SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

DGG OR DGV PACKAGE

- **Member of the Texas Instruments** Widebus™ Family
- **TI-OPC™ Circuitry Limits Ringing on Unevenly Loaded Backplanes**
- **OEC™** Circuitry Improves Signal Integrity and Reduces Electromagnetic Interference
- **Bidirectional Interface Between GTLP** Signal Levels and LVTTL Logic Levels
- Split LVTTL Port Provides a Feedback Path for Control and Diagnostics Monitoring
- **LVTTL Interfaces Are 5-V Tolerant**
- **High-Drive GTLP Open-Drain Outputs** (100 mA)
- LVTTL Outputs (-24 mA/24 mA)
- Variable Edge-Rate Control (ERC) Input Selects GTLP Rise and Fall Times for **Optimal Data-Transfer Rate and Signal** Integrity in Distributed Loads
- Ioff, Power-Up 3-State, and BIAS VCC **Support Live Insertion**
- Distributed $V_{\mbox{\footnotesize CC}}$ and GND Pins Minimize **High-Speed Switching Noise**
- Latch-Up Performance Exceeds 100 mA Per **JESD 78, Class II**
- **ESD Protection Exceeds JESD 22**
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)

(TOP VIEW) 48 II IMODE0 IMODE1 47 BIAS V_{CC} AI1 2 AO1 **3** 46 ∏ B1 GND 45 | GND 44 🛮 OEAB Al2 [] 5 AO2 [] 6 43 **∏** B2 V_{CC} 42 | ERC **1**8 AI3 41 OEAB AO3 40 ∏ B3 9 GND 110 39 | GND Al4 11 38 CLKAB/LEAB AO4 12 37 **∏** B4 36 **∏** B5 AO5 13 AI5 14 35 CLKBA/LEBA 34 | GND GND 15 AO6 33 **∏** B6 16 32 OEBA Al6 П 17 V_{CC} L 18 31 V_{CC} **П** 19 30 **|** B7 AO7 29 LOOPBACK AI7 20 GND 21 28 | GND AO8 ∏ 22 27 **∏** B8 26 🛮 V_{REF} AI8 **□**23 OMODE0 24 25 OMODE1

description

The SN74GTLP2034 is a high-drive, 8-bit, three-wire registered transceiver that provides true LVTTL-to-GTLP and GTLP-to-LVTTL signal-level translation. The device allows for transparent, latched, and flip-flop modes of data transfer with separate LVTTL input and LVTTL output pins, which provides a feedback path for control and diagnostics monitoring, the same functionality as the SN74FB2033, but with true logic. The device provides a high-speed interface between cards operating at LVTTL logic levels and a backplane operating at GTLP signal levels. High-speed (about three times faster than standard LVTTL or TTL) backplane operation is a direct result of GTLP's reduced output swing (<1 V), reduced input threshold levels, improved differential input, OEC™ circuitry, and TI-OPC™ circuitry. Improved GTLP OEC and TI-OPC circuits minimize bus-settling time and have been designed and tested using several backplane models. The high drive allows incident-wave switching in heavily loaded backplanes with equivalent load impedance down to 11 Ω .

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

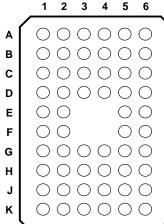
OEC, TI-OPC, and Widebus are trademarks of Texas Instruments

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

description (continued)

GTLP is the Texas Instruments derivative of the Gunning Transceiver Logic (GTL) JEDEC standard JESD 8-3. The ac specification of the SN74GTLP2034 is given only at the preferred higher noise-margin GTLP, but the user has the flexibility of using this device at either GTL ($V_{TT} = 1.2 \text{ V}$ and $V_{REF} = 0.8 \text{ V}$) or GTLP ($V_{TT} = 1.5 \text{ V}$ and $V_{REF} = 1 \text{ V}$) signal levels. For information on using GTLP devices in FB+/BTL applications, refer to TI application reports, *Texas Instruments GTLP Frequently Asked Questions*, literature number SCEA019, and *GTLP in BTL Applications*, literature number SCEA017.

Normally, the B port operates at GTLP signal levels. The A-port and control inputs operate at LVTTL logic levels, but are 5-V tolerant and can be directly driven by TTL or 5-V CMOS devices. V_{REF} is the B-port differential input reference voltage.


