

Applications

- Smart Meters
- In-home appliances
- Smart thermostats

Features

- Integrated PA with 30 dBm output power
- Integrated LNA with programmable bypass
- Integrated antenna switching with Tx and Rx diversity function
- Low FEM noise figure of 2 dB typical
- Single ended 50 Ω Tx/Rx RF interface
- Fast turn-ON / turn-OFF time <1 µsec
- 2.0 V 4.8 V supply operation
- Sleep mode current <1 µA
- 4 x 4 x 0.9 mm 24 pin QFN
- Pb-free, RoHS compliant and Halogen free

Ordering Information

Part No.	Package	Remark
SE2435L-S	24 pin QFN	Samples
SE2435L-R	24 pin QFN	Tape & Reel
SE2435L-EK1	N/A	Evaluation kit

Functional Block Diagram

Product Description

The SE2435L is a high performance, highly integrated RF Front End Module designed for high power ISM band applications operating in the 860 – 930 MHz frequency band.

The SE2435L is designed for ease of use and maximum flexibility, with fully matched 50 Ω input and output, and digital controls compatible with 1.6 – 3.6 V CMOS levels.

The RF blocks operate over a wide supply voltage range from 2.0 to 4.8 V allowing the SE2435L to be used in battery powered applications over a wide spectrum of the battery discharge curve.

Figure 1: Functional Block Diagram

Pin Out Diagram

Figure 2: SE2435L Pinout

Pin Out Description

Pin No.	Name	Description
1	CSD	Shutdown control input
2	PA_IN	PA input (from Tx filter)
3	CPS	Power select control input
4	СТХ	Transmit enable control input
5	TX_FLT	Transmit signal (to Tx filter)
6	TR	Bi-directional RF signal to/from transceiver
7	ANT_SEL	Antenna select control input
8	GND	Ground
9	LNA_IN	LNA input (from Rx filter)
10	GND	Ground
11	RX_FLT	Rx signal from antennas (to Rx filter)
12	ANT2	Antenna port 2
13	GND	Ground
14	ANT1	Antenna port 1
15	GND	Ground
16	TX_IN	Tx signal to antennas (from OMN)

SE2435L 860 – 930 MHz High Power RF Front End Module Preliminary Datasheet

Pin No.	Name	Description
17	GND	Ground
18	GND	Ground
19	DNC	Do not connect
20	PA_OUT	PA output (to OMN)
21	VCC2	Positive power supply
22	DNC	Do not connect
23	VCC0	Positive power supply
24	VCC1	Positive power supply
Paddle	GND	Exposed die paddle; electrical and thermal ground; Connect to PCB ground

Absolute Maximum Ratings

These are stress ratings only. Exposure to stresses beyond these maximum ratings may cause permanent damage to, or affect the reliability of the device. Avoid operating the device outside the recommended operating conditions defined below.

Symbol	Definition	Note	Min.	Max.	Unit
VCC	Supply Voltage – No RF	1	-0.3	5.5	V
	Control pin voltages		-0.3	3.6	V
T _{OP}	Operating temperature		-40	85	°C
T _{STORAGE}	Storage temperature		-40	125	°C
	ESD Voltage all pins (HBM)	1	-	1000	V
Pin_Tx_max	Tx input power at TR port		-	+10	dBm
Pin_Rx_max	Rx input power at ANT1 or ANT2 ports		-	+10	dBm

Note: (1) No damage assuming only one parameter is set at limit at a time with all other parameters set at or below the recommended operating conditions.

Recommended Operating Conditions

Symbol	Parameter	Min.	Тур.	Max.	Unit
TA	Ambient temperature	-40	25	85	°C
VCC	Supply voltage on VCC	2.0	4.0	4.8	V

DC Electrical Characteristics

Conditions: VCC = 4.0 V, T_A = 25 °C, as measured on SiGe Semiconductor's SE2435L-EK1 evaluation board (deembedded to device), unless otherwise noted

Symbol	Parameter	Conditions	Min.	Min. Typ.		Unit
Ісс-тхзо	Total Supply Current	Tx mode P _{OUT} = 30 dBm CPS = CSD = CTX = HIGH	-	500	-	mA
Ісс-тх27	Total Supply Current	Tx mode P _{OUT} = 27 dBm CPS = CSD = CTX = HIGH	-	350	-	mA
Ісс-тх24	Total Supply Current	Tx mode P _{OUT} = 24 dBm CPS = CSD = CTX = HIGH	-	- 250		mA
Ісq-тх	Quiescent Current	No RF CPS = CSD = CTX = HIGH	-	- 45		mA
ICC-Rx	Total Supply Current	Rx mode CPS = CSD = HIGH, CTX = 0 V	-	- 5		mA
ICC- RxBypass	Total Supply Current	Rx bypass mode CSD = HIGH, CPS = CTX = 0 V	-	-	280	uA
ICC_OFF	Sleep Supply Current	No RF, CSD = 0 V	-	-	1	μA

Logic Characteristics

Conditions: T_A = 25 °C, as measured on SiGe Semiconductor's SE2435L-EK1 evaluation board (de-embedded to device), unless otherwise noted.

