Dual Non-Inverting Schmitt Trigger Buffer The NL27WZ17 is a high performance dual buffer operating from a 1.65 to 5.5 V supply. At $V_{\rm CC}$ = 3.0 V, high impedance TTL compatible inputs significantly reduce current loading to input drivers while the TTL compatible outputs offer improved switching noise performance. #### **Features** - Extremely High Speed: t_{PD} 2.0 ns (typical) at $V_{CC} = 5.0 \text{ V}$ - Designed for 1.65 V to 5.5 V V_{CC} Operation - Overvoltage Tolerant Inputs - LVTTL Compatible Interface Capability with 5.0 V TTL Logic with V_{CC} = 3.0 V (2.7–3.3) - LVCMOS Compatible - 24 mA Balanced Output Sink and Source Capability at $V_{CC} = 3.0 \text{ V}$ - Near Zero Static Supply Current Substantially Reduces System Power Requirements - Chip Complexity: FET = 72; Equivalent Gate = 18 - Pb-Free Package is Available Figure 1. Pinout (Top View) Figure 2. Logic Symbol # **PIN ASSIGNMENT** | | JOI GITTINE ITT | |---|-----------------| | 1 | IN A1 | | 2 | GND | | 3 | IN A2 | | 4 | OUT Y2 | | 5 | V _{CC} | | 6 | OUT Y1 | # **FUNCTION TABLE** | A Input | ▼ Output | |---------|----------| | L | L | | Н | Н | 1 # ON Semiconductor® http://onsemi.com SC-88/SOT-363/SC-70 DF SUFFIX CASE 419B ### **MARKING DIAGRAM** MX = Specific Device Code I = Date Code* = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation may vary depending upon manufacturing location. ### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |---------------|--------------------|-----------------------| | NL27WZ17DFT2 | SC-88 | 3000/Tape & Reel | | NL27WZ17DFT2G | SC-88
(Pb-Free) | 3000/Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ### **MAXIMUM RATINGS** | Symbol | Characteris | tics | Value | Unit | |---------------------------|---|--|---------------------------|------| | V _{CC} | DC Supply Voltage | | -0.5 to +7.0 | V | | VI | DC Input Voltage | | $-0.5 \le V_{I} \le +7.0$ | V | | Vo | DC Output Voltage Out | tput in Z or LOW State (Note 1) | $-0.5 \le V_{O} \le 7.0$ | V | | I _{IK} | DC Input Diode Current | -50 | mA | | | I _{OK} | DC Output Diode Current | V _O < GND | -50 | mA | | Io | DC Output Sink Current | | ±50 | mA | | Icc | DC Supply Current per Supply Pin | | ±100 | mA | | I _{GND} | DC Ground Current per Ground Pin | | ±100 | mA | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | P _D | Power Dissipation in Still Air | | 200 | mW | | $\theta_{\sf JA}$ | Thermal Resistance | | 333 | °C/W | | TL | Lead Temperature, 1 mm from case for 10 s | | 260 | °C | | TJ | Junction Temperature under Bias | | + 150 | °C | | V _{ESD} | ESD Withstand Voltage | Human Body Model (Note 2)
Machine Model (Note 3)
Charged Device Model (Note 4) | > 2000
150
N/A | V | | I _{Latch-}