This device is fully specified for live-insertion applications using I_{off} , power-up 3-state, and BIAS V_{CC} . The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict. The BIAS V_{CC} circuitry precharges and preconditions the B-port input/output connections, preventing disturbance of active data on the backplane during card insertion or removal, and permits true live-insertion capability.

This GTLP device features TI-OPC circuitry, which actively limits overshoot caused by improperly terminated backplanes, unevenly distributed cards, or empty slots during low-to-high signal transitions. This improves signal integrity, which allows adequate noise margin to be maintained at higher frequencies.

High-drive GTLP backplane interface devices feature adjustable edge-rate control (ERC). Changing the ERC input voltage between low and high adjusts the B-port output rise and fall times. This allows the designer to optimize system data-transfer rate and signal integrity to the backplane load.

When V_{CC} is between 0 and 1.5 V, the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.5 V, \overline{OEAB} should be tied to V_{CC} through a pullup resistor and OEAB and OEBA should be tied to GND through a pulldown resistor; the minimum value of the resistor is determined by the current-sinking/current-sourcing capability of the driver.

GQL PACKAGE (TOP VIEW)

terminal assignments

		•				
	1	2	3	4	5	6
Α	IMODE1	NC	NC	NC	NC	IMODE0
В	AO1	Al1	GND	GND	BIAS V _{CC}	B1
С	AO2	Al2	Vcc	ERC	OEAB	B2
D	AO3	Al3	GND	GND	OEAB	В3
Е	AO4	Al4			CLKAB/LEAB	B4
F	AO5	AI5			CLKBA/LEBA	B5
G	AO6	Al6	GND	GND	OEBA	В6
Н	AO7	AI7	Vcc Vcc		LOOPBACK	В7
J	AO8	Al8	GND GND		V _{REF}	B8
K	OMODE0	NC	NC	NC	NC	OMODE1

NC = No internal connection

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

ORDERING INFORMATION

TA	PACKAGE [†]		PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
	TSSOP – DGG	Tape and reel	SN74GTLP2034DGGR	GTLP2034		
–40°C to 85°C	TVSOP – DGV	Tape and reel	SN74GTLP2034DGVR	GT2034		
	VFBGA – GQL	Tape and reel	SN74GTLP2034GQLR	GR034		

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

functional description

The SN74GTLP2034 is a high-drive (100 mA), 8-bit, three-wire registered transceiver containing D-type latches and D-type flip-flops for data-path operation in the transparent, latched, or flip-flop modes. Data transmission is true, with AI data going to the B port and B data going to AO. The split LVTTL AI and AO provides a feedback path for control and diagnostics monitoring.

The logic element for data flow in each direction is configured by two mode (IMODE1 and IMODE0 for B to A, OMODE1 and OMODE0 for A to B) inputs as a buffer, D-type flip-flop, or D-type latch. When configured in the buffer mode, the input data appears at the output port. In the flip-flop mode, data is stored on the rising edge of the appropriate clock (CLKAB/LEAB or CLKBA/LEBA) input. In the latch mode, the clock inputs serve as active-high transparent latch enables.

Data flow in the B-to-A direction, regardless of the logic element selected, is further controlled by the LOOPBACK input. When LOOPBACK is low, B-port data is the B-to-A input. When LOOPBACK is high, the output of the selected A-to-B logic element is the B-to-A input.

The AO enable/disable control is provided by OEBA. When OEBA is low or when V_{CC} is less than 1.5 V, AO is in the high-impedance state. When OEBA is high, AO is active (high or low logic levels).

The B port is controlled by OEAB and \overline{OEAB} . If OEAB is low, \overline{OEAB} is high, or V_{CC} is less than 1.5 V, the B port is inactive. If OEAB is high and \overline{OEAB} is low, the B port is active.

