Small Signal MOSFET

20 V, 540 mA, Dual N-Channel

Features

- Low R_{DS(on)} Improving System Efficiency
- Low Threshold Voltage
- Small Footprint 1.6 x 1.6 mm
- ESD Protected Gate
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

Applications

- Load/Power Switches
- Power Supply Converter Circuits
- Battery Management
- Cell Phones, Digital Cameras, PDAs, Pagers, etc.

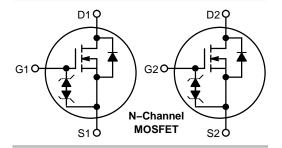
MAXIMUM RATINGS ($T_J = 25^{\circ}C$ unless otherwise noted.)

Parameter			Symbol	Value	Unit
Drain-to-Source Voltage			V_{DSS}	20	V
Gate-to-Source Voltage			V_{GS}	±7.0	V
Continuous Drain Current	Steady	$T_A = 25^{\circ}C$	I _D	540	mA
(Note 1)	State	State $T_A = 85^{\circ}C$		390	
Power Dissipation (Note 1)	Stea	dy State	P _D	250	mW
Continuous Drain Current	$t \le 5 s \qquad \begin{array}{c} T_A = 25^{\circ}C \\ \hline T_A = 85^{\circ}C \end{array}$		I_	570	mA
(Note 1)	1 = 33	$T_A = 85^{\circ}C$	I _D	410	
Power Dissipation (Note 1)	t :	≤ 5 s	P _D	280	mW
Pulsed Drain Current	t _p =	: 10 μs	I _{DM}	1.5	Α
Operating Junction and Storage Temperature			T _J , T _{STG}	–55 to 150	ŷ
Source Current (Body Diode)			IS	350	mA
Lead Temperature for Soldering Purposes (1/8" from case for 10 s)			TL	260	°C

THERMAL RESISTANCE RATINGS

Parameter	Symbol	Max	Unit
Junction-to-Ambient - Steady State (Note 1)	$R_{ heta JA}$	500	°C/W
Junction–to–Ambient – $t \le 5$ s (Note 1)		447	

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.


 Surface mounted on FR4 board using 1 in sq pad size (Cu. area = 1.127 in sq [1 oz] including traces).

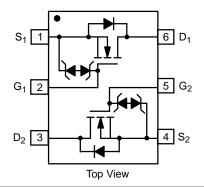
ON Semiconductor®

www.onsemi.com

V _{(BR)DSS}	R _{DS(on)} Typ	I _D Max (Note 1)		
20	400 mΩ @ 4.5 V			
	500 mΩ @ 2.5 V	540 mA		
	700 mΩ @ 1.8 V			

CASE 463A

TV M •


MARKING

TV = Specific Device Code

M = Date Code ■ Pb-Free Package

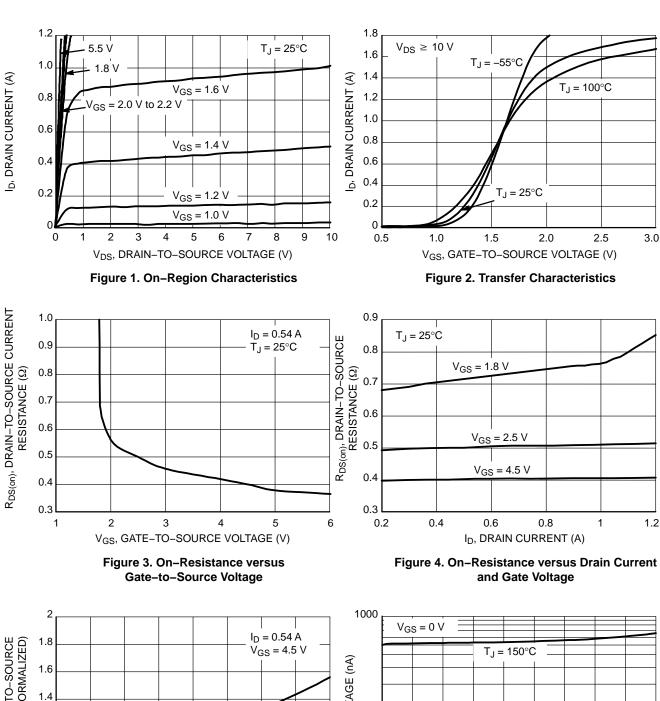
(Note: Microdot may be in either location)

