

Tape Drive Frequency Timing Generator

Features

- · Four derived outputs at frequencies specified by Hewlett Packard Computer Peripherals Bristol/Boise (CPB)
- Less than ±250 ps cycle-to-cycle jitter (13.2 MHz clock excluded derated to ±400 ps)
- · Less than ±350 ps absolute jitter
- Supports 3.3V operation
- TTL compatible logic: V_{IL} = 0.8V max., V_{IH} = 2.0V min., $V_{OL} = 0.4V$ max., and $V_{OH} = 2.4V$ min.
- · OE pin has internal pull-up

- 45/55% duty cycle on all outputs
- 15Ω output drivers
- Accepts 26.5625 MHz input reference
- Built-in crystal oscillator circuit. Capacitive load presented to the crystal is approximately 14 pF
- · Outputs designed to drive 30 pF loads
- · Available in 16-pin SOIC package

Functional Description

The W173 has been defined to meet the timing signal requirements for Hewlett Packard CPB tape drive system.

Pin Definitions ^[1]

Pin Name	Pin No.	Pin Type	Pin Description
OE	5	Ι	<i>Output Enable:</i> When LOW, this input signal puts all outputs into a high-impedance state.
13.2MHZ	13	0	<i>Clock Output:</i> Provides a TTL-level timing signal proportional in frequency to the input signal. For a 26.5625 MHz reference, the frequency will be 13.2 MHz.
6.6MHZ	15	0	<i>Clock Output:</i> Provides a TTL-level timing signal proportional in frequency to the input signal. For a 26.5625 MHz reference, the frequency will be 6.6 MHz.
10MHZ	10	0	<i>Clock Output:</i> Provides a TTL-level timing signal proportional in frequency to the input signal. For a 26.5625 MHz reference, the frequency will be 10.0 MHz.
50MHZ	7	0	<i>Clock Output:</i> Provides a TTL-level timing signal proportional in frequency to the input signal. For a 26.5625 MHz reference, the frequency will be 50.0 MHz.
X1	2	Ι	External Crystal Connection: This pin has dual functions. It can be used as an external 26.5625 MHz crystal connection or as an external reference frequency input.
X2	3	0	<i>External Crystal Connection:</i> An input connection for an external 26.5625 MHz crystal. If using an external reference, this pin must be left unconnected.
VDD	1, 6, 9, 12, 16	Р	Power Supply Connections : Connect both V_{DD} pins to the same voltage, either 3.3V or 5.0V. Each V_{DD} pin should have a decoupling capacitor (such as 0.1 μ F) placed as close to the pin as possible.
GND	4, 8, 11, 14	G	<i>Ground Connections:</i> Connect all ground pins to the common system ground plane.

Note:

1. All inputs, except X1 or X2, have an internal pull-up resistor. Unconnected inputs will assume a logic HIGH condition.

The recommended single voltage power supply configuration for the W173 is shown schematically in *Figure 1*. These recommendations should be followed to both ensure adequate device performance and to control EMI. The major considerations can be summarized as follows:

- 1. Decoupling Capacitor—A 0.1- μ F decoupling capacitor should be used for each V_{DD} pin to minimize crosstalk between output frequencies. The trace to the V_{DD} pin and to the ground via should be as short as possible.
- 2. Ferrite Bead (FB)—A common supply connection should be used for all W173 V_{DD} pins. A ferrite bead should be used on this common supply as shown to remove high frequency system noise.
- 22-μF Supply Filter Capacitor—The 22-μF capacitor filters low frequency supply noise that may produce clock output jitter. Depending on the particular application, this capacitor may not be required; its use should be considered optional. Mounting pads should be implemented in PCB layout. Use of this capacitor in production should be determined upon prototype evaluation.

4. PCB power supply traces should be at least 20 mils wide to assure adequate trade impedance recommend Power Supply Schematic–Single Voltage Supply Operation.

