
ESP32 Thing Plus Hookup Guide




Introduction
The SparkFun ESP32 Thing Plus enjoys all the amenities of the ESP32 Thing, but with a few added sparkles.
We've lengthened the board just a bit to accommodate a Qwiic connector for all your Qwiic breakout needs. We've
also moved a few pins around to make the board compatible with the Adafruit Huzzah32 – ESP32 Feather Board
such that you can use all of those lovely shields available out there! The ESP32 Thing plus also integrates a rich
set of peripherals, ranging from capacitive touch sensors, Hall sensors, SD card interface, Ethernet, high-speed
SPI, UART, I S and I C.2 2

SparkFun Thing Plus - ESP32 WROOM
 WRL-14689

Product Showcase: SparkFun ESP32 Thing PlusProduct Showcase: SparkFun ESP32 Thing PlusProduct Showcase: SparkFun ESP32 Thing Plus

https://www.sparkfun.com/
https://www.sparkfun.com/products/14689
https://www.sparkfun.com/qwiic
https://www.adafruit.com/category/814
https://www.sparkfun.com/products/14689
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14689
https://www.youtube.com/watch?v=nvpeqxgSIE0
https://www.youtube.com/channel/UCKPLvnWhN1Qo51IDDZsmq1g

Not Yet Implemented The Arduino board definitions for the ESP32 are still a work in progress. There are a
handful of peripherals and features that have yet to be implemented, including:
* Analog Input (`analogRead([pin])`)
* Analog Ouptut (`analogWrite([pin], [value])`)
* WiFi Server and WiFI UDP
* Real-Time Clock
* Touch-controller interface

These peripherals are available (if, also, still in their infancy) in the IoT Development Framework for the
ESP32. If your application requires analog input, RTC, or any of the features above, consider giving the ESP-
IDF a try!

Required Materials

Much of the ESP32 Thing Plus's functionality can be used by simply powering the board. To do so, you'll need a
Micro-B USB Cable. The ESP32 Thing Plus's USB interface can be used to both power and program the chip.
Once you're done programming the chip, a 5V Micro-B USB Wall Adapter can be used to power the board.

Wall Adapter Power Supply - 5V DC 2A (USB
Micro-B)
 TOL-12890

USB micro-B Cable - 6 Foot
 CAB-10215

https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf
https://www.sparkfun.com/products/10215
https://www.sparkfun.com/products/12890
https://www.sparkfun.com/products/12890
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/12890
https://www.sparkfun.com/products/10215
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/10215
https://www.sparkfun.com/products/11456
https://www.sparkfun.com/products/13244

⚡WARNING!
Make sure your power supply is 5V, NOT 5.1V. We have noticed a power spike in our 5.1V power supplies,
that can damage the IC. Long cables can also generate a large enough voltage spike to damage the IC. We
recommend keeping power supply cables shorter than 6 feet to minimize potential damage.

As an alternative power source, the ESP32 Thing Plus includes support for single-cell lithium-polymer (LiPo)
batteries, which plug into the board's white 2-pin JST connector. LiPos are perfect for projects on-the-go, or those
that just need a little extra umph. The board includes a LiPo charger -- the rechargeable batteries can be juiced
back up by plugging the Thing Plus into a 5V USB source.

Should you wish to make use of the board's qwiic functionality, you'll need a qwiic cable:

USB Wall Charger - 5V, 1A (Black)
 TOL-11456

USB Micro-B Cable - 6"
 CAB-13244

Lithium Ion Battery - 2Ah
 PRT-13855

Lithium Ion Battery - 1Ah
 PRT-13813

Lithium Ion Battery - 400mAh
 PRT-13851

Lithium Ion Battery - 850mAh
 PRT-13854

https://www.sparkfun.com/products/13831
https://www.sparkfun.com/search/results?term=lithium%20polymer&tab=products
https://www.sparkfun.com/products/11456
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13244
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13855
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13855
https://www.sparkfun.com/products/13813
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13813
https://www.sparkfun.com/products/13851
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13851
https://www.sparkfun.com/products/13854
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/13854

Tools

To take advantage of the ESP32 Thing Plus's 28 external pins, you will need a soldering iron, solder, and general
soldering accessories.