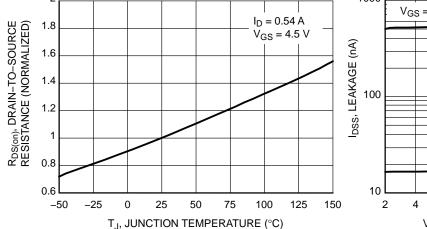
PINOUT: SOT-563

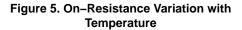
ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 4 of this data sheet.

ELECTRICAL CHARACTERISTICS ($T_J = 25$ °C unless otherwise noted.)


Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
OFF CHARACTERISTICS	•						
Drain-to-Source Breakdown Voltage	V _{(BR)DSS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$		20	_	_	V
Drain-to-Source Breakdown Voltage Temperature Coefficient	V _{(BR)DSS} /T _J	-		-	14	_	mV/°C
Zero Gate Voltage Drain Current	te Voltage Drain Current V _{GS} = 0 V		T _J = 25°C	-	_	1.0	μΑ
	V_{DSS} $V_{DS} = 16 \text{ V}$	T _J = 125°C	-	-	5.0		
Gate-to-Source Leakage Current	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 4$	1.5 V	-	-	±5.0	μΑ
ON CHARACTERISTICS (Note 3)							
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}, I_{D} = 250$	μΑ	0.45	_	1.0	V
Negative Threshold Temperature Coefficient	V _{GS(TH)} /T _J	-		-	2.0	_	mV/°C
Drain-to-Source On Resistance		$V_{GS} = 4.5 \text{ V}, I_D = 540$) mA	-	0.4	0.55	Ω
	R _{DS(on)}	$V_{GS} = 2.5 \text{ V}, I_D = 500 \text{ mA}$		-	0.5	0.7	1
	$V_{GS} = 1.8 \text{ V}, I_D = 350 \text{ mA}$) mA	-	0.7	0.9	
Forward Transconductance	9FS	V _{DS} = 10 V, I _D = 540 mA			1.0	_	S
CHARGES AND CAPACITANCES	•						
Input Capacitance	C _{ISS}	V _{GS} = 0 V, f = 1.0 MHz, V _{DS} = 16 V			80	150	pF
Output Capacitance	Coss				13	25	1
Reverse Transfer Capacitance	C _{RSS}				10	20	
Total Gate Charge	Q _{G(TOT)}			-	1.5	2.5	nC
Threshold Gate Charge	Q _{G(TH)}	.,,	540 A	_	0.1	-	1
Gate-to-Source Charge	Q _{GS}	$V_{GS} = 4.5 \text{ V}, V_{DS} = 10 \text{ V}; I_D = 540 \text{ mA}$		_	0.2	-	1
Gate-to-Drain Charge	Q_{GD}	1			0.35	-	
SWITCHING CHARACTERISTICS, $V_{GS} = V$	Note 4)						
Turn-On Delay Time	t _{d(ON)}	V_{GS} = 4.5 V, V_{DD} = 10 V, I_{D} = 540 mA, R_{G} = 10 Ω		_	6.0	-	ns
Rise Time	t _r			_	4.0	-	
Turn-Off Delay Time	t _{d(OFF)}			-	16	-	
Fall Time	t _f	1			8.0	-	
DRAIN-SOURCE DIODE CHARACTERISTIC	s						
Forward Diode Voltage	V _{SD}	V _{GS} = 0 V.	T _J = 25°C	_	0.7	1.2	V
		$V_{GS} = 0 \text{ V},$ $I_{S} = 350 \text{ mA}$ $I_{J} = 25$		_	0.6	_	
Reverse Recovery Time	t _{RR}	$V_{GS} = 0 \text{ V}, d_{ISD}/d_t = 100 \text{ A/}\mu\text{s}, I_S = 350 \text{ mA}$		_	6.5	-	ns


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


2. Surface—mounted on FR4 board using 1 in. sq. pad size (Cu. area = 1.127 in sq [1 oz] including traces).

- Pulse Test: pulse width ≤ 300 μs, duty cycle ≤ 2%.
 Switching characteristics are independent of operating junction temperatures.

