PSEN signal is routed to the secondary Flash memory array)

Note: At runtime, the 8032 can alter the initial settings of code and data space by writing to the VM register.
Figure 5 shows what the screen should look like after you've made the selections.

J

6/43

AN1560 - APPLICATION NOTE

Figure 5. MCU Selection

—Step 1: Select Microcontroller [MCU or DSP]——
Select an MCU/DSP and its control signal options. 1F wour
MCU/DSP does not appear on the list, select 'Other', then

zpecify its control signal configuration. Check latest MCU/DSP
and PSD data sheets ta confim AL timing compatibility.

MCU/DSP and PSD Selection B3

~Step 2: Specify the PSD device -

Usze product selection wizard.

wizard... |

FSD Family: uPE0 2200 -

M anufacturer: . .
ISTMlcroelectronlcs j Part Number [popazaas =
Type: [uPsDaze Bl [D@opnTar =
Contial Signals 5, /RD, /PSEN 2| | votsge: 4mvs Y
—atep 3: Select PSD configuration
Select a particular configuration for the device.
Bus Width: |8-bit j
Bz Mode: IMuItipIexed Buz j
BLE/AS Active-level IHigh j
Fain PSD flazh raemary will rezide in thiz space at power-up: IData Space Orly j
Secondary PSD Hash memory will reside in this space at power-up: IProgram Space Orly j
— Description for any selection above
Specify the PSD device family for your design. ;I
=

Ok, I Caticel |

Click OK. Now you will be asked if you want to use the Design Assistant, Extended Design Assistant, or
Example Template. Choose Example Template. This is a predefined design that matches this application

note and it runs on the DK3200 board. Next choose the template for the DK3200 Kit when prompted.

Pin Definitions

You will see the Pin Definitions screen appear. All of the pin definitions shown in block diagram of Figure
3 are filled in. Click through the pins and see how they are configured and how they relate to Figure 3.

You'll notice that you cannot change the definition of some pins because they have a fixed function.

A comment about JTAG pins. This example uses 6-pin JTAG which is up to 30% faster than the default

standard 4-pin JTAG. The two extra pins in the 6-pin JTAG configuration are _tstat and terr.

J

7/43

AN1560 - APPLICATION NOTE

Figure 6. Pin Definitions

EJ Pin Definitions

D efine each pin by repeating the following steps: |- Step 2 Pin Function --
[ztandard ping already defined] Define the pin function, then click the
--- Step 1: Select a pin on the chip diagram below. - Add/ U pdate buthon, Return to step 1

tepeak Far mest pie

LCO_d7 £ parf p36
T — B
S —
ST — il
. paz 3l {* Logic or address
LCD_d1 ¢~ pal p3.0 USaRT1_Rxd " Latched address
LCh dd =~ pal pl.# ™~ " PT clocked register
£ ph¥ e] " PT clacked latch
¢ pbS pla & — CPLD Output
kermn_c oLt £~ phd pl3 bt
al_x ™~ pb3 Rl " D-type register
al4 s ¢ pb2 pLI (" T-type register
- gy |:| (" SR-ype register
L ol il (" JK-Aype register
l:l ' pe? =i " Extemal chip select - Active Hi
th - (" Extemal chip select - Active-Lo
cw ac
L g D
Lxbat £ pc3 ads ab
. a5 B " GP 10 mode -
o ~ pel acld o~ =1 " GP I/0 made with pin enable
i £ peld ad3 ¢
[e e ad? Add | Delste
[] =l ~Step 3 Final Sten]
£ ale 2d0 Click. Mexts» after all pins are defined.
pd_7 - opd T Feset_In ¢ Click fiew at any time to check progress.
|:| £~ pAE ek i) Click Dore to gave the update and cloge.
l:l £~ phE Crdh
~ pd.d4 _psen _pzen Yiew I Nth>>| Eance|| [rone J
P ¢ pd3 W _rd
m— U CRE 2 .
| LI_‘ Jl [+]

FS

Now click “Next” to move on to the Design Assistant for memory mapping and logic equations. You will
see the Page Register definition screen.

Memory Map

Defining the memory map requires defining the address range of chip-selects for individual memory ele-
ments of the UPSD (memory external to the 8032 core). Definition of the use of the uPSD Page Register
is also required.

Four memory blocks (main Flash memory, secondary Flash memory, SRAM, and control registers) exter-

8/43 ‘ﬁ

AN1560 - APPLICATION NOTE

nal to the 8032 core are available and are individually selected segment-by-segment when 8032 address-
es are presented to the Decode PLD (DPLD). Each of these memory segments has its own chip-select
name (fs3, csbootl, rs0, csiop, etc.). Equations for these chip-selects, and for any external chip-selects,
must be specified using PSDsoft Express. For this example, chip-selects are defined to match the memory
map of Figure 4.

Page Register

Since eight memory pages (or banks) are needed as shown in Figure 4, three paging bits (23 = 8) are
specified as shown in Figure 7. The uPSD supports up to 4 paging bits (pg0, pgl, pg2, pg3) for a total of
16 pages. Unused paging bits including pg4, pg5, pg6 and pg7 may be used for other functions. Note that
the paging bits used must be the LSB bits in the paging register. Click “Next”.

Figure 7. Page Register Definition

=3 Dezign Assistant

Page Register Defintion | Chip Select Equations | |0 Logic Equations | Izei-defined Mode Equations |

Define haw indirvidual PSD page reqister bitz will be used
Each bit added for 'paging' can sxtend the MCUADSF address rangs. Start with pard,
Each bit added for 'logic’ can be used az logic imput to the PLDs. Start with pary.

— Detine use of page reqister bits

Page Reg Bit Type of Use Mame of Logiz Sigral
pare: [paging [logic |
park: [pagirg [logic |
pars: [pagirg [logic |
pard: [paging [/ lgic |
pard: [T paging [logic |
poi; 7] p g [logic parZ
parl: W paging [logic ||:u_]r‘l
parD: W pagng [lagic ||:u_]rI]

— Dezcription

Select this bit for memom paging. Use one bit to define bwo memom pages, use bwo bits bo i!

define four pages, three bits for eight pages and 20 on. Select enough bits o cover the

riamber required pages, Ahways start with parl and add more bits going upwand, a3 these J
=

<< Back Mgt 22 Rexet Al Wisw Done | Cancel |

Chip-Select Equations

Now you will see the Chip-Select definition screen. Click the chip-select signal rsO for the 8K byte xdata
SRAM, and see that its definition matches the memory map of Figure 4.

‘ﬁ 9/43

AN1560 - APPLICATION NOTE

Figure 8. Chip-Select Definition for 8K byte SRAM

Page Fegister Definition Chip Select Equations | 1/0 Logic Equations | |lzer-defined Mode Equations |
For each chip select, select a page number if memory paging is used, the active address range, and any Double click any of the signal names
additional zignal qualifiers. Ensure PSD page register bits have been defined if uzed here. below to append the s_ignal name to
Sig_nal qualifier_s are Iiste_d in bow ot righlt.l Laogically AND_ qualifiers within zame line uzing %' symbol. Create Lh; b%%?:tﬁ:gu;;rs:?T;l:gzg!me[s
logic DR by using nest line below. Use ' symbol for logical MOT.
Fain PSD flazh memary will reside in thiz space at power-up: Data Space Only
Secondary PSD flash memory will reside in this space at power-up: Program Space Dnly
List of chip selects — Enter system memary information ~ Eligible signals
F i | Faoe Hex Start Hex End Logical AMD of Signal Qualifisrs = _psen T
Cciop Mumber Address Address [more than one OF) —rd
fe0 = _wr
- | = |2nnn 4 |3FFF % | i
fs2 : _ al
f£3 Logical OF with nest statement; a0
fad all
fs5 [= . . a12
fsf = I I | al?
fs7 Logical OF with next statemnant: a12_ufh
czboot] all
czhioot] | = alld =
csboot? & l & | & I i ald_=fb
czhoot3 Feaultant i ald
peell esulbant eguation 214«
psell ¢ Intemal chip select for 8K byte SRAM =] ald_sfh
LCD_e # [1FFF hex locations, max) alh
130 = [[address »= "h2000] & [address <= "h3FFF); vI alb x
alb_afh -
4 I I LI 8 r) ._J
¢ Prev | Mest > | Reset Al | WView | [one | Cancel | ShowEg |

Notice that no page number is specified for rs0 since the SRAM is common to all pages (page indepen-
dent). Additional signal qualifiers (8032 control signals _rd, _wr, _psen, ale) are NOT needed for internal
MPSD chip-selects as this is taken care of in silicon. The SRAM always defaults to 8032 data space.

At any time, you can click the “View” button to see how you are doing. A summary will appear.

Now click on the chip-select csiop (Chip Select I/O Port). This is a band of 256 xdata registers used to
control uPSD ports A, B, C, D, the Page Register, power management, and other functions. 40 of the 256
registers are used, see UPSD data sheet for register definitions and their address offset from the csiop
base address. There is no need to specify additional signal qualifiers for csiop, and it is not allowed to
place csiop on a particular memory page. The csiop must be xdata address space.

Next click on fs0. fs0 .. fs7 are chip-selects for the eight 32K byte segments of uPSD main Flash memory.
Notice the page number is 0 for fs0, and the address range is 8000 - FFFF as shown in memory map of
Figure 4. Click on remaining chip-selects for main Flash memory and notice the page number assign-
ments. No additional signal qualifiers are needed.

