

LM4930 Boomer™ Audio Power Amplifier Series Audio Subsystem with Stereo Headphone & Mono Speaker Amplifiers

Check for Samples: LM4930

FEATURES

- 16-bit Resolution 48kHz Stereo DAC
- 16-bit Resolution 8kHz Voice Codec
- I²S Digital Audio Data Serial Interface
- **Two-wire Serial Control Interface**
- **PCM Voice Audio Data Serial Interface**
- 25mW/channel Stereo Headphone Amplifier
- 330mW Mono 8 Ω Amplifier (at AV_{DD} = 3.0V)
- 32-step Volume Control for Audio Output Amplifiers
- No Snubber Networks or Bootstrap Capacitors are Required by the Headphone or Hands-free Amplifiers
- **Digital Sidetone Generation with Adjustable** • Attenuation
- Gain Controllable Headphone Amp, Mono BTL ٠ Amp, Mic Preamp
- Available in the 36-bump DSBGA and 44-lead **WQFN** Packages

APPLICATIONS

- Mobile Phones
- Mobile/low Power Audio Appliances
- **PDAs**

KEY SPECIFICATIONS

- PLS OUT at AV_{DD} = 5.0V, 8 Ω 1% THD+N 1W (typ)
- PLS OUT at $AV_{DD} = 3.0V$, $8\Omega \ 1\% \ THD+N$ 330mW (typ)
- PH/P OUT at $AV_{DD} = 3.0V$, $32\Omega 0.5\%$ THD+N 25mW (typ)
- Supply Voltage Range
 - DV_{DD}⁽¹⁾ 2.6V to 4.5V
 - AV_{DD}⁽¹⁾ 2.6V to 5.5V
- Total Shutdown Current 2µA (typ)
- PSRR at 217Hz, $AV_{DD} = 3V 50dB$ (typ)
- (1) Best operation is achieved by maintaining $3.0V \le AV_{DD} \le 5.0$ and $3.0V \le DV_{DD} \le 3.6V$. AV_{DD} must be equal to or greater than DV_{DD}. for proper operation.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Boomer is a trademark of Texas Instruments Incorporated. All other trademarks are the property of their respective owners.

DESCRIPTION

The LM4930 is an integrated audio subsystem that supports voice and digital audio functions. The LM4930 includes a high quality I²S input stereo DAC, a voice band codec, a stereo headphone amplifier and a high-power mono speaker amplifier. It is primarily designed for demanding applications in mobile phones and other portable devices.

The LM4930 features an I²S serial interface for full range audio, a 16-bit PCM bi-directional serial interface for the voice band codec and an two-wire interface for control. The full range music path features an SNR of 86dB with a 16-bit 48kHz input. The stereo DAC can also be used while the voice codec is in use. The headphone amplifier delivers $25 \text{mW}_{\text{RMS}}$ to a 32Ω single-ended stereo load with less than 0.5% distortion (THD+N) when $AV_{DD} = 3V$. The mono speaker amplifier delivers up to 330mW into an 8Ω load with less than 1% distortion when $AV_{DD} = 3V.$

The LM4930 employs advanced techniques to reduce power consumption, to reduce controller overhead and to eliminate click and pop. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. It is, therefore, ideally suited for mobile phone and other low voltage applications where minimal power consumption is a primary requirement.