Qwiic Cable - 100mm
 PRT-14427

Qwiic Cable - 500mm
 PRT-14429

Qwiic Cable - 500mm

Qwiic Cable - 200mm
 PRT-14428

Qwiic Cable - 50mm
 PRT-14426

Break Away Headers - Straight
 PRT-00116

Solder Lead Free - 100-gram Spool
 TOL-09325

https://www.sparkfun.com/categories/49
https://www.sparkfun.com/products/14427
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14427
https://www.sparkfun.com/products/14429
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14429
https://www.sparkfun.com/products/14428
https://www.sparkfun.com/products/14428
https://www.sparkfun.com/products/14426
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14426
https://www.sparkfun.com/products/116
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/116
https://www.sparkfun.com/products/9325
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/9325

Suggested Reading

It may look intimidating, but the ESP32 Thing Plus -- especially when you take advantage of its Arduino
compatibility -- is a perfect IoT foundation for electronics users of all experience levels. There are, however, a few
concepts you should be familiar with before venturing further into this tutorial. If any of the concepts below sound
foreign to you, consider reading through that tutorial first:

Hardware Overview

Weller WLC100 Soldering Station
 TOL-14228

How to Solder: Through-Hole Soldering
This tutorial covers everything you need to know about
through-hole soldering.

Serial Communication
Asynchronous serial communication concepts: packets,
signal levels, baud rates, UARTs and more!

How to Power a Project
A tutorial to help figure out the power requirements of
your project.

What is an Arduino?
What is this 'Arduino' thing anyway?

https://www.sparkfun.com/products/14228
https://learn.sparkfun.com/static/bubbles/
https://www.sparkfun.com/products/14228
https://learn.sparkfun.com/tutorials/how-to-solder-through-hole-soldering
https://learn.sparkfun.com/tutorials/serial-communication
https://learn.sparkfun.com/tutorials/how-to-power-a-project
https://learn.sparkfun.com/tutorials/what-is-an-arduino

Espressif's ESP32 WROOM is a powerful, generic Wi-Fi+BT+BLE MCU module that targets a wide variety of
applications. At the core of this module is the ESP32-D0WDQ6 chip which is designed to be both scalable and
adaptive. It's laundry list of features include:

Xtensa® dual-core 32-bit LX6 microprocessor
Up to 240MHz clock frequency
16MB of flash storage
520kB internal SRAM
Integrated 802.11 BGN WiFi transceiver
Integrated dual-mode Bluetooth (classic and BLE)
2.3 to 3.6V operating range
21 GPIO
8-electrode capacitive touch support
Hardware accelerated encryption (AES, SHA2, ECC, RSA-4096)
2.5 µA deep sleep current

The ESP32 Thing Plus is designed around the ESP32-WROOM module with everything necessary to run and
program the microcontroller, plus a few extra goodies to take advantage of the chip's unique features.

Peripherals and I/O

The ESP32 Thing Plus features your standard fare of hardware peripherals including:

13 analog to digital converter (ADC) channels
3 UARTs (only two are configured by default in the Arduino IDE, one UART is used for bootloading/debug)
3 SPI (only one is configured by default in the Arduino IDE)
2 I C (only one is configured by default in the Arduino IDE)
2 I2S Audio
2 digital-to-analog converter (DAC) channels
16 PWM outputs

2

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/esp32-wroom-32_datasheet_en.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/Hardware_Overview_Highlight_1.jpg

And, thanks to the chip's pin multiplexing feature, those peripherals can be connected to just about any of the
broken out I/O pins. Than means you decide which pins are RX, TX, MISO, MOSI, SCLK, SDA, SCL, etc.

There are, however, a few hardware features -- namely the ADC and DAC -- which are asigned to static pins. The
graphical datasheet below helps demonstrate where you can find those peripherals (click to embiggen!).

Click the image for a closer look.

One I C, two of the UART interfaces, and one of the SPI interfaces can be assigned to any pin your project
requires.

 Input Only Pins: A2, A3, A4
Pins 34 (A2), 36 (A4), and 39 (A3) cannot be configured as outputs, but they can be used as either digital
inputs, analog inputs, or for other unique purposes. Also note that they do not have internal pull-up or pull-
down resistors, like the other I/O pins.

GPIO pins 36-39 are an integral part of the ultra low noise pre-amplifier for the ADC – they are wired up to
270pF capacitors, which help to configure the sampling time and noise of the pre-amp.