J

10/43

AN1560 - APPLICATION NOTE

Figure 9. Chip-Select Definition for Flash Memory Segments

E3 Design Assistant

Page Register Definition Chip Select Equations | 1/0 Logic Equations I Uzer-defined Mode Equations |

For each chip select, select a page number if memory paging is used, the active address range, and any Double click any of the signal names
additional zignal gualifiers, Ensure PSD page register bits have been defined if uged here, below to append the signal name to
the 'Logical AMD of Signal Qualifiers'

Signal qualifiers are lizted it box ot right, Logically AND qualifiers within ame line using &' spmbal. Create e o S R

logic DR by using nest line below. Use ' spmbol for logical HOT.

tain PSD flazh memory will reside in thiz space at power-up; Data Space Only
Secondary PSD Hash memory will reside in this space at power-up: Program Space Only
List of chip selectz — Enter spetem memony information J —Eligible signals
] Page Hex Start Hex End Logical AMD of Signal Qualifiers _pzen -
Csion Humber Address Address [more than one Ok i
=l _wr

i |u =t |enoo 4 !FFFF G | s
fs2 al
fs3 Logical OR with next statement: all
fs4 all
f55 [) . al2
fE =il ! ! R
fs7 Logical OR with next staberment: 12 xfb
csbootl] al3
cshoot | = aldx
csboot2 e l & | & | J ald xfb
cshootd ~Resultant i ald
paell esulbant equation e
pzell ## Internal PSD chip select for one 32K byte segment of main flash ﬂ ald ufb
LCD_e /4 [FFFF hex locations, max) alh

fs0 = [[page == 0] & [address »= "ha000] & [address <= “hFFFF]); - alb x

alh xfb =

i _'I i r I e ._J

<<F‘rev| Nexl»l FlesetAIIl Wi | [one | Cancel | Shoqul

Now click on csboot0. csboot0 .. csboot3 are chip-selects for the four 8K byte segments of uPSD second-
ary Flash memory. Check the address assignments for each of these chip-selects and notice there are no
page numbers assigned. The secondary Flash memory is common to all pages.

Next click on psel0. This address range specifies when Port A pins will behave like a data bus repeater in
Peripheral I/0O Mode to drive the LCD module. Port A pins were earlier specified a “Peripheral I/O Mode”
which acts like a ‘245 bus transceiver chip connecting the 8032 data bus to external peripherals over a
given address range specified by the label psel0 or psell. The direction of this transceiver function is con-
trolled automatically in silicon by the 8032 _rd and _wrsignals. See pPSD data sheet for details. So all we
have to do is click on psel0 and enter the address range 300 to 3FF to enable this feature for that address
range as shown in Figure 4, with no Page Number assignment. psell is not needed because the Periph-
eral I/O feature is active for the logical OR of psel0 or psell.

And finally, click on LCD_e. This is an external chip-select for the LCD module. Since this is an external

chip-select, we must include signal qualifiers _rd and _wr. In this design, LCD_e is true (active hi) only
when the 8032 presents an address in the range of 300 to 3FF AND when either 8032 control signal _rd
is true, OR when 8032 control signal _wr is true. To create this logic, information is entered as shown in
Figure 10. Since both signals _rd and _wr are active low, the logical NOT operator (!) is used when they
are specified as qualifiers. Signal qualifiers may be added by setting the cursor where you want the signal
name to go, then just double click on the signal name in the list of eligible qualifiers.

J

11/43

AN1560 - APPLICATION NOTE

Figure 10. External Chip-Select Definition for LCD Module

E3 Design Assistant

Page Fegister Definition Chip Select Equations | 140 Logic Equations I Uszer-defined Hode Equationsl

For each chip select, select a page number if memory paging iz uged, the active address range. and ary
additional signal qualifiers. Ensure PSD page reaister bits have been defined if used here,

Signal qualifiers are lizted in bowx an right. Logically AMD qualifiers within zame line uzing &' symbal. Create
logic: OR by uzing nest line below. Use 1" symbol for logical MOT.

Main PSD flazh memary will reside in thiz space at power-up:

Diata Space Only
Secondary PSD flash memory will reside in thiz space at power-up:

Frogram Space Only

Double click any of the signal names
below to append the signal name ta
the ‘Logical AMD of Signal Qualifiers'
bow where the curzor iz located.

List of chip selects — Enter system memon infarmation — Eligible signals
r=0 FPage Hex Start Hex End Logical AMD of Signal Qualifiers j _pzen =
cxop Mumber Address Address [more than one OK] d
fs0 |
i1 l = |3nn 4 |3FF 4 I!_rd i
fs al
%] Logical OF with nest statement; =10
fsd all
f55 =l [200 YEG & [l al2
fsB alZ s
fs7 Logical OR with next staternert: a2 uth
ceboot0 al3
cshoot] | I ald «
cshoot? e l & | & | I a13_xfb
;zl;l%cﬂ - Resultant equation ::II i_x
ﬁepm 2/ External chip select or general PLD combinatonial logic output ;] a14_xfb
LCD_e = [[address »= "h0300] & [address <= "hO3FF] & (1_rd]) alh
[[address »= "h0300] & [address <= “hO3FF] & [_wrl); vI 315 «
alf_=fb -
4 I | LI o F A _I
¢ Prew Mest »» Reset Al | Wiew I [one Cancel | Show Eqg |

Click “next” to move on to logic definitions.

I/O Logic Equations

Defined here are equations for PLD outputs for the LCD interface signals, the additional 8032 address out-
puts, and the terminal count output signal from the down-counter. The Design Assistant (DA) will create
HDL logic statements using the ABEL language in the background after you enter logic in this point-and-
click design entry environment. The DA will also create all the declaration statements in ABEL. This saves
much typing and reduces the chance of error. For more complicated logic PSDsoft allows you to edit the
ABEL statements directly. In this example you'll see simple logic entered point-and-click style, and you'll

see the 4-bit down-counter entered by editing the ABEL file directly.

Click on “LCD_rw" as shown in Figure 11, and notice that the internal signal a0 is assigned to drive the
output signal “LCD_rw". Although this was a very simple logic equation, AND, OR, XOR, NOT, and other

logic operators are also available for general purpose logic.

12/43

J

AN1560 - APPLICATION NOTE

Figure 11. Logic Equation for signal LCD_rw

gl D exiun Axsislanl

Page Rzgeler Dcfi"nii:!nl Chip Sclect Equalions 40 Legic Equations | Jzz defred Mode Equatcnai

Eelect sicnalz in the List o signalz' Eex ard definz the equaticr by citker beping n'bbgic
cquion' bes o doubls clickiag the Yalid aocickars’. and Elighle signals’ bes.

[oublz dick cgc operalor: or signals
belaw ba cpaend iert ks de b lacic
aquation baet wheras the cursor iz located.

_isl of zigrel:

Crler coc equatios

“alid cperatois

-C2_w Outpu; enable lors: -
i . = f e ik (et alive :|
Co: Olpulendoe ARL

BT TIRETTFI] ne

e vl Qi erabil= HNR

=19 - HMNR

215 = Crbput erable _ﬁ‘
ald - L
al4_+ Cubput orable]

13 r = ; :

313+ Cubputercblc ;] v —EluLle sianals

al2 -
212+ Cutput erabls

_dsen

Fizzsullznk quaticn

Afnrneral PLT rarbonstnrisd g e nnbpot _"I ::b
| T _rwn = all; al
al
e all
11
q I I _’I LI ﬂ ‘31 il ;!
< Frow | Nest 2o I Resct Al I Cancel I Shos Eg I

Click through the remaining signal names and observe the logic assigned. Notice there is no logic equation
assigned to term_count because that assignment will be made by editing the ABEL file directly. Click
“Next”.

User-Defined Node Equations

Here you will see how internal logic nodes are created. In this example there are four registers (or nodes)
to hold the initial count of the 4-bit down-counter, and four additional registers to create the actual 4-bit
down-counter. See Figure 12.

Figure 12. 4-bit Down-Counter with Automatic Reload of Initial Count

8032 data bus
4-bit auto-reloading (initial count)
down-counter ST\ 4 nodels to hold
initial count
D 3 D 2 Dl DO
8032 writes to OMCs in - -
control register space (csiop) —» LOAD
to load inital count AB3 | AB2 | AB1 | ABO
% I > term_count
ALE —> d
AB7 | AB6 | AB5 | AB4 \
N
/ Q, vQ. ¥Q, ¥vQ, 1 PLD output
4 nodes to form defined for
counter terminal count
Al07076

These nodes were created by clicking the “Def Node..” button, naming the node, and then selecting the
type node (combinatorial, D-register, J-K register, etc.). In this example, all eight nodes are D-register
type. When a register is created, you can specify it's source of Input, Clock, Reset, as Set illustrated in
Figure 13.

/574

13/43

AN1560 - APPLICATION NOTE

Figure 13. D-register Node

Set

PRE
Input — D QI—

Clock _> LR

Reset

AI07077

Click though the signal names and look at the assignments. Notice there are no definitions for inputs on
any of the eight nodes. For the down_count nodes, the inputs are defined elsewhere (the ABEL file). For
the init_count nodes, no logic input (or clock input) is specified because the 8032 will load the nodes di-
rectly by writing to the appropriate Output MacroCell register that resides the band of 256 registers of
csiop.