www.ti.com

Typical Application

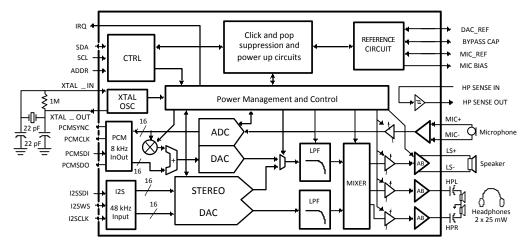


Figure 1. Typical I²S + Voice Codec Application Circuit for Mobile Phones

Connection Diagrams

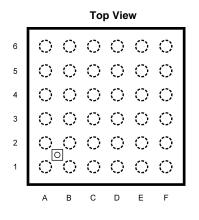


Figure 2. 36 - Bump DSBGA Package See Package Number YZR0036KRA

PCM_SDO PCM_CLK PCM_SDI I2S_CLK I2S_DATA DGND_X DV_{DD}_X WS ç RQ 12S_ 44 42 41 40 43 \bigcirc

Top View



Figure 3. 44 - Lead WQFN Package See Package Number NJN0044A

www.ti.com

Pin Descriptions

Pin No.	Pin Name	Description
A1	MIC_P	Microphone positive differential input
A2	MIC_N	Microphone negative differential input
A3	AVDD_MIC	Analog V _{dd} for microphone preamp
A4	DAC_REF	D/A converter reference voltage
A5	SDA	Two-wire control interface serial data pin
A6	SCL	Two-wire control interface serial clock pin
B1	AGND_MIC	Analog ground for microphone preamp
B2	MIC_BIAS	Microphone bias supply output (2V)
B3	MIC_REF	Internal fixed-reference bypass capacitor decoupling pin
B4	ADDR	Control bus address select pin
B5	PCM_SDI	PCM serial data in
B6	PCM_CLK	PCM Serial clock pin
C1	AVDD_HP	Analog V _{dd} for headphone amplifier
C2	NC	No Connect
C3	BYPASS	Half-supply bypass capacitor decoupling pin
C4	PCM_SYNC	PCM Frame sync pin
C5	I2S_DATA	I ² S serial data input
C6	DGND_D	Digital ground
D1	HP_L	Headphone amplifier connection (Left)
D2	HP_R	Headphone amplifier connection (Right)
D3	HPSENSE_IN	Connection for sense pin of headphone jack
D4	PCM_SDO	PCM serial data out
D5	I2S_CLK	I ² S serial bit clock
D6	DVDD_D	Digital V _{dd}
E1	AGND_HP	Analog ground for headphone amplifier
E2	LS-	Loudspeaker amplifier BTL negative out (-)
E3	HPSENSE_OUT	Logic output pin to indicate headphone connection status. Outputs logic high when HPSENSE_IN is high and outputs logic low when HPSENSE_IN is low. See Figure 50 for suggested application circuit
E4	IRQ	LM4930 mode status indicator pin
E5	I2S_WS	I ² S word select
E6	XTAL_OUT	Negative feedback source for external crystal MCLK
F1	AGND_LS	Analog ground for loudspeaker amplifier
F2	LS+	Loudspeaker amplifier BTL positive out (+)
F3	AVDD_LS	Analog V _{DD} for loudspeaker amplifier
F4	DGND_X	Digital ground
F5	DVDD_X	Digital V _{DD}
F6	MCLK/XTAL_IN	12.288MHz or 24.576MHz Master Clock from crystal (via XTAL OUT) or external source

System Control Registers

The LM4930 is controlled with a two-wire serial interface. This interface is used to configure the operating mode, digital interfaces, and delta-sigma modulators. The LM4930 is controlled by writing information into a series of write-only registers, each with its own unique 7 bit address. The following registers are programmable:

	NFIGURATIO	, , ,	ì				1									
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Address	Register		Desc	ription												
3:0	MODE		mode		cted the	e [`] LM49	30 will	change	operati	on silei	ntly and	will re	-config	eration. ure the p		a new
			Mode	!		o Speal lifier So			Headphone Left Source			lphon ce	e Right	Com	nment	
			0000		None			None			None)		Pow	erdown	mode
					None			None			None)		Stan	dby mo	de
					Voice	•		None			None	9		Mon mod	o speal e	ker
		0011	0011 None			Voice			Voice	e		Hea mod	dphone e	call		
			0100		Voice			Voice			Voice	Э			Conference call mode	
			0101		Audio (L+R)			None	None			None			L+R mixed to mo speaker	
		0110 None				Audio	(Left)		Audio	o (Righ	nt)	Hea audi		e stereo		
		0111 Audio (L+R)			Audio	Audio (Left)		Audio (Right)			spea	L+R mixed to mo speaker + stereo headphone audio				
			1000		Audic	(Left)		Voice			Voice			Mixe	Mixed Mode	
			1001		Voice	+ Aud	o (Left)	Voice	Voice			Voice			Mixed mode	
			1010		Voice	•		Audio (Left)			Audio (Left)			Mixe	Mixed Mode	
4	SOFT_RES	ET	Reset	s the L	M4930,	exclud	ing the	control	registe	rs						
5	PCM_LONG	3	If set	the PCI	M interf	ace use	es a lor	g frame	sync.(3)						
6	PCM_COM	PANDED	If set	the 8 M	SBs ar	e presu	imed to	be con	npande	d data	and the	8 LSE	s are iq	nored. ⁽	3)	
7	PCM_LAW		lf set,	the cor	npande	ed G71	I data i	s set to	be A-la	w, else	⊧µ-law	is assu	umed ⁽³⁾			
8:9	PCM_SYNC	_MODE	Sets ? latter	I (00h), frames.	2 (01h (3)) or 4(1	0h) 16	bit fram	es per	sync. T	he PCN	M_SDC) pin is	tri-state	d durin	g the
10	PCM_ALWA	PCM_ALWAYS_ON This				et if and als in al						/hen se	et, the L	.M4930	will driv	/e the
11	I2S_M/S		I2S m	aster o	r slave	select.	lf set th	en I2S	= mast	er. Cle	ared = s	slave				
12	I2S_RES		I2S re	solution	n select	t. If set	then 32	bits pe	r frame	. If clea	ared the	en 16 b	its per	frame		
13	RSVD		RESE	RVED	4)											
14	RSVD		RESE	RVED	4)											
15	RSVD		RESE		4)											

Table 1. BASIC CONFIGURATION Registers⁽¹⁾

(1) This register is used to configure the I2S and PCM interfaces as well as the 48kHz DAC module. The 7 bit address for the BASICCONFIG register is XX10000.

(X = 0 if ADDR is set to logic 0)

(X = 1 if ADDR is set to logic 1) With the exception of Standby Mode, rapid switching between modes should be avoided. Rapid switching between modes will not (2) ensure that the desired mode will be activated.

It is recommended to alter this bit only while the part is in Powerdown Mode. (3)

(4) Reserved bits should be set to zero when programming the associated register.