From the ESP32 Thing Schematic: GPIO 36-39 are tied together with caps. GPIO 36-39 as well as pins 34
and 35 are input only!

Powering the ESP32 Thing Plus

The two main power inputs to the ESP32 Thing Plus are USB and a single-cell lithium-polymer (LiPo battery. If
both USB and the LiPo are plugged into the board, the onboard charge controller will charge the LiPo battery at a
rate up to 500mA.

⚡ The ESP32's operating voltage range is 2.2 to 3.6V. Under normal operation the ESP32 Thing Plus will
power the chip at 3.3V. The I/O pins are not 5V-tolerant! If you interface the board with 5V (or higher)
components, you'll need to do some logic level shifting.

2



https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/esp32-thing-plus-grpahical-datasheet.png
https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/schematic-crop-34-39.png
https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/esp32-thing-schematic.pdf
https://learn.sparkfun.com/tutorials/bi-directional-logic-level-converter-hookup-guide

The 3.3V regulator on the ESP32 Thing Plus can reliably supply up to 600mA, which should be more than
enough overhead for most projects. The ESP32 can pull as much as 250mA during RF transmissions, but we've
generally measured it to consume around 150mA -- even while actively transmitting over WiFi. The output of the
regulator is also broken out to the sides of the board -- the pin labeled "3V3". This pin can be used to supply
external components.

In addition to USB and battery connectors, the VBAT, and VUSB pins are all broken out to the sides of the board.
These pins can be used as an alternative supply input to the Thing Plus. The maximum, allowable voltage input to
VUSB is 5.8V, and VBAT should not be connected to anything other than a LiPo battery. Alternatively, if you have
a regulated voltage source between 2.2V and 3.6V, the "3V3" line can be used to directly supply the ESP32 and
its peripherals.

Assembly Tips
The ESP32 Thing Plus ships without anything soldered into the header pins -- ensuring that you can mold the
board to best fit your project. To use the chip's pins you'll need to solder something to the I/O and power rail vias
broken out to either side of the board.

New to soldering? Check out our Through-Hole Soldering Tutorial for a quick introduction!

What you solder to the ESP32 Thing Plus's I/O pins is completely up to you. The header rows are breadboard-
compatible, so you may want to solder male headers in.

ESP32 Thing Plus with soldered male headers.

Then plug it into the breadboard, hanging the USB and LiPo connectors off the end, and start wiring!

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/Power_Pin_Highlight.jpg
https://learn.sparkfun.com/tutorials/how-to-solder---through-hole-soldering
https://www.sparkfun.com/products/116
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/SparkFun_Transparent_Graphical_OLED_Breakout__Qwiic__Hookup_Guide-01.jpg

Alternatively, female headers (you may need two separate strips to solder all the pins), right-angle headers, or
stranded wire are all good options, depending on your project's needs.

Software Setup

Note: This example assumes you are using the latest version of the Arduino IDE on your desktop. If this is
your first time using Arduino, please review our tutorial on installing the Arduino IDE.

Installation for the ESP32 Thing Plus is two-fold. Like the ESP32 Thing, you will want to install the board
definitions via the Arduino Boards manager. In addition, you will also need to download and install the CP2104
USB Driver.

Installing Board Definition

Espressif has added support for the Arduino Boards Manager that includes a slew of great built-in examples.
Instructions for installing via the board manager can be found at espressif's arduino-esp32 GitHub.

INSTALLATION INSTRUCTIONS USING ARDUINO IDE BOARDS MANAGER

For more information on installing boards via the Arduino Board Manager, check out the add-ons section of our
Installing Arduino IDE tutorial.

If you are familiar with installing boards via the Arduino IDE Boards Manager, the url to add is:

https://dl.espressif.com/dl/package_esp32_index.json

 Note: If you have previously installed the ESP32 Arduino Core, we strongly recommend removing the
associated folders before installing via the boards manager.