It may seem odd to divide the design entry this way (some point-and-click entry and some direct ABLE file
editing), but many declaration statements are automatically created in the background by the point-and-
click entry. You will see that when it is time to enter ABEL equations for the down-counter, there is very
little typing involved.

Click “Done”. Now you will see the main PSDsoft flow diagram that will guide you through the remaining
steps. You can see a summary report at this time by pulling down the “Report” selection in the main menu
bar at the top of the screen, then select “Design Assistant Summary”. Your report will match the one in
Appendix A.

Edit ABEL HDL Statements for PLD Design

If your PSDsoft flow diagram does not include the block “Edit/Add Logic Statements” as shown in Figure
14, then pull down the “Project” selection in the main menu bar at the top of the screen, then select “Pref-
erence”. Click the box that says “Enable ABEL Editing Capability”, then “OK”.

J

14/43

AN1560 - APPLICATION NOTE

Figure 14. Design Flow Diagram

Specify
Project

Define PZ0
ancd MCL 7 DSP

Cefine PZD
Fin J Mode Functions

Ecitt ¥ &dd Lagic
Statements

M dditional
PSD Seftings

Fit Design ta
Ellicon

Merge ML [DEP
Firmeware with PED

STMicroslectronics
JTRG ISP

Design Flow

= Mext Action

Generste C Code
Specific to PED

Editor, Compiler,
Linker, Cebugger

ETMicroelectronics
Conventional
Programmers

OSSP Firrmware

Your Lpplication
C Code or L=zembly

Device Programiming

3rel Panty
Prngrammers

Click the “Edit/Add Logic Statements” box. You will see an “HDL Assistant” window pop up. Browse
through this to see ABEL logic and syntax examples that you can cut and paste into future designs. Close
the HDL Assistant and you will see the ABEL HDL source file. All the declarations and logic equations
generated from the Design Assistant are there, and should match Appendix B.

There are only two regions in the ABEL file in which you can type statements, otherwise the DA will over-
write what you have typed next time you get into the DA.

The first safe region is for ABEL declarations and lies between the two statements: “// Begin user pre-
served declarations” and “// End user preserved declarations”.

The second safe region is for logic equations and lies between the two statements: “// Begin user pre-

/574

15/43

AN1560 - APPLICATION NOTE

served equations” and “// End user preserved equations”.
Scroll down to the declaration region in the ABEL file, it should look like:

1/ Begin user presenved declarations (not affected by iterations of DA usage)

WSIPSDPROPERTY DataBus_ OMCDJ[7:4].down_count{3:0]MCELLAB';// Thisstatementforcesthe
alignment
/I ofdown_count bits [3..0] to the MCU data bus bit positions
[7.4].
NfthisWSIPSD PROPERTY statementwasnot present, then PSDsoft
/lwouldpickrandomMCUbitpositions. The WSIPSDPROPERTYisneeded
llonly ifthe MCU will read orwrite to MicroCellsand only ifa
Il particular MCU data bus posttion is required by the designer.

WSIPSDPROPERTY DataBus_OMCD][3:0[:init_count{3:0]MCELLAB';// Thisstatementforcesthe
alignment
Jlofinit_countbits[3..0]tothe MCU databusbitpositions|[3..0].

DCOUNT = [down_count3..down_countQ]; / 4-bit down counter
INIT =[init_count3..init_countQ];/ 4-bit initial count from MCU
/NIT=[0,1,0,0];

/I End user preserved declarations (not affected by iterations of DA usage)

Notice the WSIPSD PROPERTY statements. These are needed whenever you want to dictate the place-
ment of certain macrocells of the PLD. If you do not enter any WSIPSD PROPERTY declarations state-
ment, then the PSDsoft “fitter” process will place the macrocells in random order. This is not a problem for
most designs. But in this example we want to load an initial count for the down-counter from the 8032 data
bus so we must make sure the output macrocells holding the initial count are in the correct bit order and
the correct position in the bank of eight output macrocells. The property statement:

WSIPSD PROPERTY ‘DataBus_OMC DJ[7:4]:down_count[3:0] MCELLAB’

forces the order of the bits of the down-counter and places them on the upper half of the 8032 data bus.
The property statement:

WSIPSD PROPERTY ‘DataBus_OMC D[3:0]:init_count[3:0] MCELLAB’

forces the order of the bits of the initial count and places them on the lower half of the 8032 data bus. Now
when the 8032 writes to the OMCAB register at address csiop+0x20, the low four bits of the byte will get
loaded into the initial count. There is also a OMCAB mask register at csiop+0x22 that is used to prevent
the 8032 from disturbing the other bits in the OMCAB register while writing.

If the PROPERTY statements above ended with MCELLBC instead of MCELLAB, then the other bank of
eight output macrocells would be used for the counter. See the uPSD data sheet and PSDsoft Express
User’s Guide for more details.

The next declaration statements DCOUNT and INIT create a shorthand notation for use in the logic equa-
tions.

Now scroll down in the ABEL file to the logic equations until you see:

/I Begin user preserved equations (not affected by iterations of DA usage)

term_count=(DCOUNT ==0); // term_count true when count reaches zero

when term_count then DCOUNT := INIT; // automatically reload counter with initial
Il value after a count of zero is reached

J

16/43

AN1560 - APPLICATION NOTE

else DCOUNT :=DCOUNT - 1; Il specify down count action

I End user preserved equations (not affected by iterations of DA usage)

These three statements define the down-counter and the PLD output that appears on pin PB4
(term_count).

So you can see that very little typing is needed to implement logic designs. The same approach is used
to create state machines, shifters, etc.

Close the ABEL file and you will see the PSDsoft flow diagram again.

Additional uPSD Configuration

Click the box “Additional PSD Configuration”. This is where you can choose to set the security bit to pre-
vent a device programmer from examining or copying the contents of the uPSD. The only way to defeat
the security bit is to erase the entire uPSD, then it can be used again as a blank part. You can also click
through the other sheets on this screen to set the JTAG USERCODE value and set sector protection on
individual uPSD Non-Volatile memory segments. Just click “OK” for now.

C Code Generation
Click on the “Generate C Code” box in the main flow diagram.

The “Coded Example” section shown in Figure 15 will generate complete project files that you can use in
the Keil uVision2 IDE.

Figure 15. Coded Example Generation

C Code Generation x|

Functions/Headers Coded Examples |

-Step 1: Select folder for C code examples
Browze to folder in which the code examples will be placed.

Folder. E:\PSDespressimy projectiC_test

- Step 2: Choose the coded example category
Select category. Press <CMTL: to click and select more than one category.

PSD Category Coded example [main functions headers)
uPsh Wk A ADC Demo for D
uFsD USB Demo for DE3200
uPsD uPSD Device Drivers [C code)
DSME130 Demo Code for DK2190 kit
FSD DES00 ISP download software [S0C32)
Deszcription:
Demaonstrate uPSD features: Puwb, ADC, PLD, JTAG -

Thiz archive consizts of one ZIP file, DE3200_dsn_1.2IP. containing all the
project filez needed Lo recreate this demonstration design using uWizion 2051
IDE [PEST wersion 7.00 or later] from Keil Software Inc and PSDzoft Express [W7.E).

Thiz simple program sends a varyving pulse train out on P channel Pt 0,
the DE3000 board integrates the pulze train thraugh an BT nebwork, and the ﬂ

Generate | Cloze |

In this screen you can specify a folder in which the ZIPPED project files will be written, along with a readme
file with instructions. The selection shown in Figure 15 is the complete project for this application note and

‘y_l 17/43

AN1560 - APPLICATION NOTE

it runs on the DK3200 board. It contains all the Keil source and project files as well as all the PSDsoft Ex-
press project files. Now close the C Code Generation window.

Fitting Design

Click the next highlighted box in the design flow, “Fit Design to Silicon”. PSDsoft will compile all the con-
figuration selections and present a report (also available in Appendix C). The fitter report documents how
pins are configured and how the programmable logic is allocated. It also shows how many programmable
logic product terms are used, which is needed to estimate power consumption.

Merging 8032 Firmware with uPSD Configuration

Now that all WPSD pins and configuration settings have been defined, PSDsoft Express will create a single
object file (*.obj) that is a composite of the 8032 firmware (*.hex) and the uPSD configuration. FlashLINK
or third party programmer tools can use this object file to program a pPSD device. PSDsoft Express will
create DK3200_1.0bj for this design example.

During this merging process, PSDsoft Express will input firmware files from the 8032 compiler/linker in S-
record or Intel HEX format. It will map the content of these files into the physical memory segments of the
MPSD according to the choices that were made in the ‘Chip Select Equations’ screen. This mapping pro-
cess translates the absolute system addresses inside 8032 firmware files into physical internal uPSD ad-
dresses that are used by a programmer device to program the uPSD. This address translation process is
transparent. All you need to do is type (or browse) the file name that was generated from the 8032 linker
into the appropriate boxes and PSDsoft Express does the rest. You can specify a single file name for more
than one pPSD chip-select, or a different file name for each pPSD chip-select. It depends on how the 8032
linker has created the firmware file(s). For each uPSD chip-select in which you have specified a firmware
file name, PSDsoft Express will extract firmware from that file only between the specified start and stop
addresses, and ignore firmware outside of the start and stop addresses.