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
V _{IH}	Logic input high		1.6	-	VCC	V
V _{IL}	Logic input low		0	-	0.3	V
I _{IH}	Logic input high		-	-	1	μΑ
I _{IL}	Logic input low		-	-	1	μA

Logic Controls

Conditions: $T_A = 25 \ ^{\circ}C$

Mode	Mode description	Note	CPS	CSD	СТХ
0	All off (sleep mode)	1	Х	0	Х
1	Rx bypass mode	1, 2	0	1	0
2	Rx LNA mode	1, 2	1	1	0
3	Tx mode	1, 2	1	1	1

Note: (1) Logic '0' level compliant to V_{IL} as specified in the "Logic Characteristics" table

(2) Logic '1' level compliant to $V_{\rm IH}$ as specified in the "Logic Characteristics" table

Conditions: $T_A = 25 \ ^{\circ}C$

Mode description	Note	CPS	CSD	СТХ	ANT_SEL
ANT1 port enabled	1	Х	Х	Х	0
ANT2 port enabled	2	Х	Х	Х	1

Note: (1) Logic '0' level compliant to V_{IL} as specified in the "Logic Characteristics" table

(2) Logic '1' level compliant to $V_{\rm IH}$ as specified in the "Logic Characteristics" table

AC Electrical Characteristics, Transmit

Conditions: VCC = 4.0 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2435L-EK1 evaluation board (deembedded to device), all unused ports terminated with 50 Ω, unless otherwise noted. Input port TR, output ports ANT1 and ANT2. Lumped elements filter connected between the Tx_FLT and PA_IN pins.

Symbol	Parameter	Condition	Note	Min.	Тур.	Max.	Unit
FIN	Frequency Range			860	-	930	MHz
Pout_900	Output power at ANT1 or ANT2 ports in the 900 – 930 MHz frequency range	VCC = 4.0 V VCC = 3.6 V VCC = 3.0 V VCC = 2.0 V	1, 5	-	30 27 24 19	-	dBm
Pout_860	Output power at ANT1 or ANT2 ports in the 860 – 870 MHz frequency range	VCC = 4.0 V VCC = 3.6 V VCC = 3.0 V VCC = 2.0 V	2, 5	-	27 24 21 18	-	dBm
PAE	PA Power added efficiency	Pout = 28 dBm at PA_OUT port, 915 MHz			64		%
S 21_900	Small Signal Gain	900 – 930 MHz	1	26	-	-	dB
S 21_860	Small Signal Gain	860 – 870 MHz	2	26	-	-	dB
ΔS 21	Small Signal Gain Variation	Gain variation across frequency range	1, 2	-	-	2	dBp-p
S22 _{ANT1,2}	Output Return Loss	Into 50 Ω , ANT1 and ANT2 ports	1, 2	-	-10	-6	dB
HD2	Harmonics	Роит = 30 dBm	1, 3	-	-	-32	dBm
HD3 – HD10	Harmonics	Роит = 30 dBm	1, 3	-	-	-43	dBm
HD2 – HD10	Harmonics	Роит = 27 dBm	2, 3	-	-	-35	dBm
T _{ON}	Turn on time		4	-	-	1	us
T _{OFF}	Turn off time		5	-	-	1	us
STAB	Stability	CW, Piℕ = 0 dBm 0.1 GHz – 20 GHz Load VSWR = 6:1		All non-harmonically related outputs less than -43 dBm			
RU	Ruggedness	CW, Pout = 30 dBm into 50 Ω , Load VSWR = 10:1		No pern	nanent da	mage	

Note:

900 - 930 MHz with specified matching network on the SE2435L-EK1 evaluation board (1)

(2) 860 - 870 MHz with specified matching network on the SE2435L-EK1 evaluation board

(3) (4) Measured with Continuous Wave signal

From 50% of CTX edge to 90% of final RF output power

(5) From 50% of CTX edge to 10% of final RF output power

AC Electrical Characteristics, Receive

Conditions: VCC = 4.0 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2435L-EK1 evaluation board (deembedded to device), all unused ports terminated with 50 Ω , unless otherwise noted. Input port ANT1 or ANT2, output port TR. 0 Ω connected between the Rx FLT and LNA IN pins, in lieu of external filters.

Symbol	Parameter	Condition	Note	Min.	Тур.	Max.	Unit
Fin	Frequency Range			860	-	930	MHz
Rx_gain	Receive gain	CPS = CSD = logic '1', CTX = logic '0'	1, 2	16	18	20	dB
NF	Receive noise figure	CPS = CSD = logic '1', CTX = logic '0'	1, 2	-	2	2.5	dB
IIP3	Input 3 rd order intercept	CPS = CSD = logic '1', CTX = logic '0'	1, 2	-5	-2	-	dBm
IP1dB	Input 1-dB compression point	CPS = CSD = logic '1', CTX = logic '0'	1, 2	-15	-12	-	dBm
S11 _{ANT1,2}	Antenna port return loss	Into 50 Ω , ANT1 and ANT2 ports	1, 2	-	-12	-10	dB
T _{ON}	Turn on time		3	-	-	1	us
T _{OFF}	Turn off time		4	-	-	1	us
G_bp	Gain in bypass mode	CPS = CTX = logic '0', CSD = logic '1'		-3	-2	-	dB
IP1dB	Input 1-dB compression point in bypass mode	CPS = CTX = logic '0', CSD = logic '1'		10	-	-	dBm
Note: (1) 9	900 – 930 MHz						