Installing Arduino IDE
MARCH 26, 2013
A step-by-step guide to installing and testing the Arduino software on Windows,
Mac, and Linux.



https://www.sparkfun.com/products/115
https://www.sparkfun.com/products/553
https://www.sparkfun.com/products/11375
https://learn.sparkfun.com/tutorials/installing-arduino-ide
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/boards_manager.md
https://github.com/espressif/arduino-esp32/blob/master/docs/arduino-ide/boards_manager.md
https://learn.sparkfun.com/tutorials/installing-arduino-ide#board-add-ons-with-arduino-board-manager
https://learn.sparkfun.com/tutorials/installing-arduino-ide

To remove previous arduino core installs for the esp32, start by finding your .../Arduino/hardware folder. This
can be located by looking at your Sketchbook location under File > Preferences.

Click to enlarge.

Go to this location in your finder and delete the esp32 folder.

Once you have deleted the esp32 folder, you can then install using the Arduino Boards Manager.

Selecting the Board Definition

Once installed, use the Adafruit ESP32 Feather board in the Arduino Board dropdown.

Selecting board definition from Tools drop down menu.

 Feeling adventurous?
If you are feeling strong or would like to have more control over your development environment, you can
install Espressif’s official ESP32 Arduino core. Installation is covered in our ESP32 Thing Hookup Guide.



https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/Preferences-hardwareFolderLocation.png
https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/esp32_folder.png
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/FeatherBoardArduino.png
https://learn.sparkfun.com/tutorials/esp32-thing-hookup-guide#installing-the-esp32-arduino-core

Installing the CP2104 USB Driver

You will also need to install the SiLabs CP2104 Driver, which can be found here: USB to UART Bridge VCP Driver

DOWNLOAD WINDOWS VCP DRIVER (ZIP)

DOWNLOAD MAC OSX VCP DRIVER (ZIP)

Note: If applicable, make sure you are using the proper driver files for your CPU architecture. This is usually
indicated by a folder or file name with "x86" for 32-bit processors or "x64" for 64-bit processors.

Arduino Example: Blink
With the ESP32 Arduino core installed, you're ready to begin programming. If you haven't already, plug the
ESP32 Thing Plus into your computer using a micro-B USB cable.

Once the board is plugged in (and drivers installed), it should be assigned a unique port identifier. On Windows
machines, this will be something like COM# , and on Macs or Linux computers it will come in the form of
/dev/tty.usbserial-XXXXXX .

Select the Board and Port

Make sure you have the Adafruit ESP32 Feather board definition selected under your Tools > Board menu.

Then select your ESP32 Thing Plus' serial port under the Tools > Port menu.

https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/CP210x_Universal_Windows_Driver.zip
https://www.silabs.com/documents/public/software/Mac_OSX_VCP_Driver.zip
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/SparkFun_Transparent_Graphical_OLED_Breakout__Qwiic__Hookup_Guide-02.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/FeatherBoardArduino.png

You can also select the Upload Speed: "921600" baud -- the fastest selectable rate -- will get the code loaded
onto your ESP32 the fastest, but may fail to upload once-in-a-while. (It's still way worth it for the speed increase!)

Loading Blink

To make sure your toolchain and board are properly set up, we'll upload the simplest of sketches -- Blink! The LED
attached to GPIO 13 is perfect for this test. Plus, with the ESP32 attached to your computer, this is a good time to
test out serial communication. Copy and paste the example sketch below into a fresh Arduino sketch:

int ledPin = 13;

void setup()
{
 pinMode(ledPin, OUTPUT);
 Serial.begin(115200);
}

void loop()
{
 Serial.println("Hello, world!");
 digitalWrite(ledPin, HIGH);
 delay(500);
 digitalWrite(ledPin, LOW);
 delay(500);
}

With everything setup correctly, upload the code! Once the code finishes transferring, open the serial monitor
and set the baud rate to 115200. You should see Hello, world! 's begin to fly by.

If the blue LED remains dimly lit, it's probably still sitting in the bootloader. After uploading a sketch, you may
need to tap the RST button to get your ESP32 Thing Plus to begin running the sketch.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/portSelect.png
https://learn.sparkfun.com/tutorials/terminal-basics

You may also notice that when the ESP32 boots up it prints out a long sequence of debug messages. These are
emitted every time the chip resets -- always at 115200 baud.

Arduino Example: WiFi
The ESP32 Arduino core includes a handful of WiFi examples, which demonstrate everything from scanning for
nearby networks to sending data to a client server. You can find the examples under the File > Examples > WiFi
menu.