Up | Latch-Up Performance Above V _{CC} ar | nd Below GND at 85°C (Note 5) | ±500 | mA | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - I_O absolute maximum rating must be observed. Tested to EIA/JESD22-A114-A Tested to EIA/JESD22-A115-A - 4. Tested to JESD22-C101-A - 5. Tested to EIA/JESD78 ### RECOMMENDED OPERATING CONDITIONS | Symbol | Para | Min | Max | Unit | | |-----------------|------------------------------------|---|-------------|----------------------------------|------| | V _{CC} | Supply Voltage | Operating
Data Retention Only | 1.65
1.5 | 5.5
5.5 | ٧ | | VI | Input Voltage | | 0 | 5.5 | V | | Vo | Output Voltage | (High or LOW State) | 0 | 5.5 | V | | T _A | Operating Free-Air Temperature | | -55 | +125 | °C | | Δt/ΔV | Input Transition Rise or Fall Rate | V_{CC} = 2.5 V ±0.2 V
V_{CC} = 3.0 V ±0.3 V
V_{CC} = 5.0 V ±0.5 V | 0
0
0 | No Limit
No Limit
No Limit | ns/V | # DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | T _A | $T_A = 25^{\circ}C$ | | | $-55^{\circ}\text{C} \leq \text{T}_{\text{A}} \leq 125^{\circ}\text{C}$ | | |------------------|--|--|---|---|---|--|---|---|------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Unit | | V _T + | Positive Input
Threshold Voltage | | 1.65
2.3
2.7
3.0
4.5
5.5 | 0.6
1.0
1.2
1.3
1.9
2.2 | 1.0
1.5
1.7
1.9
2.7
3.3 | 1.4
1.8
2.0
2.2
3.1
3.6 | 0.6
1.0
1.2
1.3
1.9
2.2 | 1.4
1.8
2.0
2.2
3.1
3.6 | V | | V _T - | Negative Input
Threshold Voltage | | 1.65
2.3
2.7
3.0
4.5
5.5 | 0.2
0.4
0.5
0.6
1.0 | 0.5
0.75
0.87
1.0
1.5
1.9 | 0.8
1.15
1.4
1.5
2.0
2.3 | 0.2
0.4
0.5
0.6
1.0 | 0.8
1.15
1.4
1.5
2.0
2.3 | V | | V _H | Input Hysteresis
Voltage | | 1.65
2.3
2.7
3.0
4.5
5.5 | 0.1
0.25
0.3
0.4
0.6
0.7 | 0.48
0.75
0.83
0.93
1.2
1.4 | 0.9
1.1
1.15
1.2
1.5
1.7 | 0.1
0.25
0.3
0.4
0.6
0.7 | 0.9
1.1
1.15
1.2
1.5 | V | | V _{OH} | High-Level Output
Voltage
V _{IN} = V _{IH} or V _{IL} | $\begin{split} I_{OH} &= -100 \ \mu A \\ I_{OH} &= -3.0 \ mA \\ I_{OH} &= -8.0 \ mA \\ I_{OH} &= -12 \ mA \\ I_{OH} &= -16 \ mA \\ I_{OH} &= -24 \ mA \\ I_{OH} &= -32 \ mA \end{split}$ | 1.65-5.5
1.65
2.3
2.7
3.0
3.0
4.5 | V _{CC} -0.1
1.29
1.9
2.2
2.4
2.3
3.8 | V _{CC} 1.52 2.1 2.4 2.7 2.5 4.0 | | V _{CC} -0.1
1.29
1.9
2.2
2.4
2.3
3.8 | | V | | V _{OL} | Low-Level Output
Voltage
V _{IN} = V _{IH} or V _{IL} | $\begin{split} I_{OL} &= 100 \; \mu\text{A} \\ I_{OL} &= 4.0 \; \text{mA} \\ I_{OL} &= 8.0 \; \text{mA} \\ I_{OL} &= 12 \; \text{mA} \\ I_{OL} &= 16 \; \text{mA} \\ I_{OL} &= 24 \; \text{mA} \\ I_{OL} &= 32 \; \text{mA} \end{split}$ | 1.65-5.5
1.65
2.3
2.7
3.0
3.0
4.5 | | 0.08
0.2
0.22
0.28
0.38
0.42 | 0.1
0.24
0.3
0.4
0.4
0.55
0.55 | | 0.1
0.24
0.3
0.4
0.4
0.55
0.55 | V | | I _{IN} | Input Leakage Current | V _{IN} = V _{CC} or GND | 0 to 5.5 | | | ±0.1 | _ | ±1.0 | μΑ | | I _{OFF} | Power Off-Output
Leakage Current | V _{OUT} = 5.5 V | 0 | | | 1.0 | | 10 | μΑ | | I _{CC} | Quiescent Supply