Ground Connections

All ground connections should be made to the main system ground plane. These connections should be as short as possible. No cuts should be made in the ground plane around the clock device since this can increase system EMI and reduce clock performance.

Clock Output Lines

- 1. The clock line width should be set to provide a 60Ω trace impedance. This width will vary depending on the PCB material; the PCB supplier can suggest what width to use for a 60Ω clock line. In general, an 8-mil trace will provide a 60Ω impedance on a multi-level board.
- 2. The series termination resistor (sometimes called "damping resistor") must be placed in series with the clock line as close to the clock output as possible (within one inch).
- 3. Assume an output resistance from the W173 of 40Ω , choose series resistors appropriate to the number of driven traces.

Figure 1. Test Circuit

Absolute Maximum Ratings^[2]

Stresses greater than those listed in this table may cause permanent damage to the device. These represent a stress rating only. Operation of the device at these or any other condi-

tions above those specified in the operating sections of this specification is not implied. Maximum conditions for extended periods may affect reliability.

Table	1:
10010	

Parameter	Description	Rating	Unit
V _{DD} , V _{IN}	Voltage on Any Pin with Respect to GND	-0.5 to +7.0	V
T _{STG}	Storage Temperature	-65 to +150	°C
Τ _Β	Ambient Temperature under Bias	-55 to +125	C°
T _A	Operating Temperature	0 to +70	°C

DC Electrical Characteristics: $T_A = 0^{\circ}C$ to +70°C, $V_{DD} = 3.3V \pm 5\%$

Parameter	Description	Test Condition	Min.	Тур.	Max.	Unit
I _{DD}	Supply Current	Note: CLK output = 50.0 MHz output loaded			40	mA
V _{IL}	Input Low Voltage	$V_{CC} = 5.0V$			0.8	V
V _{IH}	Input High Voltage	$V_{CC} = 5.0V$	2.0			V
V _{OL}	Output Low Voltage	I _{OL} = 1 mA			50	mV
V _{OH}	Output High Voltage	$I_{OH} = -1 \text{ mA}$	3.1			V
IIL	Input Low Current				10	μA
I _{IH}	Input High Current				10	μA
R _P	Input Pull-up Resistor	$V_{IN} = 0V$		500		kΩ
CI	Input Capacitance	Except X1 and X2			6	pF
LI	Input Inductance	Except X1 and X2			7	nH
CL	XTAL Load Capacitance	Total load to crystal		12		pF

AC Electrical Characteristics: $T_A = 0^{\circ}C$ to +70°C, $V_{CC} = 3.3V \pm 5\%^{[3]}$

Parameter	Description	Test Condition	Min.	Тур.	Max.	Unit	
Clock Outputs							
t _{JC}	Output Clock Jitter, Cycle-to-Cycle	Excluding 13.2-MHz output		±175	±250	ps	
Z _O	Output Buffer Impedance			40		W	
d _T	Output Duty Cycle		45	50	55	%	
t _R	Rise Time	Between 0.4V and 2.4V	0.8	1.5	4.0	V/ns	
t _F	Fall Time	Between 2.4V and 0.4V	0.8	1.5	4.0	V/ns	
t _{PU}	Stabilization Time from Power-Up	To within 0.1% of final frequency		1.5	3.0	ms	
f _A	Long Term Output Frequency Stability	Over V_{CC} and T_A range			0.01	%	

Note:

Multiple Supplies: The Voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
All AC tests are performed using the circuit shown in *Figure 1* to simulate typical system load conditions. Measurements are taken at the load. Threshold voltage for timing measurements is 1.5V.

Ordering Information

Ordering Code	Package Type	
W173G	16-pin SOIC (150 mil)	
W173GT	16-pin SOIC (150 mil) - Tape and Reel	
Lead Free		
CYW173SXC	16-pin SOIC (150 mil)	
CYW173SXCT	16-pin SOIC (150 mil) - Tape and Reel	

Package Drawing and Dimensions

16-Lead (150-Mil) SOIC S16.15

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.