SNAS212C-JULY 2003-REVISED MAY 2013

Table 2. VOICE/TEST CONFIG Registers⁽¹⁾

VOICETES	TCONFIG (XX10001).	(Set = lo	ogic 1,	Clear =	logic ())									
BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Address	Register		Dese	cription												
0	CLASS				ures the out into			with an	externa	l class	D or lin	ear am	plifier a	and turns	s the B	TL
4:1	SIDESTO	NE_ATTEN	Prog	rams th	e atteni	uation o	of the d	ligital sic	letone.	Attenu	ation is	set as	follows			
			4:1		Sider Atter	tone nuation	1	4:1			Sidetone Attenuation					
			0000	0000 Mute				1000			-9dB	5				
			0001		-30dE	3		1001			-6dB	5				
			0010	0 -27dB 1010 -3dB												
			0011	-24dB 1011 0dB												
			0100	0 -21dB 1100 Mute												
			0101		-18dE	3		1101			Mute)				
			0110)	-15dE	3		1110			Mute	•				
			0111		-12dE	3		1111			Mute	•				
5	AUTOSID	θE	may mon	not be o speak	desirabl	e. If se 0, 0100	t, the s), 1001	ith the m idetone , and 10 ter	is alwa	ys mut	ed in mo	odes w	hen vo	ce is pla	ayed or	n the
6	CLOCK_[VIV	If set	t, allows	for the	use of	a 24.5	76MHz	crystal.	Defaul	t setting	g is for	12.288	MHz cry	stal. ⁽²⁾	
7	ZXD_DIS	ABLE			zero ci zero cr		detect	in the s	tereo D	AC to	ensure i	immedi	ate mo	de chan	ges rat	her than
8:9	RSVD		RES	ERVED	(4)											
10:11	CAP_SIZ	E	Set t perfo	o accor ormance	nodate e. Value	differen is set a	it bypa as follo	ss capao ws: ⁽²⁾	citor va	lues to	give co	rrect tu	rn-off d	elay and	d click/	оор
			10:1	1	Delay	y		Вура	ass Ca	pacitor	Size					
			00		25ms	6		0.1µl	=							
			01		50ms	6		0.39	١F							
			10		85ms	6		1µF								
			11	11 RESERVED RESERVED												
12	ZXDS_SL	OW	If set	If set, this forces the stereo DAC outputs to wait for a zero crossing before powering down												
13	MUTE_LS	6	If set	set, mutes the loudspeaker amplifier in any mode where it is not already muted												
14	MUTE_H	Ρ	If set	t, mutes	the hea	adphon	e amp	lifier in a	ny moo	de whe	re it is n	ot alrea	ady mu	ted		
15	MUTE_M	IC	If set	t, mutes	the mid	crophor	ne prea	mp								

This register configures the voiceband codec, sidetone attenuation, and selected control functions. The 7 bit address for the VOICE TESTCONFIG register is XX10001. (X = 0 if ADDR is set to logic 0) (X = 1 if ADDR is set to logic 1) It is recommended to alter this bit only while the part is in Powerdown Mode. To ensure a successful transistion into Powerdown Mode, ZXD_DISABLE must be set whenever there is no audio input signal present. Reserved bits should be set to zero when programming the associated register. (1)

(2)

(3)

(4)

SNAS212C - JULY 2003-REVISED MAY 2013

Table 3. GAIN CONFIG Registers⁽¹⁾

BIT	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
RESET	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Address	Register		Desc	ription													
4:0	LOUDSPKF	R_GAIN		-		of the lo	udspea	ker amp	lifier. G	ain is	set as fe	ollows	:				
			4:0		-		r Gain	1				Loudspeaker Gain					
			0000	0	-34.5	dB		10000 -10.5dB									
			0000	1	-33dE	3		10001			-9dB					-	
			0001	0	-31.5dB 10)		-7.5d	В				-	
		0001	1	-30dE	3		10011			-6dB							
			0010	0	-28.5	dB		10100)		-4.5d	В					
		0010	1	-27dB			10101			-3dB							
			0011	0 -25.5dB 1011				10110)		-1.5d	В					
			0011	1	-24dE	3		10111			0dB						
			0100	0	-22.5	dB		11000)		1.5dE	3					
			0100	1	-21dE	3		11001			3dB						
			0101	0	-19.5	dB		11010			4.5dE	3					
			0101	1	-18dE	3		11011			6dB						
			0110	0	-16.5	dB		11100			7.5dE	3					
			0110	1	-15dE	3		11101			9dB						
			0111	0	-13.5	dB		11110			10.50	B					
			0111	1	-12dB 11111					12dB							
9:5	HP_GAIN		Prog	Programs the gain of the headphone amplifier. Gain is set as follows:													
			9:5		Head	phone	Gain	9:5			Headphone Gain						
			0000	0	-46dE	3		10000			-22.5dB						
			0000	1	-45dE	3		10001			-21dB						
			0001	0	-43.5	dB		10010			-19.5	dB					
			0001	1	-42db)		10011			-18dB						
			0010	0	-40.5	dB		10100			-16.5	dB					
			0010	1	-39dE	3		10101			-15dE	3					
			0011	0	-37.5	dB		10110			-13.5	dB					
			0011	1	-36dE	3		10111			-12d	3					
			0100		-34.5			11000			-10.5	dB					
			0100		-33dE			11001			-9dB						
			0101		-31.5			11010			-7.5d						
			0101		-30dE			11011			-6dB						
			0110		-28.5	dB		11100			-4.5d	В					
			0110		-27dE			11101			-3dB						
			0111		-25.5			11110			-1.5d	В					
		0111	01111 -24dB 11111 0dB														

(1) This register is used to control the gain of the headphone amplifier, the loudspeaker amplifier, and the microphone preamplifier. The 7 bit address for the GAINCONFIG register is XX10010.