Click on 'Merge MCU Firmware' in the main flow diagram. You will see an information window pop up to
remind you to be sure you have configured the firmware compiler and linker to support a paged memory
mapping scheme. “OK” and you'll see this screen:

J

18/43

AN1560 - APPLICATION NOTE

Figure 16. Firmware Merging Utility

~Step 1: MCU/DSEP firmware placement

Specify name of MCU/DSE firmware file for each PSD memony segment below. Scroll bo zee al
egments You may need to 2dit/add the star and stop addresses if paging or ather memon
manipulation is uzed.

Merging of MCU or DSP Firmware with PSD | %]

Mare [nfo...

d

fd emom File File
Celzct tdemory Select Equations | Addiess Lddress File Mame
ki ame Start [hew) | Stop [hex]
Ipdn & lpgr2 & lpgrl & 2
FsO lpar & a15: IM IFFFF I Browsze... | j
lpdn & 'pore & \parl & porl
E5l L als; ISDDU IFFFF I Browse... |
lpdn & lpor2 & pgrl & [pgrl
F$2 |&al5; |sooo [FFFF | Browss._ |
lpdn d lpor2 & pgrl & pard
Fsz &al% | 000 [FFFF | Browse... |
Recod Type t apping Mode Concatenate Files
@ |ntel Hex Record " Moterala S-Record o Direct) Felative File Setting. ..

~3tep 2: Merge PSD configuration and MCU/DSP firmware

Clizk OF ko create a programming data file.

i I

Cancel

In the left column are UPSD memory segment chip-selects (FSO, FS1, etc.). The next column shows the
logic equations for selection of each uPSD memory segment. These equations reflect the choices that
were made while defining uPSD internal chip-select equations in an earlier step. In the middle of the
screen are hexadecimal start and stop addresses that PSDsoft Express has filled in based on the chip-
select equations. On the right are fields to enter (browse) the 8032 firmware files.

Select 'Intel Hex Record' for 'Record Type' as shown. Now slide the bar on the right side all the way down
to the bottom until you see CSBOOTO. Use the 'Browse' button and select the firmware file for CSBOOTO,
\\PSDexpress\examples\DK3200_1.hex. This is a small example program that exercises the PWM and
ADC channels of the uPSD on the DK3200 board, and this code fits completely within the 8K byte Flash

memory segment CSBOOTO. The screen should look like this:

J

19/43

AN1560 - APPLICATION NOTE

Figure 17. Merging the Example Firmware

Merging of MCU or D5P Firmware with P5D

—Step 1: MCUJDSP firmware placement

Specify name of MCU/DSP firmware file for each PSD memony segment below, Scroll to see all
segments. You may need to edit/add the start and stop addresses if paging or other memary More Infa...
manipulation iz used,

d

Fdemary : File File
Select temony Select Equations Addrezs Address File Name
Mame Start [hex] | Stop [hex]
Ipdn & 1315 & la14 & 1a13; |L

CSBOOTO IU |1 FFF IC:\PSDexpress\EX&MF‘L Browse... |

Ipdn & la15 & lald & a13;

CSBOOT f2000 [FFF | Browse. . |
Ipdn & la15 & a14 & 1a13;
CSBEOOT2 |4uuu |5FFF || Browse... |
Ipdn & la15 % ald & a13;
CSEOOTS |suuu I?‘FFF | Browse. . |
Record Type M apping Mode Concatenate Files
& Intel Hex Recard " Matorola S-Record " Direct ¢ Relative File Setting...

—Step 2: Merge PSD configuration and MCUIDSP firmware

Click DK to create a programming data file.

LCancel

i

This specification places firmware in secondary PSD Flash memory segment csboot0. PSDsoft Express
will extract any firmware that lies inside the file DK3200_1.hex between MCU addresses 0000 and 1FFF
and place it in PSD memory segment csboot0. Click OK to generate the composite object file,
DK3200_1.0bh;.

JTAG Programming

Now click the “STMicroelectronics JTAG/ISP” box to program the uPSD. You'll be asked how many JTAG
devices are on the target circuit board, choose “Only One”. You'll see the screen shown in Figure 18.

J

20/43

AN1560 - APPLICATION NOTE

Figure 18. Programming with FlashLINK JTAG Cable

JTAG-I5P Dperations - Single Device x|
~Step 1: Select Programming file and PSD
Select folder and programming file; Select device;

IE:\F'SDerress'\m_l,l_pmiect\DK32DD_'I\dk32DD_1.0bi Browsze. .. | IuPSD3234A vl

~Step 2: Spe ¥ J1AL-ISE operation and conditions

Select operation: Select PSD region: Select # of JITAG pinz to uze on circuit board: Other conditions:
IProgramN erify j I.t‘-‘«ll j IB pirs - tofi o bk b, tetat,_terr j F'mperties...l

Click here to perform specified JTAG-SP operation >>

~Step 3: Save or retrieve JTAG-ISP setup
Specify folder and filename to save the setup of this JTAG-ISP zession or retrieve a previous session. Save |

Select folder and file: dk3200_1.jcf Browse. .. |

™ Log Mode - Click box to record session infamation in the log file * plg.

Programming PLD ... Time elapzed : 2 sec. d

Prograrming Uzer-Code .. Time elapzed : 0 zec.

Program operation completed ...

Time elapzed : 7 zec. j
2

File Checksum | ATE Files... | Hiw Setup | Reset Target | Cloze |

This window enables you to perform JTAG-ISP operations and also offers a loop back test for your
FlashLINK cable. If this is your first use, test your FlashLINK cable and PC parallel port by clicking the 'HW
Setup’ button, then click 'LoopTest’ button and follow the directions.

Now let’s define our JTAG-ISP environment. For this example project, PSDsoft Express should have filled
in the folder and filename of the object file to program, the PSD device, and the JTAG-ISP operation, as
shown in the screen above. For this design example, we have chosen to use all six JTAG-ISP pins (instead
of four), so the screen should indicates 6-pin JTAG is being used.

To begin programming, connect the JTAG cable to the target system, power-up the target system, and click
'Execute’ on the JTAG screen. The Log window at the bottom of the JTAG screen shows the progress. Pro-
gramming should just take a few seconds, the ISP LED at D5 on the DK3200 will light during programming.
There are optional choices available when the 'Properties.." button is clicked. One choice includes setting
the state of all pins on port A, B, C, or D during JTAG-ISP operations (make them inputs or outputs). The
default state of these pins is "input", which is fine for this design example. The other choice allows you to
specify a USERCODE value to compare before any JTAG-ISP operation starts. This is typically used in a
manufacturing environment (see on-screen description for details).

After JTAG-ISP operations are complete, you can save the JTAG setup for this programming session to a
file for later use. To do so, click on the 'Save’ button. To restore the setup of a different previous session,
click the '‘Browse..” button.

WATCH IT RUN ON DK3200

After JTAG programming completes in just a few seconds, you should see a message appear on the LCD:
DK3200 for uPSD

PWM to ADC DEMO

Then you'll see the Hexadecimal value of the ADC conversion sweep up and down between 0x00 and
OxFF as the PWM pulse width changes. If you do not see the ADC value change, make sure there are two
jumpers installed on the DK3200 board. On JP1, install one jumper across the two opposite rows of pins
next to the word “PWMOQ”, and the other jumper across the opposite rows of pins next to the word “ADCOQ".

‘y_l 21/43

AN1560 - APPLICATION NOTE

Remove the jumper next the word “ADCO0” and watch the ADC value on the LCD drop to 00h.

USING UVISION2 AND ISD51 DEBUGGER FROM KEIL SOFTWARE, INC.

This next section will briefly highlight the features of the Keil uVision2 IDE (Integrated Development Envi-
ronment). Keil’'s evaluation software was used for this example. This software is supplied on the DK3200
CD and can be installed by double clicking on ek501701.exe. Please refer to Keil documentation for more
details.

Loading a Keil uVision2 Project

The file DK3200_dsn_1.ZIP is available which contains all the source and project files needed to build this
design in Keil's uVision2. To get this file, click on the “Generate C Code” box on the PSDsoft flow diagram.
Then chose the “Coded Examples” tab and choose the selection for the DK3200 board. Specify a folder
where you want the ZIP file written, and click “Generate”. The ZIP file contains two folders, DK3200_1 ¢
and DK3200_1 p. DK3200_1_c has all the Keil files, DK3200_1_p has the PSDsoft Express project files
for this application note.

Copy the folder DK3200_1 ¢ and all of its contents to your Keil folders as follows,
.\Kei\C51\DK3200_1_c. Invoke Keil uVision2, pull down the “Project” menu, then select “Open Project”.
Now open the uVision2 project that you just got from the ZIP file at
.\keil\c51\DK3200_1 C\DK3200_1.uv2. Everything should be ready to go.

Building the Project and Programming the uPSD

You can build the project for this application note which will create a new Intel HEX-80 file, DK3200_1.hex.
Invoke PSDsoft Express and open the project DK3200_1, go to the “Merge MCU Firmware” section, select
this new HEX file at \keil\c51\DK3200_1 CW\DK3200_1.hex for the Flash memory segment csboot0 and
merge, then program the DK3200 board with FlashLINK cable just as before. The LCD should display the
PWM/ADC demo information.

