

210 MHz 24 Output Buffer for 4-DDR DIMMS for VIA Chipsets Support

Features

- Supports VIA PRO 266, KT266 and P4x266
- Dual 1- to 12-output buffer/driver
- Supports up to four DDR DIMMs
- Low-skew outputs (< 75 ps)
- Supports 266-MHz, 333-MHz and 400-MHz DDR SDRAM
- SMBus Read and Write support
- Space-saving 48-pin SSOP package

Functional Description

The CY28354-400 is a 2.5V buffer designed to distribute high-speed clocks in PC applications. The part has 24 outputs to support four unbuffered DDR DIMMS. The CY28354-400 can be used in conjunction with CY28326 similar clock synthesizer for the PTT880 and KTT880 chipsets.

The CY28354-400 also includes an SMBus interface which can enable or disable each output clock. On power-up, all output clocks are enabled.

Pin Description

Pin	Name	PWR	I/O	Description
11, 13, 19, 21, 38, 36, 5, 7, 44, 42, 32, 30	DDRA[0:5]T DDRB[0:5]T	VDD2.5	0	Clock outputs . These outputs provide copies of BUF_INA and BUF_INB, respectively.
12, 14, 20, 22, 37, 35, 6, 8, 43, 41, 31, 29	DDRA[0:5]C DDRB[0:5]C	VDD2.5	0	Clock outputs . These outputs provide complementary copies of BUF_INA and BUF_INB, respectively.
18, 4	BUF_INA, BUF_INB	VDD2.5	l PD	Reference input from chipset. 2.5V input. Internal pull-down
17, 3	FB_OUTA FB_OUTB	VDD2.5	0	Feedback clock for chipset.
45	I2C_CS	VDD2.5	l PD	CS for I2C allows for multiple devices to be connected with the same I2C address. Internal pull-down. See <i>Table 1</i> .
46	ADDR_SEL	VDD2.5	l PD	Selects I2C Address D2/DC. Internal Pull-down
25	SCLK	VDD2.5	l PU	SMBus clock input. Internal Pull-up
26	SDATA	VDD2.5	I/O PU	SMBus data input. Internal Pull-up
1, 10, 16, 23, 28, 33, 39, 48	VDD2.5			2.5V voltage supply
2, 9, 15, 24, 27, 34, 40, 47	GND			Ground

Serial Data Interface

To enhance the flexibility and function of the clock synthesizer, a two-signal serial interface is provided. Through the Serial Data Interface, various device functions such as individual clock output buffers, etc., can be individually enabled or disabled. The registers associated with the Serial Data Interface initializes to their default setting upon power-up, and therefore use of this interface is optional. Clock device register changes are normally made upon system initialization, if any are required. The interface can also be used during system operation for power management functions.

Data Protocol

The clock driver serial protocol accepts Byte Write, Byte Read, Block Write, and Block Read operation from the controller. For Block Write/Read operation, the bytes must be accessed in sequential order from lowest to highest byte (most significant bit first) with the ability to stop after any complete byte has been transferred. For Byte Write and Byte Read operations, the system controller can access individual indexed bytes. The offset of the indexed byte is encoded in the command code, as described in *Table 1*. The Block Write and Block Read protocol is outlined in *Table 2*.The slave receiver address is D2/DC depending on the state of the ADDRSEL pin.

Table 1. Command Code Definition

Bit	Description
7	0 = Block Read or Block Write operation 1 = Byte Read or Byte Write operation
(6:5)	01 to address chip when I2C_CS = 0 10 to address chip when I2C_CS = 1
(4:0)	Byte offset for Byte Read or Byte Write operation. For Block Read or Block Write operations, these bits should be '00000'