$$(X = 0 \text{ if ADDR is set to logic } 0)$$

(X = 1 if ADDR is set to logic 1)

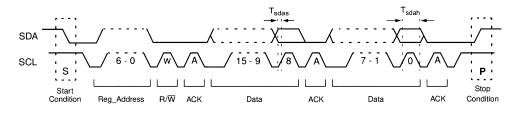
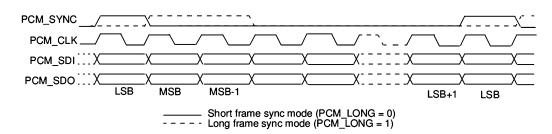
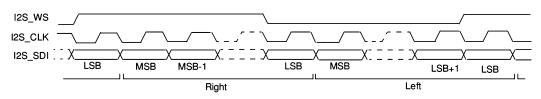

www.ti.com

		Table 3. GAIN CO	NFIG Registers ⁽¹⁾ (continued)	
		13:10	Mic Preamp Gain	
		0000	17dB	
		0001	19dB	
		0010	21dB	
		0011	23dB	
		0100	25dB	
		0101	27dB	
		0110	29dB	
		0111	31dB	
		1000	33dB	
		1001	35dB	
		1010	37dB	
		1011	39dB	
		1100	41dB	
		1101	43dB	
		1110	45dB	
		1111	47dB	
15:14	RSVD	RESERVED ⁽²⁾	· · · · · · · · · · · · · · · · · · ·	


Table 3. GAIN CONFIG Registers⁽¹⁾ (continued)

(2) Reserved bits should be set to zero when programming the associated register.


Timing Diagrams

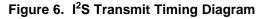


Figure 4. Two-Wire Control Interface Timing Diagram

www.ti.com

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings⁽¹⁾⁽²⁾⁽³⁾

	0	
Analog Supply Voltage		6.0V
Digital Storage Supply Volta	ge	6.0V
Storage temperature		-65°C to +150°C
Power Dissipation ⁽⁴⁾		Internally Limited
ESD Susceptibility	Human Body Model ⁽⁵⁾	2000V
	Machine Model ⁽⁶⁾	200V
Junction temperature		150°C
Thermal Resistance	θ _{JA} - YZR0036KRA	105°C/W
	θ _{JA} - NJN0044A ⁽⁷⁾	27°C/W

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which specifies specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

- All voltages are measured with respect to the relevant GND pin unless otherwise specified.
- If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and (3) specifications.
- (4) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4930, see power derating currents for more information.
- Human body model: 100pF discharged through a $1.5k\Omega$ resistor.
- (6)
- Machine model: 220pF 240pF discharged through all pins. The given θ_A is for an LM4930 packaged in an NJN0044A with the Exposed-DAP soldered to an exposed 2in² area of 1oz printed circuit (7) board copper with 16 thermal vias as described in AN-1187.

Operating Ratings⁽¹⁾

Temperature Range	$T_{MIN} \le T_A \le T_{MAX}$	−30°C ≤ T _A ≤ +85°C
Supply Voltage	DV _{DD} ⁽²⁾	2.6V - 4.5V
	AV _{DD} ⁽²⁾	2.6V - 5.5V

The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX , θJA, and the ambient temperature, (1) T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4930, see power derating currents for more information.

Best operation is achieved by maintaining $3.0V \le AV_{DD} \le 5.0$ and $3.0V \le DV_{DD} \le 3.6V$. AV_{DD} must be equal to or greater than DV_{DD} for (2)proper operation.

SNAS212C-JULY 2003-REVISED MAY 2013

Electrical Characteristics $DV_{DD} = 3.3V$, $AV_{DD} = 5V$, $R_{LHP} = 32\Omega$, $R_{LHF} = 8\Omega^{(1)(2)(3)}$

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_{A} = 25^{\circ}C$.

	D		LN	14930	Units
	Parameter	Test Conditions	Тур ⁽⁴⁾	Limits ⁽⁵⁾⁽⁶⁾	(Limits)
		f _{MCLK} = 12.288MHz			
		Output Mode = "0010" Output Mode = "0011" Output Mode = "0100"	2		
DI _{DD}	Digital Power Supply Current	Output Mode = "0101" Output Mode = "0110" Output Mode = "0111"	4.4		
		Output Mode = "1000" Output Mode = "1001" Output Mode = "1010"	4.9	8	mA (max)
		f _{MCLK} = 12.288MHz; No Load			
		Output Mode = "0010"	7.0		
		Output Mode = "0011"	6.3		
		Output Mode = "0100"	8.0		
Al _{DD}	Analog Power Supply Quiescent	Output Mode = "0101"	8.2		
55	Current	Output Mode = "0110"	7.4		
		Output Mode = "0111"	8.7		
		Output Mode = "1000" Output Mode = "1001" Output Mode = "1010"	9.5	14	mA (max)
DI _{SD}	Digital Powerdown Current	f _{MCLK} = 12.288MHz Output Mode = "0000" Powerdown Mode	1	7	μA (max)
Al _{SD}	Analog Powerdown Current	f _{MCLK} = 12.288MHz Output Mode = "0000" Powerdown Mode	1	2	µA (max)
DI _{ST}	Digital Standby Current	f _{MCLK} = 12.288MHz Output Mode = "0001" Standby Mode	1.4	2	mA (max)
Al _{ST}	Analog Standby Current	f _{MCLK} = 12.288MHz Output Mode = "0001" Standby Mode	230	1000	μA (max)
V _{FS_LS}	Full-Scale Output Voltage (Mono speaker amplifier)	CLASS = 0; 0dB gain setting; 8 Ω BTL load ⁽⁷⁾	2.5		V _{P-P}
V _{FS_HP}	Full-Scale Output Voltage (Headphone amplifier)	0dB gain setting; 32 Ω Stereo Load ⁽⁷⁾	2.5		V _{P-P}
V _{MIC_BIAS}	Mic Bias Voltage		2.0		V
THD+N	Headphone Amplifier Total Harmonic Motion Distortion + Noise	$f_{IN} = 1 \text{ kHz}, P_{OUT} = 7.5 \text{mW}; 32\Omega \text{ Stereo Load}$	0.07		%
P _{OHP}	Headphone Amplifier Output Power	THD+N = 0.5%, f _{OUT} = 1kHz	27	20	mW (min)
P _{OLS}	Mono Speaker Amplifier Output Power	THD+N = 1%, $f_{OUT} = 1kHz$	1		W
PSRR	Power Supply Rejection Ratio	$\begin{array}{l} C_{BYPASS} = 1.0 \mu F \\ C_{DAC_REF} = 1.0 \mu F \\ V_{RIPPLE} = 200 m V_{P.P} @ 217 Hz, MIC_P, \\ MIC_N terminated with 10\Omega to ground \end{array}$	55	45	dB (min)