Running the Keil ISD51 UART Debugger

This simple demo program has the ISD51 UART debugger linked into the code. This is a hew debug tool
from Keil that only consumes 700 bytes of code space and is royalty-free so it can stay in your end product
all the time. Unlike the older UART debugger, MON51, this debugger does not require you to debug code
in small sections at a time from xdata SRAM. And unlike MON51, this debugger does not require you to
combine your code and data space (tie _PSEN and _RD together). See Keil documentation for details.

This project, DK3200_1.Uv2 has ISD51 already selected for the debugger tool, connected through PC se-
rial COM1 port at 19.2 kbaud with no hardware handshaking. It also assumes there is a 40MHz crystal on
the DK3200 board. Connect a DB-9 (nine-pin) male-female straight-through (pins 2 and 3 are not
swapped) serial cable to COM1 portl on your PC and to the UARTO (P1) connector on the DK3200 board.

Click the Debug icon shown in Figure 19, the debugger will start and it will compare contents of the Flash
memory in the uPSD Flash memory with the source files, then program execution will begin running to the
C source line until just after the function, ISD_check(), then it will stop and wait for your debug command.
The screen should look like Figure 20.

Figure 19. Debug icon

i@l

J

22/43

AN1560 - APPLICATION NOTE

Figure 20. Keil ISD51 Just After it is Successfully Invoked

i DK3z00 1 - uvieinnd
”:I: Lck Wiew “ajec: Jeac Tedsbera: Took I¥2% window _lelp
|[aeRd | e e s AR S (EamEeern
=EHenTE Dk EREEEE -
7[5
T wal e i SR 32 D0_1WDEIZ00_1_demo.c
SR 3 i Tmer T OEOT BOME PAT GemcEiclon
: E [IN]| i 7 27 L5200 bawd KA wizh li-cecle 1332
el m] 1 bt boad F1L.0592ME: with _5 cyzle S050
Mere H B S er=ble fooet rrizal VAST o recsiver
75 i £ ELzole giobcl IATEISNEC Clag
ULl
bld SeTeatscsial o SEOMMCCERTRT ThiZ CURSTION £3 TEILTF Iiplal GoxrricoTion
e : P
R moilc (TROE] S HOTT £Tad Loop
Ll [ERE TR S PR S
Ll
il Iilicheck (); s instzalize uFesicni IOBS. Tezigger and sonkume cuagran o
EN]
[N e APAN Y Thannel Cxifi007,0,80; e PTNCOD - ZxIT. PMMC, and duty vmries
[L3A1)
UPHD_ATC_Daadiin -
3 Lo o= prinI(xdg bufI."wa ADC CHEIe=%ERh ST, ulED ADT DeodiCr): SxcEr opag
PELHTIICC a0y ButI) fedlerlay ade ciiwmel oné 130 ealkc 3 LoD
delaw_frzzih;
' Jx0F2F 3F23 0 Com2E A7
fnF A FEASFF AN 5 2E #27BN-RAOP T IWFF)
i islsEa Aodallt My Lude ¥z
S dmusdy Ao 2Ll vy Ludy 2=zl
Z 207 R FLOD o EJ.#0xz0C
S1wNTE" TEMT S T2 &
Bl & ILQJ I
T Y LRV T PR L T PR T <l (2 eame wali 4| s - N B
Tl 1. AL |
X Tkl T CL =C OC J= 30 IF E= O3
i (AF: ZN PFOFF A0 47 0 F7 OFT
B O:reA9r: FROCTOFREOC R M RT 17
5TM RESIOM BreokDbiscble EreokZnasle ExeckFill H ghilstbup REUL UL LR oF booUL)
ST 21 FTFI]- =44 p fmsraant 42 Fre v Ao F M -0 T[T TEIT, wam b Wimen 21§ Tiorh & ool 0k J T T TR vemarr 51 s ey B woemes 3 b0
Su bk pie bl | L1LLy | | | K

Now you can set breakpoints, single-step, view 8032 internal registers and SFRs, view blocks of memory,
etc. For example, in the memory window in the lower-right corner of the IDE screen, the byte of memory
at Hexadecimal address 0x96 is the SFR named “ADAT”, which is the resulting 8-bit value from the ADC
channel from the last voltage conversion before the 8032 stopped. The value at address 0x96 is OXBF in
Figure 20. If you set a breakpoint on the function uPSD_ADC_Read(0), then run the program, you will see
the data byte at address 0x96 change value in the memory watch window, and that same data byte will be
showing on the LCD. Each time to run until the breakpoint, you should see a new value appearing in the
memory watch window at address 0x96 and the same value on the LCD. Click the debug icon again to exit
the debugger ISD51.

CONCLUSION

Congratulations! You have seen the majority of steps to implement a uPSD design on the DK3200 board.
Now you have a basis to understand more detail as you read the uPSD data sheet and the documentation
from Keil Software Inc.

J

23/43

AN1560 - APPLICATION NOTE

APPENDIX A. PSDSOFT EXPRESS PROJECT SUMMARY FILE, DK3200_1.SUM

PSDsoft Express Version 7.51

Summary of Design Assistant
PROJECT :DK3200 1 DATE : 07/08/2002
DEVICE :uPSD3234A TIME : 19:11:13

MCU/DSP : uPSD3xxx

Iniial setting for Program and Data Space:

Main PSD Hash memory will reside in this space at power-up: Data Space Only
Secondary PSD Flash memory will reside in this space at power-up: Program Space Only

Pin Definitions:

Pin Signal Pin

Name Name Type

pa’ LCD_d7 Peripheral /O mode
pa6 LCD_d6 Peripheral /O mode
pa5 LCD_d5 Peripheral /O mode
pad LCD d4 Peripheral /O mode
pa3 LCD_d3 Peripheral /O mode
pa2 LCD_d2 Peripheral /O mode
pal LCD_d1 Peripheral /O mode
pa0 LCD_do Peripheral /O mode
pb7 LCD e Extemal chip select - Active Hi
pb6 LCD_mw Combinatorial

pb5 LCD rs Combinatorial

pb4 term_count Combinatorial

pb3 al5 x Combinatorial

pb2 ald x Combinatorial

pbl al3 x Combinatorial

pb0 al2 x Combinatorial

pc6 tdo Dedicated JTAG - TDO
pc5 tdi Dedicated JTAG - TDI
pca _terr Dedicated JTAG - /TERR
pc3 tstat Dedicated JTAG - TSTAT
pcl tck Dedicated JTAG - TCK
pcO tms Dedicated JTAG - TMS
ale ale ALE output

pa.7 pa 7 GP I/0O mode

p43 PWMO PWMO Output

p31 USART1 Txd USART1 Txd
p30 USART1 Rxd USART1 Rxd
pl4 ADC_ChO ADC channel0 input
all all Address line

alo al0 Address line

a9 a9 Address line

as a8 Address line

ad7 ar Data/Address line

ad6 a6 Data/Address line

ad5 a5 Data/Address line

ad4 ad Data/Address line

24/43

J

AN1560 - APPLICATION NOTE

ad3 a3 Data/Address line
ad2 a2 Data/Address line
adl al Data/Address line
ado a0 Data/Address line
Reset In Reset In ResetIn
Vref VREF VREF input
rd wWr Bus control output
_psen _psen Bus control output
_wr e Bus control output
USB- USB_minus USB- bus
USB+ USB_plus USB+ bus
Xtall Xtall Xtall

Xtal2 Xtal2 Xtal2

User defined nodes:

Node Node

Name Type

down_count0 D-type register
down_countl D-type register
down_count2 D-type register
down_count3 D-type register
init_count0 D-type register
init_countl D-type register
init_count2 D-type register
init_count3 D-type register

Page Regjister settings:

par0 is used for paging
parl is used for paging
par2 is used for paging
pgr3 is not used
par4 is not used
par5 is not used
par6 is not used
par7 is not used

rs0 = ((address >="h2000) & (address <="*h3FFF));

csiop = ((address >="h0200) & (address <= "h02FF));

fs0 = ((page == 0) & (address >="h8000) & (address <="hFFFF));
fs1 = ((page == 1) & (address >="h8000) & (address <= hFFFF));
52 = ((page == 2) & (address >="h8000) & (address <="hFFFF));
153 = ((page == 3) & (address >="h8000) & (address <="hFFFF));
fs4 = ((page == 4) & (address >="h8000) & (address <="hFFFF));
fs5 = ((page == 5) & (address >="h8000) & (address <="hFFFF));
fs6 = ((page == 6) & (address >="h8000) & (address <="hFFFF));
57 = ((page == 7) & (address >="h8000) & (address <="hFFFF));
csboot0 = ((address >=*h0000) & (address <="h1FFF));

cshootl = ((address >=*h2000) & (address <="h3FFF));

cshoot2 = ((address >=*h4000) & (address <="h5FFF));

cshoot3 = ((address >=*6000) & (address <= h7FFF));

psel0 = ((address >="h0300) & (address <="h03FF));