Here's another example using the WiFi library, which demonstrates how to connect to a nearby WiFi network and
poll a remote domain (http://example.com/) as a client.

 Please note: Make sure you are connecting to the 2.4GHz band on your wireless router; the ESP32 is not
(yet) compatible with 5GHz signals.


https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/ResetOutput1.png
https://github.com/espressif/arduino-esp32/blob/master/libraries/WiFi/examples/WiFiScan/WiFiScan.ino
http://example.com/

#include <WiFi.h>

// WiFi network name and password:
const char * networkName = "YOUR_NETWORK_HERE";
const char * networkPswd = "YOUR_PASSWORD_HERE";

// Internet domain to request from:
const char * hostDomain = "example.com";
const int hostPort = 80;

const int BUTTON_PIN = 0;
const int LED_PIN = 5;

void setup()
{
 // Initilize hardware:
 Serial.begin(115200);
 pinMode(BUTTON_PIN, INPUT_PULLUP);
 pinMode(LED_PIN, OUTPUT);

 // Connect to the WiFi network (see function below loop)
 connectToWiFi(networkName, networkPswd);

 digitalWrite(LED_PIN, LOW); // LED off
 Serial.print("Press button 0 to connect to ");
 Serial.println(hostDomain);
}

void loop()
{
 if (digitalRead(BUTTON_PIN) == LOW)
 { // Check if button has been pressed
 while (digitalRead(BUTTON_PIN) == LOW)
 ; // Wait for button to be released

 digitalWrite(LED_PIN, HIGH); // Turn on LED
 requestURL(hostDomain, hostPort); // Connect to server
 digitalWrite(LED_PIN, LOW); // Turn off LED
 }
}

void connectToWiFi(const char * ssid, const char * pwd)
{
 int ledState = 0;

 printLine();
 Serial.println("Connecting to WiFi network: " + String(ssid));

 WiFi.begin(ssid, pwd);

 while (WiFi.status() != WL_CONNECTED)
 {
 // Blink LED while we're connecting:

 digitalWrite(LED_PIN, ledState);
 ledState = (ledState + 1) % 2; // Flip ledState
 delay(500);
 Serial.print(".");
 }

 Serial.println();
 Serial.println("WiFi connected!");
 Serial.print("IP address: ");
 Serial.println(WiFi.localIP());
}

void requestURL(const char * host, uint8_t port)
{
 printLine();
 Serial.println("Connecting to domain: " + String(host));

 // Use WiFiClient class to create TCP connections
 WiFiClient client;
 if (!client.connect(host, port))
 {
 Serial.println("connection failed");
 return;
 }
 Serial.println("Connected!");
 printLine();

 // This will send the request to the server
 client.print((String)"GET / HTTP/1.1\r\n" +
 "Host: " + String(host) + "\r\n" +
 "Connection: close\r\n\r\n");
 unsigned long timeout = millis();
 while (client.available() == 0)
 {
 if (millis() - timeout > 5000)
 {
 Serial.println(">>> Client Timeout !");
 client.stop();
 return;
 }
 }

 // Read all the lines of the reply from server and print them to Serial
 while (client.available())
 {
 String line = client.readStringUntil('\r');
 Serial.print(line);
 }

 Serial.println();
 Serial.println("closing connection");
 client.stop();
}

void printLine()
{
 Serial.println();
 for (int i=0; i<30; i++)
 Serial.print("-");
 Serial.println();
}

Make sure you fill in the networkName and networkPswd variables with the name (or SSID) and password of your
WiFi network! Once you've done that and uploaded the code, open your serial monitor.

After your ESP32 connects to the WiFi network, it will wait for you to press the "0" button. Tapping that will cause
the ESP32 to make an HTTP request to example.com. You should see a string of HTTP headers and HTML
similar to the screenshot above.

Arduino Example: ESP32 BLE
Both the board manager install and the ESP32 arduino core install come with Bluetooth examples that range from
serial to serial to acting as a simple BLE device to functioning as either a Bluetooth server or client. Here we will
briefly go over the BLE_write example that can be found in Files > Examples > ESP32 BLE Arduino. This
example allows you to write messages on your phone that can then be read in a serial monitor on your computer.