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which specifies specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(2) All voltages are measured with respect to the relevant GND pin unless otherwise specified. (3) Best operation is achieved by maintaining $3.0V \le AV_{DD} \le 5.0$ and $3.0V \le DV_{DD} \le 3.6V$. AV_{DD} must be equal to or greater than DV_{DD} . for proper operation.

Typicals are measured at 25°C and represent the parametric norm.

- Limits are specified to Texas Instrument's AOQL (Average Outgoing Quality Level). (5)
- Datasheet min/max specification limits are ensured by design, test, or statistical analysis. (6)
- (7) This value represents the 0dB output level of the given amplifier for the given analog supply voltage. Gain values given in the GAINCONFIG register are relative to these full-scale values for each output amplifier.

Copyright © 2003-2013, Texas Instruments Incorporated

SNAS212C-JULY 2003-REVISED MAY 2013

Electrical Characteristics $DV_{DD} = 3.3V$, $AV_{DD} = 5V$, $R_{LHP} = 32\Omega$, $R_{LHF} = 8\Omega^{(1)(2)(3)}$ (continued)

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

	Parameter	Test Conditions		4930	Units
	Parameter	Test Conditions	Тур ⁽⁴⁾	Limits ⁽⁵⁾⁽⁶⁾	(Limits)
SNR (Voice)	Signal-to-Noise Ratio (Voice DAC Path)	Signal = Vo at f = 1kHz @1% THD+N, 32Ω Stereo Load; Noise = digital zero, A- weighted, 0dB gain setting	72		dB
SNR (Music)	Signal-to-Noise Ratio (Music Audio Path)	Signal = Vo at f = 1kHz @1% THD+N, 32Ω Stereo Load; Noise = digital zero, A- weighted; 0dB gain setting	86		dB
DR (Voice)	Dynamic Range (Voice DAC Path)	Signal = Vo at f = 1kHz @1% THD+N, 32Ω Stereo Load; Noise for -60dBFS digital input; A-weighted; 0dB gain setting	72		dB
DR (Music)	Dynamic Range (Music Audio Path)	Signal = Vo at f=1kHz @1% THD+N, 32Ω Stereo Load; Noise for -60dBFS digital input; A-weighted, 0dB gain setting	86		dB
SNR _{ADC}	Signal-to-Noise Ratio (Voice ADC Path)	Reference signal = 0dBFS MIC_P, MIC_N terminated with 10Ω to ground; A-weighted; 47dB MIC preamp gain setting	75		dB
DR _{ADC}	Dynamic Range (Voice ADC Path)	Reference signal = 0dBFS Noise for -60dBFS digital input; A-weighted; 47dB MIC preamp gain setting	75		dB
X _{TALK}	Stereo Channel-to-Channel Crosstalk	f_{S} = 48kHz, f_{IN} = 1kHz sinewave at -3dB _{FS}	75		dB
V _{MIC-IN}	Maximum Differential MIC Input Voltage	17dB MIC Preamp gain setting	570		mV _{P-P}
R _{VDAC}	Voice DAC Ripple	300Hz - 3.3kHz through head-phone output.	+/-0.15	+/-0.2	dB (max)
R _{VADC}	Voice ADC Ripple	300Hz - 3.3kHz through head-phone output.	+/-0.25	+/-0.3	dB (max)
PB _{VDAC}	Voice DAC Passband	-3dB Point	3.46		kHz
SBA _{VDAC}	Voice DAC Stopband Attenuation	Above 4kHz	72		dB
UPB _{VADC}	Voice ADC Upper Passband Cutoff Frequency.	Upper -3dB Point	3.47		kHz
LPB _{VADC}	Voice ADC Lower Passband Cutoff Frequency.	Lower -3dB Point	0.230		kHz
SBA _{VADC}	Voice ADC Stopband Attenuation	Above 4kHz	65		dB
SBA _{NOTC} н	Voice ADC Notch Attenuation	Centered on 55Hz, figure gives worst case attenuation for 50Hz & 60Hz.	58		dB
R _{DAC}	Audio DAC Ripple	20Hz - 20kHz through head-phone output.	+/-0.1	+/-0.2	dB (max)
PB _{DAC}	Audio DAC Passband Width	-3dB point	22.7		kHz
SBA _{DAC}	Audio DAC Stopband Attenuation	Above 24kHz	76		dB
DR _{DAC}	Audio DAC Dynamic Range Digital Filter Section	Signal = VO at f = 1kHz @ 1% THD+N; f = 1kHz; Noise for -60dBFS digital input; 0dB gain; A-weighted	97		dB
SNR _{DAC}	Audio DAC SNR Digital Filter Section	Signal = VO at f = 1kHz @ 1% THD+N; f = 1kHz; Noise for -60dBFS digital input; 0dB gain; A-weighted	97		dB
ΔA _{CH-CH}	Stereo Channel-to-Channel Gain Mismatch		0.3		dB
V _{IL}	Digital Input: Logic Low Voltage Level		0.4		V
V _{IH}	Digital Input: Logic High Voltage Level		1.4		V
	Volume Control Range (Headphone amplifiers)	Maximum Attenuation Minimum Attenuation	-46.5 0		dB dB
	Volume Control Range (Mono speaker amplifier)	Minimum Gain Maximum Gain	-34.5 12		dB dB