‘y_l 25/43

AN1560 - APPLICATION NOTE

LCD_e =((address >="h0300) & (address <= *03FF) & (!_rd))
((address >="0300) & (address <="h03FF) & (I_wr));
LCD_rw=a0;
LCD_rw.oe =Vcg;
LCD rs=ali,
LCD rs.oe=Vcg;
al5 x=al5;
al5 x.0e=Vcc;
al4d x=al4,
al4 x.0e =Vcc,
al3 x=al3;
al3 x.0e =Vcg;
al2 x=alz;
al2 x.oe=Vcg;
down_countO.ck = ale;
down_countO.re=! reset;
down_count0.pr = Gnd;
down_countl.ck =ale;
down_countl.re=! reset,
down_countl.pr=Gnd;
down_count2.ck = ale;
down_count2re=! reset,
down_count2.pr = Gnd;
down_count3.ck =ale;
down_count3.re=! reset,
down_count3.pr=Gnd;
init_count0.ck = Gnd;
init_countO.re =! reset;
init_countO.pr=Gnd ;
init_countl.ck = Gnd;
init_countl.re =! reset;
init_countL.pr = Gnd;
init_count2.ck = Gnd;
init_count2.re =! reset;
init_count2.pr = Gnd;
init_count3.ck = Gnd;
init_count3.re =! reset;
init_count3.pr = Gnd;

26/43

J

AN1560 - APPLICATION NOTE

APPENDIX B. PSDSOFT EXPRESS ABEL HDL FILE DK3200_1.ABL

module DK3200_1

LCD_d7 PIN 21; "Reserved for Peripheral I/O mode
LCD_d6 PIN 22; "Reserved for Peripheral I/O mode
LCD_d5 PIN 24; "Reserved for Peripheral I/O mode
LCD_d4 PIN 26; "Reserved for Peripheral I/O mode
LCD_d3 PIN 28; "Reserved for Peripheral /O mode
LCD_d2 PIN 32; "Reserved for Peripheral /O mode
LCD_d1 PIN 34; "Reserved for Peripheral I/O mode
LCD_dOPIN 35; "Reserved for Peripheral I/O mode
LCD_e PIN 66;

LCD_rwPIN67;

LCD rsPIN72;

term_count PIN 73;

al5 xPIN 74;

ald xPIN 76;

al3 xPIN78S;

al2 x PIN 80;

tdo PIN 6; "TDO

tdi PIN 7;"TDI

_ter PIN9; "/TERR

tstat PIN 14; "TSTAT

tck PIN 16; "TCK

tms PIN 20; "TMS

ale PIN 4; "ALE output

p4_7PIN 18;"GP I/O

PWMO PIN 27; "PWMO Output

USART1_Txd PIN 77;"USART1 Txd
USART1_Rxd PIN 75; "USART1 Rxd

ADC_Ch0 PIN 59; "ADC channelO input

all PIN 57;"Address line

al0 PIN 55; "Address line

a9 PIN 53; "Address line

a8 PIN 51, "Address line

a7 PIN 47; "Data/address bus line

a6 PIN 45; "Data/address bus line

ab PIN 43; "Data/address bus line

a4 PIN 41, "Data/address bus line

a3 PIN 39; "Data/address bus line

a2 PIN 38; "Data/address bus line

al PIN 37; "Data/address bus line

a0 PIN 36; "Data/address bus line

Reset_In PIN 68;

VREF PIN 70; "VREF input

_wrPIN 62,

_psen PIN63;

_rd PIN 65;

USB_minus PIN 8; "USB- bus

USB_plus PIN 10; "USB+ bus

Xtall PIN 48; "Xtall

Xtal2 PIN 49; "Xtal2

psel0 node;

rsO node;

csiop node;

fs0 node;

fs1 node;

52 node;

fs3 node;

‘y_l 27/43

AN1560 - APPLICATION NOTE

fs4 node;

fs5 node;

fs6 node;

fs7 node;

csbootO node;

csbootl node;

csboot2 node;

csboot3 node;

_reset node 543;

al2node 512;

al3node 513;

al4 node 514;

al5 node 515;

par2..pgr0 node;

down_count0 NODE istype 'reg_D’;
down_countl NODE istype 'reg_D’;
down_count2 NODE istype 'reg_D’;
down_count3 NODE istype 'reg_D’;
init_countO NODE istype 'reg_D’;
init_countl NODE istype 'reg_D;
init_count2 NODE istype 'reg_D’;
init_count3 NODE istype 'reg_D;

X=X,

address =[al5..a0];
page = [pgr2..pgra;
Vcec=1,;

Gnd=0;

1/ Begin user presenved declarations (not affected by iterations of DA usage)

WSIPSD PROPERTY 'DataBus_OMC D[7:4]:down_count]3:0] MCELLAB;,
/I This statement forces the alignment
/I of down_count bits [3..0] to the MCU data bus bit positions
[7.4].
NfthisWSIPSD PROPERTY statementwas not present, then PSDsoft
/lwouldpickrandomMCUbitpositions. The WSIPSDPROPERTYisneeded
Nl only ifthe MCU will read orwrite to MicroCellsand only ifa
Ilparticular MCU data bus posttion is required by the designer.

WSIPSD PROPERTY 'DataBus_ OMC D[3:0]:init_count[3:0] MCELLAB',
Il This statement forces the alignment
Jlofinit_countbits[3..0]tothe MCUdatabushitpositions|[3..0].

DCOUNT = [down_count3..down_countQ]; / 4-bit down counter
INIT =[init_count3..init_countQ];/ 4-bit initial count from MCU
/NIT=[0,1,0,0];

/I End user preserved declarations (not affected by iterations of DA usage)

equations

rs0 = ((address >="h2000) & (address <="h3FFF));

csiop = ((address >="h0200) & (address <= "h02FF));

fs0 = ((page == 0) & (address >="h8000) & (address <="hFFFF));
fs1 = ((page == 1) & (address >="h8000) & (address <="hFFFF));

28/43

J

AN1560 - APPLICATION NOTE

52 = ((page == 2) & (address >="h8000) & (address <="hFFFF));
153 = ((page == 3) & (address >="h8000) & (address <= hFFFF));
fs4 = ((page == 4) & (address >="h8000) & (address <="hFFFF));
fs5 = ((page == 5) & (address >="h8000) & (address <= hFFFF));
fs6 = ((page == 6) & (address >="h8000) & (address <= hFFFF));
57 = ((page == 7) & (address >="h8000) & (address <="hFFFF));
csboot0 = ((address >=~h0000) & (address <="h1FFF));
cshootl = ((address >="h2000) & (address <="h3FFF));
cshoot2 = ((address >="h4000) & (address <="h5FFF));
csboot3 = ((address >=*h6000) & (address <="7FFF));
psel0 = ((address >="h0300) & (address <= *03FF));
LCD_e =((address >="h0300) & (address <= *03FF) & (!_rd))
((address >="0300) & (address <="h03FF) & (I_wr));
LCD_rw=a0;
LCD_rw.oe =Vcg;
LCD rs=ali,
LCD rs.oe=Vcg;
al5 x=al5;
al5 x.0e =Vcc;
al4d x=al4,
al4 x.0e =Vcc;
al3 x=al3;
al3 x.0e =Vcg;
al2 x=alz;
al2 x.oe=Vcg;
down_countO.ck = ale;
down_countO.re=! reset;
down_count0.pr = Gnd;
down_countl.ck =ale;
down_countl.re=! reset,
down_countl.pr=Gnd;
down_count2.ck = ale;
down_count2re=! reset,
down_count2.pr = Gnd;
down_count3.ck =ale;
down_count3.re=! reset,
down_count3.pr=Gnd;
init_count0.ck = Gnd;
init_countO.re =! reset;
init_countO.pr=Gnd ;
init_countl.ck = Gnd;
init_countl.re=! reset;
init_countL.pr = Gnd;
init_count2.ck = Gnd;
init_count2.re =! reset;
init_count2.pr = Gnd;
init_count3.ck = Gnd;
init_count3.re =! reset;
init_count3.pr = Gnd;

1 Begin user presenved equations (not affected by iterations of DA usage)

term_count=(DCOUNT ==0); // term_count true when count reaches zero

when term_count then DCOUNT := INIT; // automatically reload counter with initial
Il value after a count of zero is reached

‘y_l 29/43

AN1560 - APPLICATION NOTE

else DCOUNT :=DCOUNT - 1; Il specify down count action

I End user preserved equations (not affected by iterations of DA usage)

end DK3200 1

30/43

J

AN1560 - APPLICATION NOTE

APPENDIX C. PSDSOFT EXPRESS FITTER REPORT DK3200_1.FRP

PSDsoft Express Version 7.51

Output of PSD Fitter

PROJECT :DK3200 1
DEVICE :uPSD3234A
FIT OPTION : Keep Current

DATE : 07/08/2002
TIME : 17:55:01

DESCRIPTION: Example design for uPSD3234A in Application Note AN1560.
Simple memory map with 32K secondary Flash memory in code space, and
256K main Flash memory paged in data space. Down-Counter buitt in

PLD.