The A-to-B and B-to-A logic elements are active, regardless of the state of their associated outputs. The logic elements can enter new data (in flip-flop and latch modes) or retain previously stored data while the associated outputs are in the high-impedance (AO) or inactive (B port) states.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

Function Tables

FUNCTION/MODE

	INPUTS					OUTPUT	MODE		
OEBA	OEAB	OEAB	OMODE1	OMODE0	IMODE1	IMODE0	LOOPBACK	OUIFUI	WIODE
L	L	Х	Х	Х	Х	Х	Х	Z	Isolation
L	Χ	Н	Χ	Χ	Χ	Χ	X	2	isolation
Х	Н	L	L	L	Х	Х	Х		Buffer
Х	Н	L	L	Н	X	X	X	AI to B	Flip-flop
Х	Н	L	Н	Χ	Х	Χ	X		Latch
Н	L	Х	Х	Х	L	L	L	D 1 - AO	D. #
Н	Χ	Н	Χ	Χ	L	L	L	B to AO	Buffer
Н	L	Х	Х	Х	L	Н	L	D. 10	E: 4
Н	Χ	Н	Χ	Χ	L	Н	L	B to AO	Flip-flop
Н	L	Х	Х	Х	Н	Х	L	D 1 - AO	Latak
Н	Χ	Н	Χ	Χ	Н	Х	L	B to AO	Latch
Н	L	Х	Х	Х	L	L	Н	AI to AO	Buffer
Н	Х	Н	Χ	Χ	L	L	Н	AI IO AO	bullet
Н	L	Х	Х	Х	L	Н	Н	AI to AO	Flip flop
Н	Х	Н	Х	Х	L	Н	Н	AI IO AO	Flip-flop
Н	L	Х	Х	Х	Н	Х	Н	AI to AO	Latch
Н	Х	Н	Х	Х	Н	Х	Н	AI IU AU	Laten
Н	Н	L	Х	Х	Х	Х	L	AI to B, B to AO	Transparent with feedback path

ENABLE/DISABLE

	INPUTS	OUTPUTS		
OEBA	OEAB	OEAB	AO	В
L	Х	Х	Z	
Н	Χ	Χ	Active	
Х	L	L		Z
Х	L	Н		Z
Х	Н	L		Active
Х	Н	Н		Z

BUFFER

INPUT	OUTPUT
L	L
Н	Н

LATCH

INPU	ОИТРИТ	
CLK/LE	DATA	OUTFUT
Н	L	L
Н	Н	Н
L	X	Q_0

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

Function Tables (Continued)

LOOPBACK

LOOPBACK	Q†
L	B port
Н	Point P‡

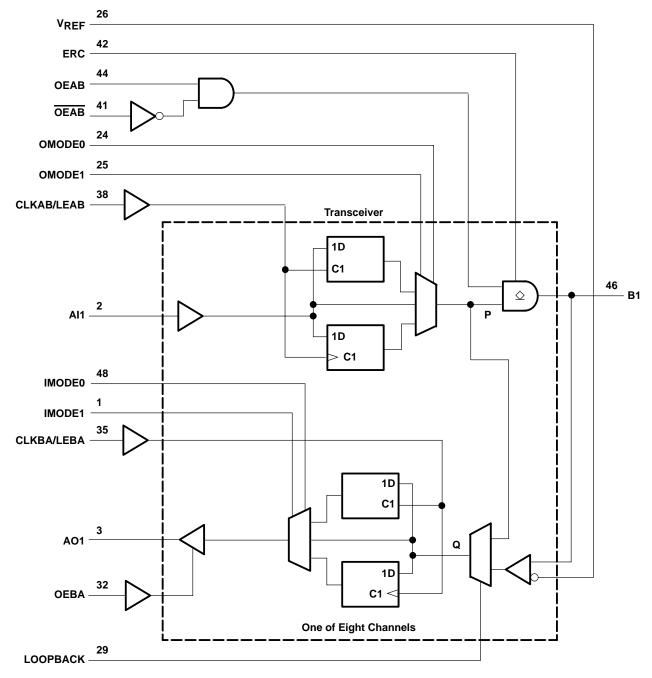
[†]Q is the input to the B-to-A logic element.

SELECT

INPUTS MODE1 MODE0		SELECTED LOGIC
		ELEMENT
L L		Buffer
L	Н	Flip-flop
Н	Χ	Latch

FLIP-FLOP

INPU'	OUTPUT	
CLK/LE	DATA	OUTPUT
L	Х	Q ₀
1	L	L
1	Н	Н


B-PORT EDGE-RATE CONTROL (ERC)

INPUT ERC	OUTPUT B-PORT
LOGIC LEVEL	EDGE RATE
Н	Slow
L	Fast

[‡] P is the output of the A-to-B logic element (see functional block diagram).