SNAS212C - JULY 2003 - REVISED MAY 2013

Electrical Characteristics $DV_{DD} = 3.3V$, $AV_{DD} = 5V$, $R_{LHP} = 32\Omega$, $R_{LHF} = 8\Omega^{(1)(2)(3)}$ (continued)

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

	Demonstra	Test Ose l'iters	LN	14930	Units
	Parameter	Test Conditions	Typ ⁽⁴⁾	Limits ⁽⁵⁾⁽⁶⁾	(Limits)
	Volume Control Step Size (Output amplifiers)		1.5		dB
	Volume Control Range (Microphone Preamp)	Minimum Gain Maximum Gain	17 47		dB dB
	Volume Control Step Size (Microphone Preamp)		2		dB
	Side Tone Attenuation Range	Maximum Attenuation Minimum Attenuation	-30 0		dB dB
	Side Tone Attenuation Step Size		3		dB
f _{MCLK}	MCLK frequency	CLOCK_DIV = 0 CLOCK_DIV = 1	12.288 24.576		MHz MHz
	MCLK Duty Cycle		50	40 60	% (min) % (max)
f _{CONV}	Sampling Clock Frequency ⁽⁸⁾		48		kHz
f _{CLKSCL}	SCL_CLK Frequency		400		kHz
t _{RISESCL}	SCL_CLK, SCL_DATA Rise Time		300		ns
t _{FALLSCL}	SCL_CLK, SDA_DATA Fall Time		300		ns
t _{SDAH}	SDA_DATA Hold Time		500		ns
t _{SDAS}	SDA_DATA Setup Time		500		ns
f _{CLKPCM}	PCM_CLK Frequency	PCM_SYNC_MODE = 00 PCM_SYNC_MODE = 01 PCM_SYNC_MODE = 10	128 256 512		kHz
	PCM_CLK Duty Cycle		50	40 60	% (min) % (max)
f _{CLKI2S}	I2S_CLK Frequency	I2S_RES = 0 I2S_RES = 1	1.536 3.072		MHz
	I2S_CLK Duty Cycle		50	40 60	% (min) % (max)

(8) The sampling clock frequency is equal to the master clock frequency divided by 256. ($f_{conv} = f_{MCLK}/256$)

RUMENTS

www.ti.com

SNAS212C-JULY 2003-REVISED MAY 2013

Electrical Characteristics $DV_{DD} = 3V$, $AV_{DD} = 3V$, $R_{LHP} = 32\Omega$, $R_{LHF} = 8\Omega^{(1)(2)(3)}$

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_{A} = 25^{\circ}C$.

	D		LN	4930	Units
	Parameter	Test Conditions	Тур ⁽⁴⁾	Limits ⁽⁵⁾⁽⁶⁾	(Limits)
		f _{MCLK} = 12.288MHz			
		Output Mode = "0010" Output Mode = "0011" Output Mode = "0100"	1.6		
DI _{DD}	Digital Power Supply Current	Output Mode = "0101" Output Mode = "0110" Output Mode = "0111"	3.8		
		Output Mode = "1000" Output Mode = "1001" Output Mode = "1010"	4.2	7	mA (max)
		f _{MCLK} = 12.288MHz; No Load			
		Output Mode = "0010"	5.8		
		Output Mode = "0011"	5.1		
		Output Mode = "0100"	6.5		
AI _{DD}	Analog Power Supply Quiescent	Output Mode = "0101"	6.4		
66	Current	Output Mode = "0110"	5.8		
		Output Mode = "0111"	7.0		
		Output Mode = "1000" Output Mode = "1001" Output Mode = "1010"	7.5	12	mA (max)
DI _{SD}	Digital Powerdown Current	f _{MCLK} = 12.288MHz Output Mode = "0000" Powerdown Mode	1	7	µA (max)
al _{sd}	Analog Powerdown Current	f _{MCLK} = 12.288MHz Output Mode = "0000" Powerdown Mode	0.6	1.5	μA (max)
DI _{ST}	Digital Standby Current	f _{MCLK} = 12.288MHz Output Mode = "0001" Standby Mode	1.1	1.7	mA (max)
AI _{ST}	Analog Standby Current	f _{MCLK} = 12.288MHz Output Mode = "0001" Standby Mode	100	300	µA (max)
V _{FS_LS}	Full-Scale Output Voltage (Mono speaker amplifier)	CLASS = 0; 0dB gain setting; 8 Ω BTL load ⁽⁷⁾	2.5		V _{P-P}
V _{FS_HP}	Full-Scale Output Voltage (Headphone amplifier)	0dB gain setting; 32Ω Stereo Load ⁽⁷⁾	2.5		V _{P-P}
/ _{MIC_BIAS}	Mic Bias Voltage		2		V
ΓHD+N	Headphone Amplifier Total Harmonic Distortion + Noise	$f_{IN} = 1$ kHz, $P_{OUT} = 7.5$ mW	0.07		%
ОНР	Headphone Amplifier Output Power	THD+N = 0.5%, f _{OUT} = 1kHz	25	15	mW (min)
OLS	Mono Speaker Amplifier Output Power	THD+N = 1%, f _{OUT} = 1kHz	330	270	mW (min)
PSRR	Power Supply Rejection Ratio	$\begin{array}{l} C_{BYPASS} = 1.0 \mu F \\ C_{DAC_REF} = 1.0 \mu F \\ V_{RIPPLE} = 200 m V_{P_P} @ 217 Hz \end{array}$	50	42	dB (min)