Current | V _{IN} = V _{CC} or GND | 5.5 | | | 1.0 | | 10 | μА | # AC ELECTRICAL CHARACTERISTICS (Input $t_r = t_f = 3.0 \text{ ns}$) | | | | V_{CC} $T_A = 25^{\circ}C$ $-55^{\circ}C \le T_A \le 125^{\circ}C$ | | | T _A = 25°C | | A ≤ 125°C | | |--------------------------------------|-----------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Unit | | t _{PLH}
t _{PHL} | Propagation Delay
Input A to Y | R_L = 1.0 M Ω , C_L = 15 pF | 1.65
1.8
2.5 ± 0.2
3.3 ± 0.3
5.0 ± 0.5 | 2.0
2.0
1.0
1.0
0.5 | 9.1
7.6
5.0
3.7
3.1 | 15
12.5
9.0
6.3
5.2 | 2.0
2.0
1.0
1.0
0.5 | 15.6
13
9.5
6.5
5.5 | ns | | | | $R_L = 500 \Omega, C_L = 50 pF$ | 3.3 ± 0.3
5.0 ± 0.5 | 1.5
0.8 | 4.4
3.7 | 7.2
5.9 | 1.5
0.8 | 7.5
6.2 | | # **CAPACITIVE CHARACTERISTICS** | Symbol | Parameter Condition | | Parameter Condition Typical | | | | |-----------------|----------------------------------|--|-----------------------------|----|--|--| | C _{IN} | Input Capacitance | $V_{CC} = 5.5 \text{ V},$
$V_I = 0 \text{ V or } V_{CC}$ | 7.0 | pF | | | | C _{PD} | Power Dissipation
Capacitance | $ \begin{array}{l} 10 \text{ MHz, V}_{CC} = 3.3 \text{ V, V}_{I} = 0 \text{ V} \\ \text{or V}_{CC} \ 10 \text{ MHz, V}_{CC} = 5.5 \text{ V,} \\ \text{V}_{I} = 0 \text{ V or V}_{CC} \end{array} $ | 9.0
11 | pF | | | Figure 3. Switching Waveforms A 1-MHz square input wave is recommended for propagation delay tests. Figure 4. Test Circuit Figure 5. Typical Input Threshold, $V_{T}+$, $V_{T}-$ versus Power Supply Voltage Figure 6. Typical Schmitt-Trigger Applications ### PACKAGE DIMENSIONS ### SC-88/SOT-363/SC70-6 **DF SUFFIX** CASE 419B-02 **ISSUE W** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - 2. CONTROLLING DIMENSION: INCH. 3. 419B-01 OBSOLETE, NEW STANDARD 419B-02. | | MIL | LIMETE | ERS | | INCHES | 3 | |-----|------|---------|------|-------|----------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.80 | 0.95 | 1.10 | 0.031 | 0.037 | 0.043 | | A1 | 0.00 | 0.05 | 0.10 | 0.000 | 0.002 | 0.004 | | А3 | | 0.20 RE | F | | 0.008 RE | EF | | b | 0.10 | 0.21 | 0.30 | 0.004 | 0.008 | 0.012 | | С | 0.10 | 0.14 | 0.25 | 0.004 | 0.005 | 0.010 | | D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 | | Е | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 | | е | - | 0.65 BS | С | 0 | .026 BS | С | | L | 0.10 | 0.20 | 0.30 | 0.004 | 0.008 | 0.012 | | HE | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 | ### **SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered readerlands of semiconductor Components industries, Ite (SCILLC) solicit esserves the right to make changes without further holice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free Japan: ON Semiconductor, Japan Customer Focus Center 2-9-1 Kamimeguro, Meguro-ku, Tokyo, Japan 153-0051 Phone: 81-3-5773-3850 ON Semiconductor Website: http://onsemi.com Order Literature: http://www.onsemi.com/litorder For additional information, please contact your local Sales Representative