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

functional block diagram

Pin numbers shown are for the DGG and DGV packages.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC} and BIAS V _{CC}	
B port and V _{RFF}	
Voltage range applied to any output in the high-impedance or power-off state, V _O	
(see Note 1): AO port	–0.5 V to 7 V
B port	–0.5 V to 4.6 V
Current into any output in the low state, I _O : AO port	48 mA
B port	200 mA
Current into any A-port output in the high state, I _O (see Note 2)	48 mA
Continuous current through each V _{CC} or GND	
Input clamp current, I_{IK} ($V_I < 0$)	
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ _{JA} (see Note 3): DGG package	70°C/W
DGV package	58°C/W
GQL package	
Storage temperature range, T _{stg}	

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

- 2. This current flows only when the output is in the high state and $V_O > V_{CC}$.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

recommended operating conditions (see Notes 4 through 7)

			MIN	NOM	MAX	UNIT	
V _{CC} , BIAS V _{CC}	Supply voltage		3.15	3.3	3.45	V	
\/	Termination voltage	GTL	1.14	1.2	1.26	V	
VTT	remination voitage	GTLP	1.35	1.5	1.65		
V	Peterane valtage	GTL	0.74	0.8	0.87	V	
V _{REF}	Reference voltage	GTLP	0.87	1	1.1	٧	
VI	lanut valtage	B port			VTT	V	
	Input voltage	Except B port and V _{REF}		Vcc	5.5		
	High-level input voltage	B port	V _{REF} +0.05			V	
VIH		Except B port	2				
\/	Laurentin materialisma	B port			V _{REF} -0.05	V	
VIL	Low-level input voltage	Except B port			0.8		
lıK	Input clamp current				-18	mA	
loн	High-level output current	AO			-24	mA	
1	Laveland autout aumant	AO			24	A	
IOL	Low-level output current	B port			100	mA	
Δt/Δν	Input transition rise or fall rate	Outputs enabled			10	ns/V	
Δt/ΔV _{CC}	Power-up ramp rate	-	20			μs/V	
T _A	Operating free-air temperature		-40		85	°C	

- NOTES: 4. All unused control and B-port inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.
 - 5. Proper connection sequence for use of the B-port I/O precharge feature is GND and BIAS V_{CC} = 3.3 V first, I/O second, and V_{CC} = 3.3 V last, because the BIAS V_{CC} precharge circuitry is disabled when any V_{CC} pin is connected. The control and V_{REF} inputs can be connected anytime, but normally are connected during the I/O stage. If B-port precharge is not required, any connection sequence is acceptable but, generally, GND is connected first.
 - 6. V_{TT} and R_{TT} can be adjusted to accommodate backplane impedances if the dc recommended I_{OL} ratings are not exceeded.
 - 7. VREF can be adjusted to optimize noise margins, but normally is two-thirds VTT. TI-OPC circuitry is enabled in the A-to-B direction and is activated when VTT > 0.7 V above VREF. If operated in the A-to-B direction, VREF should be set to within 0.6 V of VTT to minimize current drain.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

electrical characteristics over recommended operating free-air temperature range for GTLP (unless otherwise noted)