=== Pin Layout for U (80-Pin TQFP) Package Type ===

I
[1]pd2
|2]p3_3
13]pd1
ale [4]1pd0
151 pc7
tdo, TDO |6] pc6/TDO
tdli, TDI |7] pc5/TDI
USB_minus [8]USBm
_terr, TERR [9] pc4/TERR
USB_plus [10] USBp
[11]N/C
[12]vCC
[13] GND
tstat, TSTAT [14] pc3TSTAT
[15] pc2
tck, TCK [16] pc/TCK
[17]N/C
p4_7[18]p4_7
191 p4_6
tms, TMS |20] pcO/TMS
|21]
|22] pa6
23] p4_5
|24] pa5
[25]p4_4
[26] pad
PWMO |27]p4_3
[28] pa3
[29] GND
|30] p4_2
31 p4_1
|32] pa2
I33] p4_0
|34] pal
|35] pa0
[36] adio0
[37] adiol
|38] adio2
[39] adio3
|40] p3_4
I

I
adio4 [41] Address Bus Ad/Data Port D4, a4
p3_5[42|
adio5 [43| Address Bus A5/Data Port D5, a5
p3_6[44]
adio6 [45| Address Bus A6/Data Port D6, a6
p3_7[46]|
adio7 [47] Address Bus A7/Data Port D7, a7
Xtall [48| Xtall
Xtal2 [49] Xtal2
VCC [50|
adio8 [51| Address Bus A8, a8
pl_0[52|
adio9 [53| Address Bus A9, a9
pl_1[54|
adiol10 [55| Address Bus A10, a10
pL_2[56|
adioll [57| Address Bus A11, a1l
pl_3[58|
pl 4[59]ADC_ChO
pl 5[60| LCD_d7 ,Peripheral /O Mode
pl 6[61] LCD_d6 ,Peripheral /O Mode
cntll [62] _wr
cntl2 [63] _psen, LCD_d5 ,Peripheral I/O Mode
pL_7 [64]
cnti0 [65] _rd, LCD_d4 ,Peripheral I/O Mode
pb7[66] LCD_e
pb6 [67| LCD_rw, LCD_d3 ,Peripheral /O Mode
Reset In[68| Reset_In
GND [69]
Vref [70] VREF
N/C [71| LCD_d2 ,Peripheral /O Mode
pb5[72| LCD_rs
pb4 [73| term_count, LCD_d1 ,Peripheral /O Mode
pb3[74]|al5 x, LCD_dO ,Peripheral I/O Mode
p3_0[75] USART1_Rxd, a0, Address Bus AQ/Data Port DO
pb2[76]|al4d x, al, Address Bus Al/Data Port D1
p3_1[77|USARTL_Txd, a2, Address Bus A2/Data Port D2
pbl[78| al3_x, a3, Address Bus A3/Data Port D3
p3_2[79|
pb0[80] al2_x
I

J

31/43

AN1560 - APPLICATION NOTE

=== Global Configuration ===

Data Bus : 8-Bit

Address/Data Mode : Multiplexed
ALE/AS Signal : Active High
Control Signals :MR, IRD, /PSEN

Main PSD Flash memory will reside in this space at power-up : Data space
Secondary PSD Flash memory will reside in this space at power-up : Program space
Enable Chip-Select Input(/CSI)

Standby Voltage Input (PC2) : OFF
Standby-on Indicator (PC4) : OFF
RDY/Busy function (PC3) :OFF
Load Micro-Cell on :edge
Security Protection : OFF

== DataBus_IMC access information ==—

CSIOP
Location Address Offset Register Name Signals

=====Resource Usage Summary =—==
Total Product Terms Used: 71

Device Resources used/ total

Port A: (pins 35 34 32 28 26 24 22 21)

/O Pins: 8 /8
GP /O or Address Out : 0
Peripheral /O . 8
Logic Inputs 0
Address Latch Inputs .0

PT Dependent Latch Inputs : 0
PT Dependent Register Inputs: 0
Combinatorial Outputs : 0
Registered Outputs .0
Other Information
Microcells . 81/8
Micro-Cells AB :
Buried Microcells . 8
Output Microcells .0
Product Terms :15/24
Control Product Terms : 24/ 34

Port B: (pins 80 78 76 74 73 72 67 66)

/O Pins: 8 /8
GP /O or Address Out : 0
Logic Inputs 0
Address Latch Inputs .0

PT Dependent Latch Inputs : 0
PT Dependent Register Inputs: 0
Combinatorial Outputs 8
Registered Outputs .0
Other Information
Microcells . 81/8
Micro-Cells AB :
Buried Microcells .0

32/43

J

AN1560 - APPLICATION NOTE

Output Microcells 0

Micro-Cells BC :

Buried Microcells 0

Output Microcells 8
Product Terms 9 /32

Control ProductTerms. : 8134

Port C: (pins 20 16 151497 6 5)

/O Pins : 6/8
GPlOorAddressOut : O
Logic Inputs .0
Address Latch Inputs .0

PT Dependent Latch Inputs : 0
PT Dependent Register Inputs: 0
JTAG signals . 6
Standby Voltage Input : 0
Rdy/Bsy signal .0
Standby On Indicator .0
Combinatorial Outputs : 0
Registered Outputs .0
Other Information

Microcells : 81/8
Micro-Cells BC :

Buried Microcells : 8
Output Microcells .0
Product Terms 1 9/32
Control ProductTerms : 0 / 34

PortD: (pins 43 1)

/O Pins: 1/3
GPI/OorAddressOut : O
Logic Inputs .0
Chip-Select Input -0
Clock Input .0
Control Signal Input -

FastDecoding Outputs : 0
Other Information

Product Terms :0/3

Control ProductTerms : 0 / 3

=== OMC Resource Assighment ==—=
Resources PT User
Used Allocation Name
Micro-Cell AB :
Micro-Cells0 - init_count0 => Regjister
Micro-Cells1 - init_countl => Regjister
Micro-Cells2 - init_count2 => Regjister
Micro-Cells3 - init_count3 => Regjister
Micro-Cells4 - down_count0 => Register
Micro-Cells5 - down_countl => Register
Micro-Cells6 - down_count2 => Register
Micro-Cells7 - down_count3 => Register
Micro-Cell BC :
Micro-Cells0 - al2_x (mcellbcO) => Combinatorial
Micro-Cells1 - al3 x(mcellbcl) => Combinatorial

/574

33/43

AN1560 - APPLICATION NOTE

Micro-Cells2 - al4 x (mcellbc2) => Combinatorial

Micro-Cells3 - al5 x (mcellbc3) => Combinatorial

Micro-Cells4 - term_count (mcellbc4) =>Combinatorial

Micro-Cells5 - LCD_rs (mcellbc5) => Combinatorial

Micro-Cells6 - LCD_rw (mcellbc6) => Combinatorial

Micro-Cells7 - LCD_e (mcellbc7) => Combinatorial
External Chip Select:

o Equaﬁons o

DPLD EQUATIONS :

50 = pdn & !pgr2 & 'pgrl & pgr0 & als;

fs1=!pdn & !pgr2 & 'pgrl & pgro & als;

52 = Ipdn & !pgr2 & pgrl & 'pgro & al5;

53 =Ipdn & !pgr2 & pgrl & pgr0 & al5;

fs4 =pdn & pgr2 & 'pgrl & 'pgro & als;

55 =Ipdn & pgr2 & 'pgrl & pgr0 & al5;

fs6 = Ipdn & pgr2 & pgrl & !pgr0 & al5;

57 = pdn & pgr2 & pgrl & pgr0 & al5;

csboot0 =!pdn & lal5 & 'al4 & !al3;

csbootl =!pdn & 'al5 & 'al4 & al3;

cshoot2 =Ipdn & lal5 & al4 & lal3;

csboot3 =!pdn & lals & ald & al3;

csiop=Ipdn&lal5 & lal4 & 'al3&1al2 & 'all & 'al0 & a9 & 'a8;
rsO=!pdn&!al5 & 'al4 & al3;

psel0=!pdn&'al5 & lal4 & 'al3&!al2 & lall & !al0 & a9 & a8;

PORTA EQUATIONS:

init_count0.D :=0;
init_count0.PR =0;
init_count0.RE =!_reset;
init_count0.C=0;

init_countl.D :=0;
init_countl.PR =0;
init_countl.RE =!_reset;
init_countl.C=0;

init_count2.D :=0;
init_count2.PR =0;
init_count2.RE =!_reset;
init_count2.C=0;

init_count3.D :=0;
init_count3.PR =0;
init_count3.RE =!_reset;
init_count3.C=0;

down_count0.D := (!down_count0.Q & 'term_count.PIN)
(init_countO & term_count.PIN);

down_count0.PR =0;

down_countO.RE =! reset;

down_count0.C = ale;

down_count1.D := (down_countl.Q & down_count0.Q & 'term_count.PIN)
(\down_count1.Q & !down_count0.Q & 'term_count.PIN)

34/43

J

AN1560 - APPLICATION NOTE

(init_count1 & term_count.PIN);
down_countl.PR =0;
down_countl.RE =! reset;
down_countl.C =ale;

down_count2.T := (Idown_count1.Q & !down_count0.Q & lterm_count.PIN)
(\down_count2.Q & init_count2 & term_count.PIN)
(down_count2.Q & linit_count2 & term_count.PIN);

down_count2.PR =0;

down_count2.RE =! reset;

down_count2.C = ale;

down_count3.T := (Idown_count3.Q & init_count3 & term_count.PIN)
(down_count3.Q & linit_count3 & term_count.PIN)
(\down_count2.Q & !down_count1.Q & !down_count0.Q & 'term_count.PIN);
down_count3.PR =0;
down_count3.RE =! reset;
down_count3.C =ale;

PORTB EQUATIONS:

al?2 x=alz;
al2 xOE=1,

al3 x=al3;
al3 xOE=1,

ald x=al4,
al4 xOE=1,

al5 x=al5;
al5 xOE=1,

term_count =!down_count3.Q & !down_count2.Q & !down_count1.Q & !down_count0.Q;
term_countOE =1,
term_countLE =1;