(1) Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which specifies specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance.

(2) All voltages are measured with respect to the relevant GND pin unless otherwise specified.

(3) The maximum power dissipation must be derated at elevated temperatures and is dictated by T_{JMAX}, θ_{JA} , and the ambient temperature, T_A . The maximum allowable power dissipation is $P_{DMAX} = (T_{JMAX} - T_A) / \theta_{JA}$ or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4930, see power derating currents for more information. Typicals are measured at 25°C and represent the parametric norm.

- (5) Limits are specified to Texas Instrument's AOQL (Average Outgoing Quality Level).
- Datasheet min/max specification limits are ensured by design, test, or statistical analysis. (6)

This value represents the 0dB output level of the given amplifier for the given analog supply voltage. Gain values given in the (7) GAINCONFIG register are relative to these full-scale values for each output amplifier.

12 Submit Documentation Feedback

SNAS212C - JULY 2003 - REVISED MAY 2013

Electrical Characteristics $DV_{DD} = 3V$, $AV_{DD} = 3V$, $R_{LHP} = 32\Omega$, $R_{LHF} = 8\Omega^{(1)(2)(3)}$ (continued)

The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

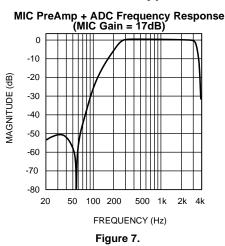
	Parameter	Test Conditions		4930	Units
	- arameter		Тур ⁽⁴⁾	Limits ⁽⁵⁾⁽⁶⁾	(Limits)
SNR (Voice)	Signal-to-Noise Ratio (Voice DAC Path)	Signal = Vo at f = 1kHz @1% THD+N, 32Ω Stereo Load; Noise = digital zero, A- weighted; 0dB gain setting	72		dB
SNR (Music)	Signal-to-Noise Ratio (Music Audio Path)	Signal = Vo at f = 1kHz @1% THD+N, 32Ω Stereo Load; Noise = digital zero, A- weighted; 0dB gain setting	86		dB
DR (Voice)	Dynamic Range (Voice DAC Path)	Signal = Vo at f = 1kHz @1% THD+N, 32Ω Stereo Load; Noise for -60dBFS digital input; A-weighted, 0dB gain setting	72		dB
DR (Music)	Dynamic Range (Music Audio Path)	Signal = Vo at f=1kHz @1% THD+N, 32Ω Stereo Load; Noise for -60dBFS digital input; A-weighted, 0dB gain setting	86		dB
SNR _{ADC}	Signal-to-Noise Ratio (Voice ADC Path)	Reference signal = 0dBFS MIC_P, MIC_N terminated with 10Ω to ground; A-weighted; 47dB MIC preamp gain setting	75		dB
DR _{ADC}	Dynamic Range (Voice ADC Path)	Reference signal = 0dBFS Noise for -60dBFS digital input; A-weighted; 47dB MIC preamp gain setting	75		dB
X _{TALK}	Stereo Channel-to-Channel Crosstalk	f_{S} = 48kHz, f_{IN} = 1kHz sinewave at -3dB _{FS}	73		dB
V _{MIC-IN}	Maximum Differential MIC Input Voltage	17dB MIC Preamp gain setting	570		mV _{P-P}
R _{VDAC}	Voice DAC Ripple	300Hz - 3.3kHz through head-phone output.	+/-0.15	+/-0.2	dB (max)
R _{VADC}	Voice ADC Ripple	300Hz - 3.3kHz through head-phone output.	+/-0.25	+/-0.3	dB (max)
PB _{VDAC}	Voice DAC Passband	-3dB Point	3.46		kHz
SBA _{VDAC}	Voice DAC Stopband Attenuation	Above 4kHz	72		dB
UPB _{VADC}	Voice ADC Upper Passband Cutoff Frequency.	Upper -3dB Point	3.47		kHz
LPB _{VADC}	Voice ADC Lower Passband Cutoff Frequency.	Lower -3dB Point	0.230		kHz
SBA _{VADC}	Voice ADC Stopband Attenuation	Above 4kHz	65		dB
SBA _{NOTC} н	Voice ADC Notch Attenuation	Centered on 55Hz, figure gives worst case attenuation for 50Hz & 60Hz.	58		dB
R _{DAC}	Audio DAC Ripple	20Hz - 20kHz through head-phone output.	+/-0.1	+/-0.2	dB (max)
PB _{DAC}	Audio DAC Passband Width	-3dB point	22.7		kHz
SBA _{DAC}	Audio DAC Stopband Attenuation	Above 24kHz	76		dB
DR _{DAC}	Audio DAC Dynamic Range Digital Filter Section	Signal = VO at f = 1kHz @ 1% THD+N; f = 1kHz; Noise for -60dBFS digital input; 0dB gain; A-weighted	97		dB
SNR _{DAC}	Audio DAC SNR Digital Filter Section	Signal = VO at f = 1kHz @ 1% THD+N; f = 1kHz; Noise for -60dBFS digital input; 0dB gain; A-weighted	97		dB
∆A _{CH-CH}	Stereo Channel-to-Channel Gain Mismatch		0.3		dB
V _{IL}	Digital Input: Logic Low Voltage Level		0.4		V
V _{IH}	Digital Input: Logic High Voltage Level		1.4		V
	Volume Control Range (Headphone amplifiers)	Maximum Attenuation Minimum Attenuation	-46.5 0		dB dB
	Volume Control Range (Mono speaker amplifier)	Minimum Gain Maximum Gain	-34.5 12		dB dB