Table 2. Block Read and Block Write Protocol

	Block Write Protocol	Block Read Protocol		
Bit	Description	Bit	Description	
1	Start	1	Start	
2:8	Slave address – 7 bits	2:8 Slave address – 7 bits		
9	Write = 0	9 Write = 0		
10	Acknowledge from slave	10	Acknowledge from slave	
11:18	Command Code – 8 bits '00000000' stands for block operation	11:18	Command Code – 8 bits '00000000' stands for block operation	
19	Acknowledge from slave	19	Acknowledge from slave	
20:27	Byte Count from master – 8 bits	20	Repeat start	
28	Acknowledge from slave	21:27	Slave address – 7 bits	
29:36	Data byte 0 from master – 8 bits	28	Read = 1	
37	Acknowledge from slave	29	Acknowledge from slave	
38:45	Data byte 1 from master – 8 bits	30:37	Byte count from slave – 8 bits	
46	Acknowledge from slave	38	Acknowledge	
	Data bytes from master/Acknowledge	39:46	Data byte 0 from slave – 8 bits	
	Data Byte N – 8 bits	47	Acknowledge	
	Acknowledge from slave	48:55	Data byte 1 from slave – 8 bits	
	Stop	56	Acknowledge	
			Data bytes from slave/Acknowledge	
			Data byte N from slave – 8 bits	
			Not Acknowledge	
			Stop	

Serial Configuration Map

• The Serial bits will be read by the clock driver in the following order.

Byte 0 – Bits 7, 6, 5, 4, 3, 2, 1, 0
Byte 1 – Bits 7, 6, 5, 4, 3, 2, 1, 0
Byte N – Bits 7, 6, 5, 4, 3, 2, 1, 0

- Reserved and unused bits should be programmed to "0"
- SMBus Address for the CY28354 is as follows.

	A6	A5	A4	A3	A2	A1	A0	R/W
SEL ADDR = 1	1	1	0	1	0	0	1	—
SEL ADDR = 0	1	1	0	1	1	1	0	—

Byte 22: Outputs Active/Inactive Register (1 = Active, 0 = Inactive), Default (Hi-z) = Active

Bit	@Pup	Pin #	Description
Bit 7	0		Input Threshold Control
Bit 6	0		00: Normal (1.25V) 01: 1.20V 10: 1.15V 11: 1.10V
Bit 5	0	17	FBOUTA Control, 0 = Enable, 1 = Disable
Bit 4	0	3	FBOUTB Control, 0 = Enable, 1 = Disable
Bit 3	1	30, 29	DDRBT5, DDRBC5
Bit 2	1	32, 31	DDRBT4, DDRBC4
Bit 1	1	42, 41	DDRBT3, DDRBC3
Bit 0	1	44, 43	DDRBT2, DDRBC2

Byte 23: Outputs Active/Inactive Register (1 = Active, 0 = Inactive), Default = Active

Bit	@Pup	Pin #	Description	
Bit 7	1	7, 8	DDRBT1, DDRBC1	
Bit 6	1	5, 6	DDRBT0, DDRBC0	
Bit 5	1	36, 35	DDRAT5, DDRAC5	
Bit 4	1	38, 37	DDRAT4, DDRAC4	
Bit 3	1	21, 22	DDRAT3, DDRAC3	
Bit 2	1	19, 20	DDRAT2, DDRAC2	
Bit 1	1	13, 14	DDRAT1, DDRAC1	
Bit 0	1	11, 12	DDRAT0, DDRAC0	

Absolute Maximum Conditions^[1]

Parameter	Description	Min.	Max.	Unit
V _{DD}	Supply Voltage to Ground Potential	-0.5	4.6	V
V _{in}	DC Input Voltage (except BUFF_IN)	-0.3	V _{DD} +0.3	V
V _{out}	Output Voltage	1.1	V _{DD} 0.4	V
T _s	Temperature, Storage	-65	+150	°C
T _a	Temperature, Operating Ambient	0	85	°C
Ø _{JC}	Dissipation, Junction to Case (Mil-Spec 883E Method 1012.1)	36.3	9	°C/W
Ø _{JA}	Dissipation, Junction to Ambient (JEDEC (JESD 51) 77.99			
ESD _h	ESD Protection (Human Body Model)	-	2000	V

DC Electrical Specifications

Parameter	Description	Min.	Тур.	Max.	Unit
V _{DD2.5}	Supply Voltage	2.3	_	2.7	V
C _{OUT}	Output Capacitance	-	6	_	pF
C _{IN}	Input Capacitance	_	5	_	pF

AC Electrical Specifications

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{IL}	Input LOW Voltage	For all pins except SMBus	0.3	-	0.7	V
V _{IH}	Input HIGH Voltage		1.7	_	V _{DD} + 0.3	V
I _{ОН}	Output HIGH Current	V _{DD} = 2.375V, V _{OUT} = 1V	-	_	-12	mA
I _{OL}	Output LOW Current	V _{DD} = 2.375V, V _{OUT} = 1.2V	-	_	12	mA
V _{OL}	Output LOW Voltage ^[2]	I _{OL} = 12 mA, V _{DD} = 2.375V	-	_	0.5	V
V _{OH}	Output HIGH Voltage ^[2]	I _{OH} = -12 mA, V _{DD} = 2.375V	1.7	-	-	V
I _{DD}	Supply Current ^[2]	Unloaded outputs, 133 MHz	-	-	400	mA
I _{DD}	Supply Current	Loaded outputs, 133 MHz	-	_	500	mA
IDDPD	Supply Current	All outputs off	-	-	2	mA
V _{OUT}	Output Voltage Swing	See Test Circuity. See Figure 1	0.7	-	V _{DD} + 0.6	V
V _{OC}	Output Crossing Voltage		V _{DD} /2-0.3	V _{DD} /2	V _{DD} /2+0.3	V
IN _{DC}	Input Clock Duty Cycle		40	-	60	%

Switching Characteristics^[3]

Parameter	Name	Test Conditions	Min.	Тур.	Max.	Unit
-	Operating Frequency		60		210	MHz
-	Duty Cycle ^[2, 4] = $t_2 \div t_1$	Measured differentially at V _{CROSS}	IN _{DC} -2%	_	IN _{DC} +2%	%
t _{3d}	DDR Rising Edge Rate ^[2]	Measured single ended at 20% to 80% of V_{DIF}	1.0	2.0	5.0	V/ns
t _{4d}	DDR Falling Edge Rate ^[2]	Measured single ended at 80% to 20% of $V_{\mbox{DIF}}$	1.0	2.0	5.0	V/ns
t ₅	Output to Output Skew for DDR ^[2]	All outputs equally loaded. See <i>Figure 1</i> .	-	-	75	ps
t ₆	Input to Output Propagation delay	At output load of 15 pFn	-	_	6	ns

Notes:

Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.
Parameter is guaranteed by design and characterization. Not 100% tested in production.

All parameters specified with loaded outputs.
Duty cycle of input clock is 50%. Rising and falling edge rate is greater than 1 V/ns.

Switching Waveforms

Duty Cycle Timing

Output-Output Skew

Figure 1. Differential Signal Using Direct Termination Resistor

FB = Dale ILB1206 - 300 (300 Ω @ 100 MHz) or TDK ACB 2012L-120 Ceramic Caps C3 = 10–22 $\,\mu\text{F}$ C4 = 0.005 μF

(G) = VIA to GND plane layer (V) =VIA to respective supply plane layer

Note: Each supply plane or strip should have a ferrite bead and capacitors All bypass caps = 0.1 μF ceramic

Ordering Information

Ordering Code	Package Type	Operating Range
Lead Free		
CY28354OXC-400	48-pin SSOP	Commercial, 0°C to 85 °C
CY28354OXC-400T	48-pin SSOP – Tape and Reel	Commercial, 0°C to 85 °C

Package Drawing and Dimension

The information in this document is believed to be accurate in all respects at the time of publication but is subject to change without notice. Silicon Laboratories assumes no responsibility for errors and omissions, and disclaims responsibility for any consequences resulting from the use of information included herein. Additionally, Silicon Laboratories assumes no responsibility for the functioning of undescribed features or parameters. Silicon Laboratories reserves the right to make changes without further notice. Silicon Laboratories makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Silicon Laboratories assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. Silicon Laboratories products are not designed, intended, or authorized for use in applications intended to support or sustain life, or for any other application in which the failure of the Silicon Laboratories product could create a situation where personal injury or death may occur. Should Buyer purchase or use Silicon Laboratories products for any such unintended or unauthorized application, Buyer shall indemnify and hold Silicon Laboratories harmless against all claims and damages.