	PARAMETER	TEST CONDITIONS		MIN	TYP [†]	MAX	UNIT
VIK		$V_{CC} = 3.15 V,$	I _I = -18 mA			-1.2	V
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	I _{OH} = -100 μA	V _{CC} -0.2			
VOH	AO	V _{CC} = 3.15 V	$I_{OH} = -12 \text{ mA}$	2.4			V
		VCC = 3.13 V	$I_{OH} = -24 \text{ mA}$	2			
		$V_{CC} = 3.15 \text{ V to } 3.45 \text{ V},$	I _{OL} = 100 μA			0.2	
	AO	V _{CC} = 3.15 V	$I_{OL} = 12 \text{ mA}$			0.4	
VOL		VCC = 3.13 V	$I_{OL} = 24 \text{ mA}$			0.5	V
VOL			$I_{OL} = 10 \text{ mA}$			0.2	v
	B port	V _{CC} = 3.15 V	$I_{OL} = 64 \text{ mA}$			0.4	
			I _{OL} = 100 mA				
II [‡]	Al and control inputs	V _{CC} = 3.45 V,	$V_{ } = 0 \text{ or } 5.5 \text{ V}$			±10	μΑ
. +	AO	V _{CC} = 3.45 V,	$V_0 = 0 \text{ to } 5.5 \text{ V}$			±10	
loz‡	B port	$V_{CC} = 3.45 \text{ V}, V_{REF} \text{ within } 0.6 \text{ V of } V_{TT},$	$V_0 = 0 \text{ to } 2.3 \text{ V}$			±10	μΑ
		V _{CC} = 3.45 V, I _O = 0,	Outputs high			40	
Icc	AO or B port	V_{I} (A-port or control input) = V_{CC} or GND,	Outputs low			40	mA
		V _I (B port) = V _{TT} or GND	Outputs disabled			40	
Δl _{CC} §		V _{CC} = 3.45 V, One AI or control input at V _{Cl} Other AI or control inputs at V _{CC} or GND	C – 0.6 V,			1.5	mA
C.	AI	V. 245 V or 0			3.5	4.5	~F
Ci	Control inputs	V _I = 3.15 V or 0			3.5	5.5	pF
Со	AO	V _O = 3.15 V or 0			5	6	pF
C _{io}	B port	V _O = 1.5 V or 0			8.5	10	pF

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

hot-insertion specifications for A port over recommended operating free-air temperature range

PARAMETER		TEST CONDITIONS						
l _{off}	$V_{CC} = 0$,	V_I or $V_O = 0$ to 5.5 V			10	μΑ		
lozpu	$V_{CC} = 0 \text{ to } 1.5 \text{ V},$	$V_0 = 0.5 V \text{ to } 3 V,$	OEBA = V _{CC}		±30	μΑ		
IOZPD	$V_{CC} = 1.5 \text{ V to } 0,$	$V_0 = 0.5 V \text{ to } 3 V,$	OEBA = VCC		±30	μΑ		

live-insertion specifications for B port over recommended operating free-air temperature range

PARAMETER		TEST CONDITION	S	MIN	MAX	UNIT			
l _{off}	$V_{CC} = 0$,	BIAS $V_{CC} = 0$,	V_I or $V_O = 0$ to 1.5 V		10	μΑ			
lozpu	$V_{CC} = 0$ to 1.5 V, BIAS V	= 0 to 1.5 V, BIAS V _{CC} = 0, V _O = 0.5 V to 1.5 V, OEAB = 0 and OEAB = V _{CC}							
lozpd	$V_{CC} = 1.5 \text{ V to } 0, \text{ BIAS } $	$CC = 1.5 \text{ V to } 0$, BIAS $V_{CC} = 0$, $V_{O} = 0.5 \text{ V to } 1.5 \text{ V}$, $\overline{OEAB} = 0$ and $OEAB = V_{CC}$							
Icc	V _{CC} = 0 to 3.15 V	BIAS V _{CC} = 3.15 V to 3.45 V,		5	mA				
(BIAS V _{CC})	V _{CC} = 3.15 V to 3.45 V	BIAS VCC = 3.15 V to 3.45 V,	VO (В роп) = 0 to 1.5 V		10	μΑ			
Vo	$V_{CC} = 0$,	BIAS $V_{CC} = 3.3 \text{ V}$,	IO = 0	0.95	1.05	V			
lo	$V_{CC} = 0$,	BIAS $V_{CC} = 3.15 \text{ V to } 3.45 \text{ V}$,	V_O (B port) = 0.6 V	-1		μΑ			

[‡] For I/O ports, the parameter IOZ includes the input leakage current.

[§] This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

timing requirements over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (unless otherwise noted)

			MIN	MAX	UNIT
f _{clock}	Clock frequency			175	MHz
t _W	Pulse duration	CLKAB/LEAB or CLKBA/LEBA	2.8		ns
		Al before CLKAB↑	1.1		
		Al before CLKBA↑	1.4		
	Catur time	B before CLKBA↑	1.3		
t _{su}	Setup time	Al before LEAB↓	1.3		ns
		Al before LEBA↓	2.1		
		B before LEBA↓	2.2		
		Al after CLKAB↑	0.3		
		Al after CLKBA↑	0.2		
4.	Hald time	B after CLKBA↑	0.2		
th	Hold time	Al after LEAB↓	0.3		ns
		Al after LEBA↓	0		
		B after LEBA↓	0		