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)

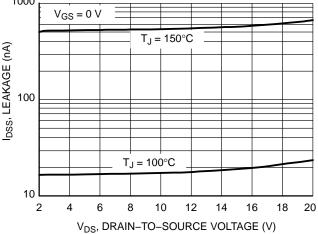
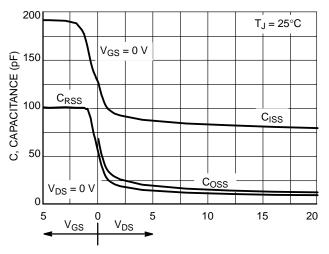
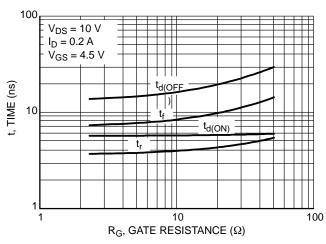



Figure 6. Drain-to-Source Leakage Current versus Voltage

TYPICAL PERFORMANCE CURVES (T_J = 25°C unless otherwise noted)



 $^{\rm O}$ $^{\rm R}$ $^{\rm R}$ $^{\rm R}$ $^{\rm S}$ $^{\rm S}$ $^{\rm O}$ $^{\rm SO}$ DRAIN–TO–SOURCE VOLTAGE (V) V_{GS}, GATE-TO-SOURCE VOLTAGE (V) Q_T V_{DS} V_{GS} Q_{GD} Q_{GS} $I_D = 0.54 A$ $\overline{T_J} = 25^{\circ}C$ 0 0 0.2 0.4 0.6 8.0 1.2 1.4 1.6 Q_g, TOTAL GATE CHARGE (nC)

GATE-TO-SOURCE OR DRAIN-TO-SOURCE VOLTAGE (V)

Figure 7. Capacitance Variation

Figure 8. Gate-to-Source and Drain-to-Source Voltage versus Total Charge

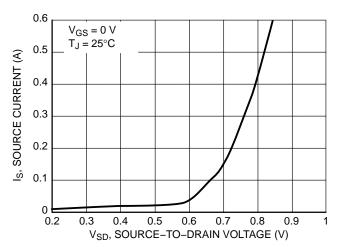
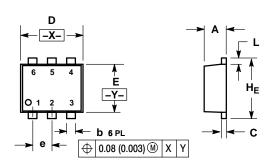


Figure 9. Resistive Switching Time Variation versus Gate Resistance

Figure 10. Diode Forward Voltage versus Current

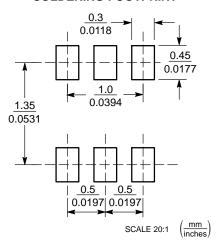

ORDERING INFORMATION

Device	Package	Shipping		
NTZD3154NT1G				
NTZD3154NT1H	SOT-563 (Pb-Free)	4000 / Tana & Basil		
NTZD3154NT2G		4000 / Tape & Reel		
NTZD3154NT2H				
NTZD3154NT5G		0000 / Tana 8 Dagi		
NTZD3154NT5H		8000 / Tape & Reel		

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

PACKAGE DIMENSIONS

SOT-563, 6 LEAD CASE 463A ISSUE F



NOTES:

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETERS
 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.021	0.023
b	0.17	0.22	0.27	0.007	0.009	0.011
С	0.08	0.12	0.18	0.003	0.005	0.007
D	1.50	1.60	1.70	0.059	0.062	0.066
E	1.10	1.20	1.30	0.043	0.047	0.051
е		0.5 BS0			0.02 BS0	
L	0.10	0.20	0.30	0.004	0.008	0.012
HF	1.50	1.60	1.70	0.059	0.062	0.066

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and iii) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81–3–5817–1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative