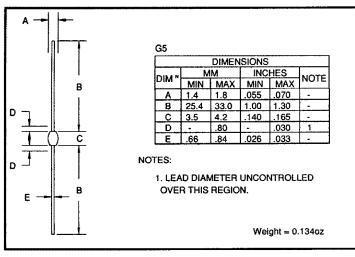


January 7, 1998

TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

AXIAL LEADED HERMETICALLY SEALED SUPERFAST RECTIFIER DIODE

- · Very low reverse recovery time
- Hermetically sealed in Metoxilite fused metal oxide
- Low switching losses
- Low forward voltage drop
- Soft, non-snap off, recovery characteristics


QUICK REFERENCE DATA

- $V_R = 50 150V$
- $I_{\rm F} = 1.8 {\rm A}$
- $t_{rr} = 30$ nS
- $V_F = 1.2V$

	Symbol	1N6073 FF05	1N6074 FF10	1N6075 FF15	Unit
Working reverse voltage	VRWM	50	100	150	V
Repetitive reverse voltage	VRRM	50	100	150	v
Average forward current (@ 55°C, lead length = 0.375")	I _{F(AV)}	·	<u> </u>	•••••	А
Repetitive surge current (@ 55° C, lead length = 0.375")	I _{FRM}	4	<u> </u>		А
Non-repetitive surge current (tp = 8.3ms, @ V _R & Tj _{max})	I _{FSM}		35.0		А
Storage temperature range Operating temperature range	T _{STG} T _{OP}	<u>م</u>	-65 to +150 -65 to +150		°C °C

ABSOLUTE MAXIMUM RATINGS (@ 25^oC unless otherwise specified)

MECHANICAL

These products are qualified to MIL-S-19500/503.

They can be supplied fully released as JAN, JANTX, and JANTXV versions.

These products are qualified in Europe to DEF STAN 59-61 (PART 80)/029 available to F and FX levels.

January 7, 1998

ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified)

	Symbol	1N6073 FF05	1N6074 FF10	1N6075 FF15	Unit
Average forward current max. (pcb mounted; $T_A = 55^{\circ}C$) for sine wave for square wave (d = 0.5)	I _{F(AV)} I _{F(AV)}	<u>الم</u>	0.85 0.90		A A
Average forward current max. $T_L = 70^{\circ}C$; $L = 0$ ". $T_L = 55^{\circ}C$; $L = 3/8$ "	I _{F(AV)}		3.0		A
for sine wave for square wave $I^{2}t$ for fusing (t = 8.3mS) max.	IF(AV) I _F (AV) I ² t				A A A ² S
Forward voltage drop max. @ I _F = 1.5A, $T_j = 25^{\circ}C$	VF		<u> </u>		v
Reverse current max. @ V_{RWM} , $T_j = 25^{\circ}C$ @ V_{RWM} , $T_j = 100^{\circ}C$	I _R IR	←	- 1.0 $-$ 50 $-$	→	μΑ μΑ
Reverse recovery time 0.5A I _F , 1.0A I _R , 0.25A I _{RR} .	t _{rr}	↓	30		nS
Junction capacitance typ. @ V _R = 5V , f = 1MHz	Cj		28		ρF

THERMAL CHARACTERISTICS

	Symbol	1N6073 FF05	1N6074 FF10	1N6075 FF15	Unit
Thermal resistance - junction to lead Lead length = 0.375" Lead length = 0.0" Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper.	Rəjl Rəjl Rəja		46 13 95	`	°C/W °C/W °C/W

60

L = 0"

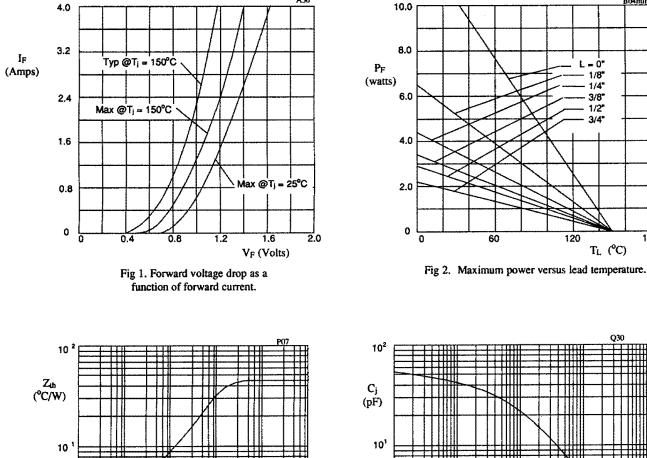
1/8"

1/4"

3/8"

1/2" 3/4"

120


 T_L (°C)

Q30

B04mil

180

January 7, 1998

A30

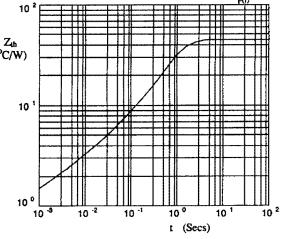
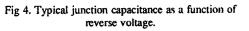



Fig 3. Transient thermal impedance characteristic.

10

10

(Volts)

VR

10⁰

10

10

1N6075 FF15

January 7, 1998

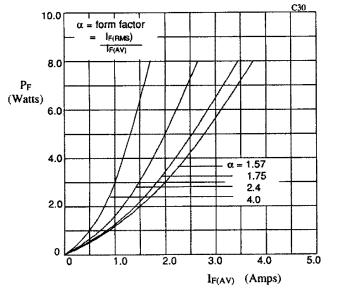


Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

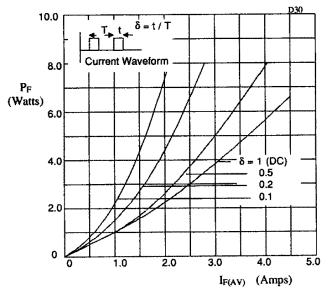


Fig 6. Forward power dissipation as a function of forward current, for square wave operation.

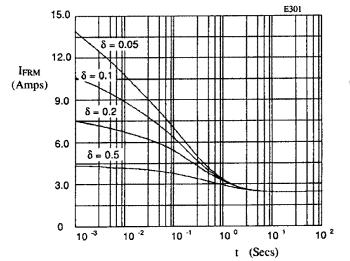


Fig 7. Maximum repetitive forward current as a function of pulse width at 55°C; $R_{0JL} = 45$ °C/W; V_{RWM} during 1 - δ .

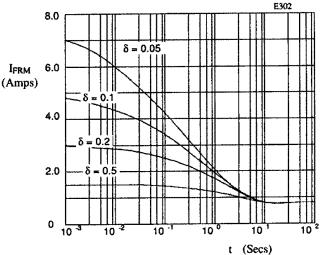


Fig 8. Maximum repetitive forward current as a function of pulse width at 100°C; $R_{0JL} = 110$ °C/W; V_{RWM} during 1 - δ .