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATET	MIN	TYP‡ MAX	UNIT
f _{max}				175		MHz
^t PLH	Al		01	3	7.1	
t _{PHL}	(buffer)	В	Slow	3	7	ns
t _{PLH}	Al		Face	2	5.6	ns
^t PHL	(buffer)	В	Fast	2	5.7	115
^t PLH	В	AO	_	1	5.4	ns
^t PHL	(buffer)	AO		1	4.8	113
^t PLH	LEAB	В	Class	4.2	8.5	ns
^t PHL	(latch mode)	D	Slow	3.2	7.3	113
^t PLH	LEAB	В	Fast	3.2	7.1	ns
^t PHL	(latch mode)	D	Fasi	2.8	6.3	113
^t PLH	LEAB	AO		2	6.6	ns
^t PHL	(latch mode)	AU	_	1.8	5.8	115
^t PLH	LEBA	AO	_	1	5.3	nc
^t PHL	(latch mode)	AO	_	1	4.5	ns
^t PLH	OFAR		Olava	3.8	7.5	20
^t PHL	OEAB	В	Slow	3.1	7	ns
^t PLH	OEAB	_	Foot	2.5	6	ns
^t PHL	UEAB	В	Fast	2.5	6	115
^t PLH	 OEAB		Class	3.5	7.5	nc
^t PHL	OEAB	В	Slow	3	7.2	ns
^t PLH	 OEAB		Foot	2.5	6	20
^t PHL	OEAB	В	Fast	2.5	6	ns
^t PZH	OEBA	AO		1	4.7	20
tPZL	OEBA	AO	_	1	3.4	ns
^t PHZ	OEBA	AO		1	5.2	ns
t _{PLZ}	OLBA	AO	_	1	4.9	115
^t PLH	CLKAB	В	Slow	4.4	8.6	ns
^t PHL	(flip-flop mode)	D	Slow	3.6	8	113
^t PLH	CLKAB	В	Foot	3.2	7.1	ns
^t PHL	(flip-flop mode)	В	Fast	3.1	6.8	115
tPLH	CLKAB	AO		2	6.9	ns
^t PHL	(flip-flop mode)	AO	_	1.8	6.4	115
^t PLH	CLKBA	AO		1	5.6	ns
^t PHL	(flip-flop mode)	AO	_	1	4.9	115
^t PLH	OMODE		Clavv	3.8	8.7	nc
^t PHL	OWIODE	В	Slow	3.2	8.2	ns
^t PLH	OMODE	В	Foot	2.7	7	ns
^t PHL	OWODE	В	Fast	2.7	7	110
^t PLH	IMODE	AO	_	1	5.6	ne
^t PHL	IIVIODE	AO		1	4.6	ns

[†] Slow (ERC = H) and Fast (ERC = L)

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, V_{TT} = 1.5 V and V_{REF} = 1 V for GTLP (see Figure 1) (continued)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATET	MIN	түр‡	MAX	UNIT	
^t PLH	LOOPBACK	AO		2.5		5.5		
^t PHL	LOOPBACK	AO	_	2		4.7	ns	
^t PLH	Al	AO		1		5.3	20	
t _{PHL}	(loopback high)	AO	_	1		4.9	ns	
	Rise time, B-port outputs (20	Slow	Slow 2.8					
t _r	Kise time, B-port outputs (20	Fast	1.5		ns			
	Rise time, AO (10% to 90%)			3.5				
	Fall time. B part outputs (909	// to 200/)	Slow		3			
t _f	Fail time, b-port outputs (60%	Fall time, B-port outputs (80% to 20%)			1.8		ns	
	Fall time, AO (90% to 10%)				1.5	Ī		

[†] Slow (ERC = H) and Fast (ERC = L)

skew characteristics over recommended ranges of supply voltage and operating free-air temperature (see Figure 1)§