LCD rs=al,
LCD rsOE=1,

LCD_mw=a0;
LCD w.OE=1;

LCD e=(rd&lal5&!al4 & 1a13& 1a12 & lall & 'al0 & a9 & aB)
#(Lwr&'al5&'al4 & 'al3&!al? &!all & 'al0 & a9 & a8);
LCD e OE=1,

PORTC EQUATIONS :

PORTD EQUATIONS :

— End —

J

35/43

AN1560 - APPLICATION NOTE

APPENDIX D. DK3200 BOARD LAYOUT

Figure 21. DK3200 BOARD LAYOUT

©

EEEE
] 54
o L
EEZZEEEEEREEM & CEI L
L= g2 gz sl URTE = UARTE =
T a8 o SZRF B E3
8 #g ¥ VOGN
= [RINN
R — = R i
8 i3 mz | =m 1
—) n A
i e
38 w2 L
02 o 0“
[
Zoen -
= o
=2 e &7 ra0 =
— DK3200 REY. 0.0 = 7 OFF
s/N I =
—1 = —
I J T L
6 — g;
po — U8
st =
LED ONE FAO = E 9
LED Two i:1) DSt — — &
SWTCH (WE PaZ
SWTCH TWD M) = e
oo =
o]z = =y
i SEEEB N 23N = &
Elnzsn I
= FLASH LINK q W
BB " 1 2 g ,@H
= =
3 £ LED ONE LED THO z
SWITCH ONE SWITCH TWO

@ TOP SIDE SILKSCREEN

J

36/43

AN1560 - APPLICATION NOTE

E] T G T 5 T) T v
FLI S CE'E 2002 "0 SNt Aepuony £
{ooa} Ll = 2X8T ¥3AVaAH
Jsquiny wewnoog | azig B " H > .
pIe0g [2A3 002EXA 2o ==
sl NOLLNGHSNA MS
o———+
k3
lo"gloay IN
1ad)) m
T wr o =
EY
vezeasdn
n
ot
0" 2lad 2 2 2 ey
pict i o 5 S Sl
o 7] sea 13534 gy > EEEN
vad
\—E zad
<8 1 aq 2ad > cad
R L2 e
08 08
— o L £00vI'Td | L % TINI
N ov. o ' My NIRa
e | v 20av19'1d | s iy > 0dd
Iz 5] eva 100v/5'Td
£V, L 09
2v. 2
—] v 00avIy'Td e o
V. 55| O
10x/2 Td | > Taxy
go] £ Tdmaxs
axuioed > axy
axs, TE/aXL N -
-aasn > asasn
3107021 L£d10S +a"asn aasn
V1va O o] osavasi o
viva~oaq 0'vd/vasa 10d 10d
L NASA 50d _ar
v0d | e
Lvdiymd €2d [o7 1viSL
9'va/ENMd 2od 57 wa A
12d 51 oL
09d |, SIL
1 £va/0NMd
ONMd —
“Na3sd £o] CIBLONISS s zouL
EN i 0TdZIND 2IND
M, 4 I T
ay 4 SEdITL |5 0L
TaINI
TToaav OLved fp LN
TINVEEd -
[oa—— - T HODOSLXIND
5av >
Sav F4
sav -
TIvIX 1o
£V v € < 30
zav - - oot 8
T—ge 0odioav g] EEITY _
N e - 197NdO Y n v
Jlay T ™ T v
~ . O ==
T T 1705
b2} T R
1 0 &) € =
2 ™
10
9
T00A T00A T 00A
E] T G T 5 T E T v

Figure 22. DK3200 SCHEMATICS (1)

APPENDIX E. DK3200 SCHEMATICS

37/43

AlO7078

AN1560 - APPLICATION NOTE

Figure 23. DK3200 SCHEMATICS (2)

AI07079

T T T 5 T T v
2002 TT SURT RepSanT R
Pog) | @ NOLLNGHSNA MS =
soquiny wawnooq | oz T
suomauL0D Joreinw3 =
ol
NOLLNGHSNA MS
2xy ¥3avaH ol&l
—ds B
- EN—] s
v €
z T
Tar
Y
v
2XET ¥3QVIH ZXET ¥3QVIH
0 s 9 s
v e ve &
@ 1 z 12
0z 6T - oL 0z 61 sav
T 1ax.. st 1 0907 TT8aav zav 8T L1 Tav
Tax o1 o1 oTyaay oav, o1 ST _ovd
20U v €t 64aav vd vl viva~0aa
ZIND a T 840av 2vd a T 1270aa
- o 6 ONAS™0aa o 6
%1070, g L Lav evd 8 L
1002l 9 s 9av vd 9 s
V1va e v € sav Svd v €
T z T vav 9vd z T
ar Far v
10N
0y
[ogloav
oz staaay 2XET ¥3QVIH =
sz yraaay P ZXET ¥3QVIH
vZ £THaQY x—dre e 9 sz
£z Zraaay dzz e ve &
oad 0z 61 OuINI z 12
SSAAY HOHUOLYING g 8T 4T axi SALY 0z 61 p—rerd
zad 91 o1 axy — o 1 p_md B
€ad voooEr vad 0. yy— 9T ST vEA
sad a1 VIS vl
or 6 ——dea Tphb—x _
1353y g L 9ad a’asn o 6 3L
18d 9 s _ "oy “aasn 8 L 1aL
- m—d ¥ € N3Sd oay; 9 S 12d
TNy OOV 4 H — o9 M B ol
T THINI z T zad
ar
To0n
T T T 5 E T v

38/43

AN1560 - APPLICATION NOTE

Figure 24. DK3200 SCHEMATICS (3)

T

une 10, 2002

R4T 350

100

RI6

3 o
~ £ 9w x o &
5 hw =0 6 4
P2 EREE

ALE
PBO

M A M X

S
5 8 L O

0
PB[7..0]

PA[7..0]

Al07080

J

39/43

AN1560 - APPLICATION NOTE

Figure 25. DK3200 SCHEMATICS (4)

3 T G T 5 T T v
S — P A L o e
v a
o Joquiny wewnaoq | oz
STva3Ed
ol
Toy— - =
T
SIN =
= TEd
2
Tzeesy <
440 30804
ceesy —zd anvant 1
. 340 30404 N
g (=]
o—— —gr]nosu NIgy AN
N[Taxd
L —gr Lno vy NIv -
o—5—x =
o
lﬂ\u — - tno ey Y FINA0K 027 lo-2lad
= >z 1no sey)
gr| L0 Ned be———rTaxg 2o s
o0t
224
s 1oy VY| S (02ivd
a .
] — .
- sa) T
07eezsy s—rd tnoer LTy - 1y o
zezsy oo v,
% 2V
N . < 1alg 09e
= |8 Tv 10
5 ord Lozt vl — % TaxL 8 0a — o2 L e
© 10 ST
o7) 610
Ot __IN[ooxa Lot NITL axt G/ L SI LNIOd didL
¥ 3 BAEE— 1
[.
: 100 = 93UNNA
P =
T et
= - SBLSTON Y
)
oot . 2 Hd
8Ty Odd eNiLsy
e EE—1 o
—grd sy miisupe—4 -
—grdnoos
1am
TRy S— Y
x3 bt
TN Dz OHl
s | 1070z
D ——T LNOA 5 ¥OS fgr > v1va ozl
8
- Y [l
Mz
0 2y
¥10

Z700A

Al07081

40/43

AN1560 - APPLICATION NOTE

Figure 26. DK3200 SCHEMATICS (5)
B I

¥
o<
< |
12f
&
g
g
:
S o
S
-
g
4
5]
M T
= ol
.)
. 5
- O o 8o

vee

I
g
< <
38 28
8 23 < 8 i <
o8 58 s o8
22 32
»—fv\/\—“h »—fvv»—“\
T = 3 T = 3
5 3 5 3
& 3 < & 3 <
g g
ano] ano ————])
z z
o | z |2 o z |2
3 P] P
B | g B | g
g2 g2
E E
8 g
Sa 3
|
| 4
3 I 8 I
S S-
® o
o 8s . 8
g 28 A
VS
zm—y\/\/s—”—“\

+ c23
47

I
[

Nl
|40

MBRS140TR

D1

SW SPST

s

ai07073

J

41/43

AN1560 - APPLICATION NOTE

Table 1. Document Revision History

Date Rev. Description of Revision
29-Jul-2002 1.0 | Document written
Document updated: DK3200 replaces DK3000 development tool, Figures 1, 2, 3, 5, 16, 19, 20,
26-Aug-2002 | 1.1 23 and 24 modified, Screen captures enlarged, Figure 15 (in previous document) removed

together with related paragraph. Figure numbering shifted by 1 from Figure 15 on.
Details added to paging bit description.

42/43

J

AN1560 - APPLICATION NOTE

For current information on WPSD products, please consult our pages on the world wide web:
www.st.com/psm

If you have specific technical inquiries, questions, or suggestions concerning matters raised in this docu-
ment, please click on “Technical Support” on the www.st.com/psm web page.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is registered trademark of STMicroelectronics
All other names are the property of their respective owners

© 2002 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong -
India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
www.st.com

‘y_l 43/43