This example works with a BLE scanner on your phone. A good, basic app is the BLE Scanner for iPhone or
Android. Make sure to install the app to follow along with this example.

https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/wifi-example-serial.png
http://example.com/
https://itunes.apple.com/us/app/ble-scanner-4-0/id1221763603?mt=8
https://play.google.com/store/apps/details?id=com.macdom.ble.blescanner&hl=en_US

Compile and upload the following code, or if you wish, open the BLE_write example from the Files > Examples >
ESP32 BLE Arduino menu. Make sure you have ESP32 Dev Module as your board and the correct port has
been selected.

/*
 Based on Neil Kolban example for IDF: https://github.com/nkolban/esp32-snippets/blob/master/
cpp_utils/tests/BLE%20Tests/SampleWrite.cpp
 Ported to Arduino ESP32 by Evandro Copercini
*/

#include <BLEDevice.h>
#include <BLEUtils.h>
#include <BLEServer.h>

// See the following for generating UUIDs:
// https://www.uuidgenerator.net/

#define SERVICE_UUID "4fafc201-1fb5-459e-8fcc-c5c9c331914b"
#define CHARACTERISTIC_UUID "beb5483e-36e1-4688-b7f5-ea07361b26a8"

class MyCallbacks: public BLECharacteristicCallbacks {
 void onWrite(BLECharacteristic *pCharacteristic) {
 std::string value = pCharacteristic->getValue();

 if (value.length() > 0) {
 Serial.println("*********");
 Serial.print("New value: ");
 for (int i = 0; i < value.length(); i++)
 Serial.print(value[i]);

 Serial.println();
 Serial.println("*********");
 }
 }
};

void setup() {
 Serial.begin(115200);

 Serial.println("1- Download and install an BLE scanner app in your phone");
 Serial.println("2- Scan for BLE devices in the app");
 Serial.println("3- Connect to MyESP32");
 Serial.println("4- Go to CUSTOM CHARACTERISTIC in CUSTOM SERVICE and write something");
 Serial.println("5- See the magic =)");

 BLEDevice::init("MyESP32");
 BLEServer *pServer = BLEDevice::createServer();

 BLEService *pService = pServer->createService(SERVICE_UUID);

 BLECharacteristic *pCharacteristic = pService->createCharacteristic(
 CHARACTERISTIC_UUID,
 BLECharacteristic::PROPERTY_READ |
 BLECharacteristic::PROPERTY_WRITE
);

 pCharacteristic->setCallbacks(new MyCallbacks());

 pCharacteristic->setValue("Hello World");
 pService->start();

 BLEAdvertising *pAdvertising = pServer->getAdvertising();
 pAdvertising->start();
}

void loop() {
 // put your main code here, to run repeatedly:
 delay(2000);
}

Once you have uploaded your code, open a Serial Monitor set at 115200 baud so you can see the message that
we will write.

Then open your BLE Scanner app on your phone. You will see multiple options; scroll through these and connect
to MyESP32.

Now we need to drill down to the communication capability we want. Once you are connected to MyESP32, you
will be taken to the following page. Select CUSTOM SERVICE.

https://learn.sparkfun.com/tutorials/terminal-basics/arduino-serial-monitor-windows-mac-linux
https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/ESP32_Bluetooth_Initialize_Serial_Monitor.jpg
https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/1_connectToMyESP32.PNG

The next page will show you communications and options for doing so. Select Write,Read.

https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/2_CustomService.PNG

Finally, we can choose the option that allows us to write a message. Select Write Value.

https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/3_Write_Read.PNG

Now we can write our message. Make sure you choose Text, write yourself a message, and click the Write button.

https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/4_Write.PNG

So now what? Go have a look at your serial monitor. You should see "New value:" with your message.

This is just a quick walk through of one of the provided examples. We recommend looking through the rest of the
provided samples and playing with the code to see what may work for your application. For more information on
Bluetooth technology and how it works, check out our Bluetooth Basics Tutorial.