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATET	MIN TYP‡	MAX	UNIT	
t _{sk(LH)} ¶	Al	В	Slow	0.5	1	ns	
t _{sk(HL)} ¶	Al	В	Slow	0.5	1	113	
t _{sk(LH)} ¶	Al	В	Fast	0.4	0.9	ns	
t _{sk(HL)} ¶	Al	Б	i ast	0.4	0.9	113	
t _{sk(LH)} ¶	CLKAB/LEAB	В	Slow	0.5	1	ns	
t _{sk(HL)} ¶	OLIVAD/LLAD	Б	Slow	0.5	1	115	
t _{sk(LH)} ¶	CLKAB/LEAB	В	Fast	0.4	0.9	ns	
t _{sk(HL)} ¶	OLIVAD/LLAD	Б	i ast	0.4	0.9	ns	
	Al	В	Slow	1.4	2		
$t_{sk(t)}^{\P}$, u		Fast	0.6	1.4	ns	
¹SK(t) "	CLKAB/LEAB	В	Slow	1.8	2.5	115	
	OLIVAD/LLAD		Fast	0.9	1.8		

[†] Slow (ERC = L) and Fast (ERC = H)

[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.


[‡] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] Actual skew values between the GTLP outputs could vary on the backplane due to the loading and impedance seen by the device.

 $^{100 \\} t_{Sk(LH)}/t_{Sk(HL)} \\ and t_{Sk(t)} \\ - \\ Output-to-output skew is defined as the absolute value of the difference between the actual propagation delay for all outputs with the same packaged device. The specifications are given for specific worst-case V_{CC} and temperature and apply to any outputs switching in the same direction either high to low [t_{Sk(HL)}] or low to high [t_{Sk(LH)}] or in opposite directions, both low to high and high to low [t_{Sk(t)}].$

SCES353C – JUNE 2001 – REVISED SEPTEMBER 2001

PARAMETER MEASUREMENT INFORMATION

- NOTES: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \approx 10 MHz, Z_{Ω} = 50 Ω , t_{f} \approx 2 ns, t_{f} \approx 2 ns.
 - D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

DISTRIBUTED-LOAD BACKPLANE SWITCHING CHARACTERISTICS

The preceding switching characteristics table shows the switching characteristics of the device into a lumped load (Figure 1). However, the designer's backplane application is probably a distributed load. The physical representation is shown in Figure 2. This backplane, or distributed load, can be closely approximated to a resistor inductance capacitance (RLC) circuit, as shown in Figure 3. This device has been designed for optimum performance in this RLC circuit. The following switching characteristics table shows the switching characteristics of the device into the RLC load, to help the designer to better understand the performance of the GTLP device in this typical backplane. See www.ti.com/sc/gtlp for more information.

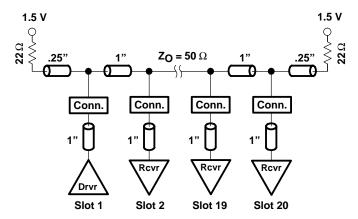


Figure 2. High-Drive Test Backplane

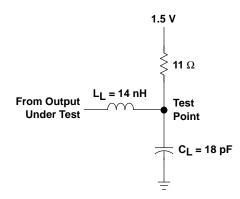


Figure 3. High-Drive RLC Network

SN74GTLP2034 8-BIT LVTTL-TO-GTLP ADJUSTABLE-EDGE-RATE REGISTERED TRANSCEIVER WITH SPLIT LYTTL PORT AND FEEDBACK PATH SCES353C - JUNE 2001 - REVISED SEPTEMBER 2001

switching characteristics over recommended operating conditions for the bus transceiver function (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	EDGE RATET	түр‡	UNIT
t _{PLH}	Al		Q1	5.7	
t _{PHL}	(buffer)	В	Slow	5.2	ns
^t PLH	Al	В	Foot	3.7	ns
t _{PHL}	(buffer)	В	Fast	4.1	115
^t PLH	LEAB	В	Class	5.9	ns
t _{PHL}	(latch mode)	Б	Slow	5.7	115
^t PLH	LEAB	I D I Foot L		4.8	ns
t _{PHL}	(latch mode)	Б	Fasi	4.8	115
^t PLH	CLKAB	В	Slow	5.7	ns
t _{PHL}	(flip-flop mode)	Б	210W	6.4	115
^t PLH	CLKAB	В	Fast	4.7	ns
t _{PHL}	(flip-flop mode)	Б	Fasi	5.2	113
^t PLH	OMODE	В	Slow	5.4	ns
^t PHL	OMODE	Ь	Slow	6	113
^t PLH	OMODE	В	Foot	4.5	ns
t _{PHL}	OMODE	Б	Fast	4.9	113
t _r	Rise time, B-port outputs (20%	% to 80%)	Slow	2	ns
۳	rase time, 5 port outputs (20)		Fast	1.1	113
t _f	Fall time, B-port outputs (80%	to 20%)	Slow	3.3	ns
Ч	Tall allie, D port outputs (00%)	7 (0 20 70)	Fast	2.3	ns