(1) 900 - 930 MHz

(2) 860 – 870 MHz

(3) From 50% of CTX edge to 90% of final RF output power

(4) From 50% of CTX edge to 10% of final RF output power

AC Electrical Characteristics, Diversity Antenna Function

Conditions: VCC = 4.0 V, TA = 25 °C, as measured on SiGe Semiconductor's SE2435L-EK1 evaluation board (deembedded to device), all unused ports terminated with 50 Ω , unless otherwise noted.

Symbol	Parameter	Note	Min.	Тур.	Max.	Unit
ISOLANTSW	Isolation Between ANT1 and ANT2 Ports	1, 2	-	-20	-	dB
Tx_ANT1	Insertion loss from TX_IN to ANT1	1, 2	-	0.8	-	dB
Tx_ANT2	Insertion loss from TX_IN to ANT2	1, 2	-	0.8	-	dB
Rx_ANT1	Insertion loss from ANT1 to Rx_FILT	1, 2	-	0.6	-	dB
Rx_ANT2	Insertion loss from ANT2 to Rx_FILT	1, 2	-	0.6	-	dB
TxRx_Tx	Insertion loss from TR to Tx_FILT	1, 2	-	0.5	-	dB
T _{ANT1-ANT2}	Antenna 1 to Antenna 2 switching time	1, 2	-	400	-	nsec
Note: (1) 9	00 – 930 MHz					

(2) 860 - 870 MHz

Package Drawing

Figure 3: Package Drawing: Topside

Tape and Reel Information

Parameter	Value
Devices Per Reel	3000
Reel Diameter	13 inches
Tape Width	12 millimeters

Figure 4: Detailed Tape and Reel Information (All diminensions in Millimeters)

Recommended Reflow Temperature Profile

Profile Feature	SnPb Eutectic Assembly	Lead (Pb) Free Assembly	
Average Ramp-up Rate (T _L to T _P)	3°C/s (max)	3°C/s (max)	
Preheat			
Temperature Min. (T _{smin})	100°C	150°C	
Temperature Max. (T _{smax})	150°C	200°C	
Time (Min. to Max) (t_s)	60 - 120s	60 - 80s	
Ramp Up			
Tsmax to t_{L}	-	3°C/s (max)	
Time 25°C to Peak Temperature	6 mins. (max)	8 mins. (max)	
Reflow			
Temperature (t _L)	183°C	217°C	
Time maintained above t_{L}	60 - 150s	60 - 150s	
Peak Temperature (t _p)	240 ±5°C	260 +0/-5°C	
Time Within 5°C of Actual Peak Temperature (t_p)	10 - 30s	20 - 40s	
Ramp-Down			
Ramp-Down Rate	6°C/s (max)	6°C/s (max)	

Reflow Profile (Reference JEDEC J-STD-020)

Figure 5: Reflow temperature profile

Branding Information

Figure 6: SE2435L Branding

Document Change History

Revision	Date	Notes
1.0	June 11, 2010	Initial release
1.1	July 14, 2010	Updated pinout description
1.2	October 7, 2010	General updates and corrections
1.3	November 5, 2010	Update harmonics limits to reflect compliance with FCC and ETSI
1.4	December 2, 2010	Added specs for PA PAE. Updated package branding

http://www.sige.com

Email: sales@sige.com

Customer Service Locations:

North America: 1050 Morrison Drive, Suite 100 Ottawa ON K2H 8K7 Canada

Phone: +1 613 820 9244 Fax: +1 613 820 4933 Hong Kong Phone: +852 3428 7222 Fax: +852 3579 5450

San Diego Phone:+1 858 668 3541 (ext. 226) Fax: +1 858 668 3546

United Kingdom Phone: +44 1279 464217 Fax: +44 1279 464201

Product Preview

The datasheet contains information from the product concept specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Preliminary Information

The datasheet contains information from the design target specification. SiGe Semiconductor, Inc. reserves the right to change information at any time without notification.

Production testing may not include testing of all parameters.

Information furnished is believed to be accurate and reliable and is provided on an "as is" basis. SiGe Semiconductor, Inc. assumes no responsibility or liability for the direct or indirect consequences of use of such information nor for any infringement of patents or other rights of third parties, which may result from its use. No license or indemnity is granted by implication or otherwise under any patent or other intellectual property rights of SiGe Semiconductor, Inc. or third parties. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SiGe Semiconductor, Inc. products are NOT authorized for use in implantation or life support applications or systems without express written approval from SiGe Semiconductor, Inc.

Copyright 2010 SiGe Semiconductor, Inc. All Rights Reserved