Resources and Going Further
For more resources related to the ESP32 Thing Plus, check out the links listed here:

Schematic (PDF)
Eagle Files (ZIP)
Datasheets

Graphical Datasheet (PDF)
ESP32-Wroom 32 (PDF)
ESP32 (PDF)

CP2104 USB Drivers

https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/5_Message.PNG
https://cdn.sparkfun.com/assets/learn_tutorials/5/0/7/6_ReceivedMessage.jpg
https://learn.sparkfun.com/tutorials/bluetooth-basics
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/ESP32_Thing_Plus_Schematic.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/ESP32ThingPlus.zip
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/ESP32ThingPlus_GraphicalDatasheet.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/esp32-wroom-32_datasheet_en.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/esp32_datasheet_en.pdf
https://www.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

Windows (ZIP)
Mac OSX (ZIP)

ESP32 Thing Plus GitHub Repo
SFE Product Showcase

Espressif has some great resources built around the ESP32:

ESP32.com -- Great forums, where you can discuss ESP32 news, get help, or show off your project.
Espressif ESP32 Resource Page -- A great source for the latest datasheets, reference manuals, and
software tools.
Espressif GitHub Repositories -- Espressif is efforting to be as open-source as possible. Among other
things, you'll find repositories for Arduino ESP32 support, SDK's, and even a proof-of-concept NES emulator
hosted on their GitHub page.
ESP-IDF -- IoT Development Framework -- If you want to take your development environment up a step
from Arduino, this should be your first step into ESP32 software development. Some notes on the IDF:

The IDF is well-documented. Check out the set up guides (for Windows, Mac or Linux) for help
getting your environment set up. For help with the API's and data structures, check out esp32.info.
There are a handful of example applications, including a BLE Advertising example, which works as
a proof-of-concept for the ESP32's Bluetooth support.
Use the ESP-IDF project template, once you're ready to start creating applications of your own.

For more ESP32 related tutorials, check out the following.

If you need some project inspiration, check out some of these IoT-focused projects and get making!

Using Artnet DMX and the ESP32 to Drive
Pixels
In this tutorial, we'll find out how to use Resolume
Arena, a popular video jockey software, to control
custom-made ArtNet DMX fixtures.

How to Load MicroPython on a Microcontroller
Board
This tutorial will show you how to load the MicroPython
interpreter onto a variety of development boards.

LuMini Ring Hookup Guide
The LuMini Rings (APA102-2020) are the highest
resolution LED rings available.

LuMini 8x8 Matrix Hookup Guide
The LuMini 8x8 Matrix are the highest resolution LED
matrix available.

https://cdn.sparkfun.com/assets/learn_tutorials/8/5/2/CP210x_Universal_Windows_Driver.zip
https://www.silabs.com/documents/public/software/Mac_OSX_VCP_Driver.zip
https://github.com/sparkfun/ESP32_Thing_Plus
https://youtu.be/nvpeqxgSIE0
http://esp32.com/
http://espressif.com/en/products/hardware/esp32/resources
https://github.com/espressif
https://github.com/espressif/arduino-esp32
https://github.com/espressif/esp-idf
https://github.com/espressif/esp32-nesemu
https://github.com/espressif/esp-idf
https://github.com/espressif/esp-idf#setting-up-esp-idf
http://esp-idf.readthedocs.io/en/latest/
https://github.com/espressif/esp-idf/tree/master/examples
https://github.com/espressif/esp-idf-template
https://learn.sparkfun.com/tutorials/using-artnet-dmx-and-the-esp32-to-drive-pixels
https://learn.sparkfun.com/tutorials/how-to-load-micropython-on-a-microcontroller-board
https://learn.sparkfun.com/tutorials/lumini-ring-hookup-guide
https://learn.sparkfun.com/tutorials/lumini-8x8-matrix-hookup-guide

SparkFun Blocks for Intel® Edison - 9 Degrees
of Freedom Block
A quick overview of the features of the 9 Degrees of
Freedom Block.

SparkFun Blocks for Intel® Edison - ADC V20
A quick overview of the features of the ADC Block.

SparkFun LoRa Gateway 1-Channel Hookup
Guide
How to setup and use the LoRa Gateway 1-Channel in
Arduino.

Introduction to MQTT
An introduction to MQTT, one of the main
communication protocols used with the Internet of
Things (IoT).

https://learn.sparkfun.com/tutorials/sparkfun-blocks-for-intel-edison---9-degrees-of-freedom-block-
https://learn.sparkfun.com/tutorials/sparkfun-blocks-for-intel-edison---adc-v20
https://learn.sparkfun.com/tutorials/sparkfun-lora-gateway-1-channel-hookup-guide
https://learn.sparkfun.com/tutorials/introduction-to-mqtt