[†] Slow (ERC = H) and Fast (ERC = L)

 $[\]ddagger$ All typical values are at V_{CC} = 3.3 V, T_A = 25°C. All values are derived from TI-SPICE models.

PACKAGE OPTION ADDENDUM

20-Aug-2011

PACKAGING INFORMATION

www.ti.com

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
SN74GTLP2034ZQLR	ACTIVE	BGA MICROSTAR JUNIOR	ZQL	56	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

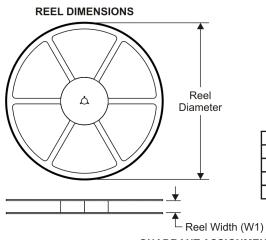
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

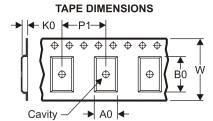
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

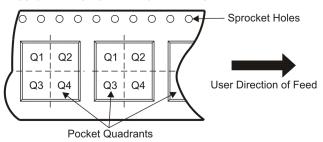
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

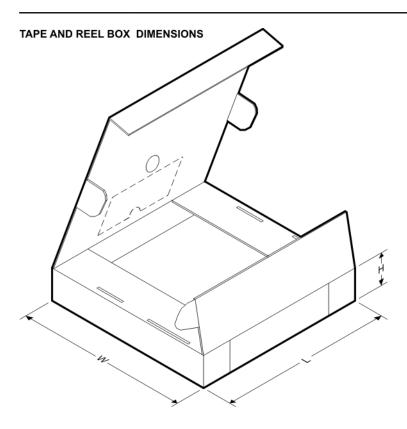

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 29-Jul-2011


TAPE AND REEL INFORMATION

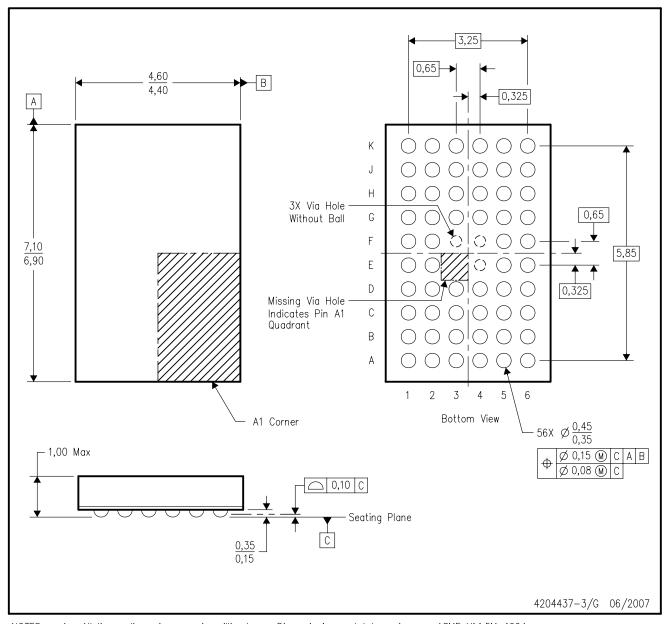
A0	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
SN74GTLP2034ZQLR	BGA MI CROSTA R JUNI OR	ZQL	56	1000	330.0	16.4	4.8	7.3	1.45	8.0	16.0	Q1

www.ti.com 29-Jul-2011



*All dimensions are nominal

I	Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
	SN74GTLP2034ZQLR	BGA MICROSTAR JUNIOR	ZQL	56	1000	333.2	345.9	28.6

ZQL (R-PBGA-N56)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.

- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MO-285 variation BA-2.
- D. This package is lead-free. Refer to the 56 GQL package (drawing 4200583) for tin-lead (SnPb).

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connctivity www.ti.com/wirelessconnectivity

TI E2E Community Home Page e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated