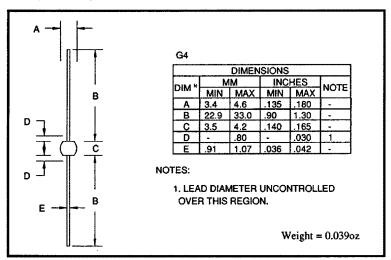


TEL:805-498-2111 FAX:805-498-3804 WEB:http://www.semtech.com

AXIAL LEADED HERMETICALLY SEALED FAST RECOVERY RECTIFIER DIODE

QUICK REFERENCE DATA


- Low reverse recovery time
- Hermetically sealed in Metoxilite fused metal oxide
- Low switching losses
- High thermal shock resistance
- Soft, non-snap off, recovery characteristics

- $V_R = 1000V$
- $I_F = 3.25A$
- $t_{rr} = 150 nS$
- $I_R = 1\mu A$

ABSOLUTE MAXIMUM RATINGS (@ 25°C unless otherwise specified)

	Symbol	3SFR0	Unit
Working reverse voltage	V _{RWM}	1000	V
Repetitive reverse voltage	VRRM	1000	V
Average forward current (@ 55°C, lead length 0.375")	I _{F(AV)}	3.25	A
Repetitive surge current (@ 55°C in free air, lead length 0.375")	I _{FRM}	15.0	A
Non-repetitive surge current (tp = 8.3mS, @ VR & Tjmax)	I _{FSM}	80.0	A
Storage temperature range	TSTG	-65 to +175	°C
Operating temperature range	TOP	-65 to +175	°C

MECHANICAL

ELECTRICAL CHARACTERISTICS (@ 25°C unless otherwise specified)

·	Symbol	3SFR0	Unit
Average forward current max. (pcb mounted; $T_A = 55^{\circ}C$) for sine wave for square wave (d = 0.5)	IF(AV) IF(AV)	1.2 1.3	A A
Average forward current max. $(T_L = 55^{\circ}C; L = 3/8")$ for sine wave for square wave I^2t for fusing (t = 8.3mS) max.	I _{F(AV)} I _{F(AV)} I ² t	3.00 3.25 26	A A A ² S
Forward voltage drop max. @ $I_F = 3.0A$, $T_j = 25^{\circ}C$	V _F	1.5	v
Reverse current max. @ V _{RWM} , $T_j = 25^{\circ}$ C @ V _{RWM} , $T_j = 100^{\circ}$ C Reverse recovery time max. 0.5A I _F to 1.0A I _R . Recovers to 0.25A I _{RR} .	IR IR t _{rr}	1.0 25 150	μA μA nS
Junction capacitance typ. @ $V_R = 5V$, $f = 1MHz$	Cj	80	ρF

THERMAL CHARACTERISTICS

	Symbol	3SFR0	Unit
Thermal resistance - junction to lead Lead length = 0" Lead length = 0.375"	R _{OJL} R _{OJL}	4 20	°C/W °C/W
Thermal resistance - junction to amb. on 0.06" thick pcb. 1 oz. copper.	R ₀ JA	75	°C/W



Fig 1. Forward voltage drop as a function of forward current.

Fig 2. Maximum power versus lead temperature.

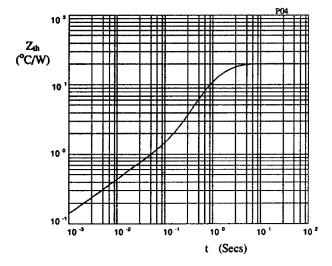


Fig 3. Transient thermal impedance characteristic.

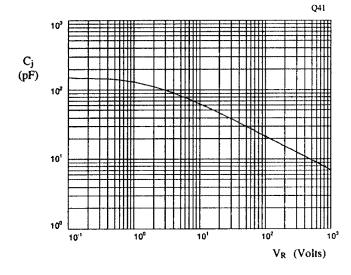


Fig 4. Typical junction capacitance as a function of reverse voltage.

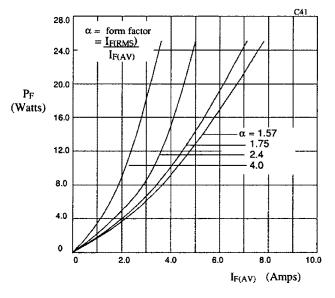


Fig 5. Forward power dissipation as a function of forward current, for sinusoidal operation.

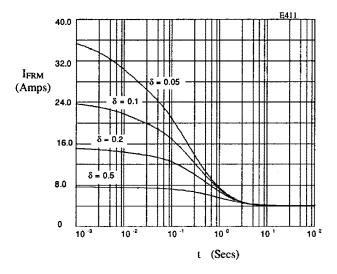


Fig 7. Typical repetitive forward current as a function of pulse width at 55° C; $R_{\theta JL} = 20$ °C/W; V_{RWM} during 1 - δ .

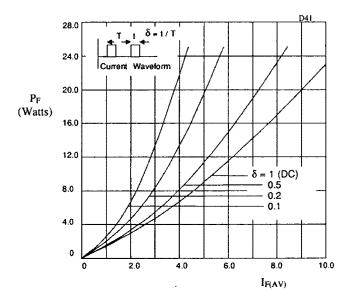


Fig 6. Forward power dissipation as a function of forward current, for square wave operation.

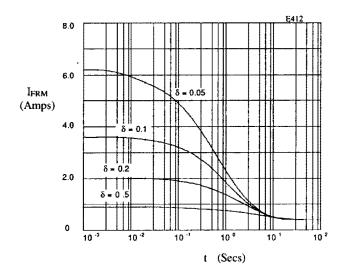


Fig 8. Typical repetitive forward current as a function of pulse width at 100° C; $R_{\theta JL} = 80^{\circ}$ C/W; V_{RWM} during $1 - \delta$.