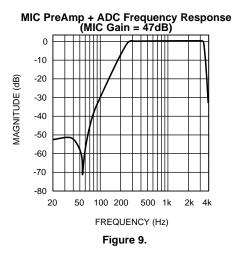
SNAS212C - JULY 2003 - REVISED MAY 2013

Electrical Characteristics $DV_{DD} = 3V$, $AV_{DD} = 3V$, $R_{LHP} = 32\Omega$, $R_{LHF} = 8\Omega^{(1)(2)(3)}$ (continued)

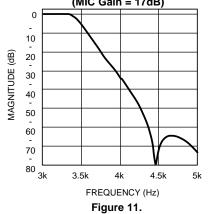
The following specifications apply for the circuit shown in Figure 1, unless otherwise specified. Limits apply for $T_A = 25^{\circ}C$.

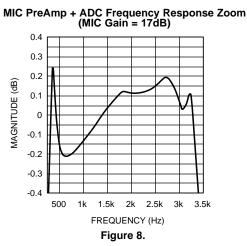
Parameter		T (0)	LN	LM4930	
		Test Conditions	Typ ⁽⁴⁾	Limits ⁽⁵⁾⁽⁶⁾	Units (Limits)
	Volume Control Step Size (Output amplifiers)		1.5		dB
	Volume Control Range (Microphone Preamp)	Minimum Gain Maximum Gain	17 47		dB
	Volume Control Step Size (Microphone Preamp)		2		dB
	Side Tone Attenuation Range	Maximum Attenuation Minimum Attenuation	-30 0		dB dB
	Side Tone Attenuation Step Size		3		dB
f _{MCLK}	MCLK frequency	CLOCK_DIV = 0 CLOCK_DIV = 1	12.288 24.576		MHz MHz
	MCLK Duty Cycle		50	40 60	% (min) % (max)
f _{CONV}	Sampling Clock Frequency	See ⁽⁸⁾	48		kHz
f _{CLKSCL}	SCL_CLK Frequency		400		kHz
t _{RISESCL}	SCL_CLK, SCL_DATA Rise Time		300		ns
t _{FALLSCL}	SCL_CLK, SDA_DATA Fall Time		300		ns
t _{SDAH}	SDA_DATA Hold Time		500		ns
t _{SDAS}	SDA_DATA Setup Time		500		ns
f _{CLKPCM}	PCM_CLK Frequency	PCM_SYNC_MODE = 00 PCM_SYNC_MODE = 01 PCM_SYNC_MODE = 10	128 256 512		kHz kHz kHz
	PCM_CLK Duty Cycle		50	40 60	% (min) % (max)
f _{CLKI2S}	I2S_CLK Frequency	I2S_RES = 0 I2S_RES = 1	1.536 3.072		MHz MHz
	I2S_CLK Duty Cycle		50	40 60	% (min) % (max)

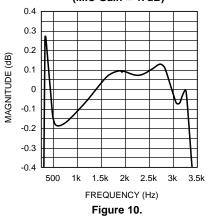

(8) The sampling clock frequency is equal to the master clock frequency divided by 256. ($f_{conv} = f_{MCLK}/256$)



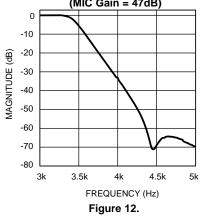
.M4930


SNAS212C-JULY 2003-REVISED MAY 2013





MIC PreAmp + ADC Frequency Response High Cutoff (MIC Gain = 17dB)



MIC PreAmp + ADC Frequency Response Zoom (MIC Gain = 47dB)

MIC PreAmp + ADC Frequency Response High Cutoff (MIC Gain = 47dB)

(1) 0dBm0 = -3dBFS for the PCM voice codec and 0dBm0 = -1dBFS for the I²S DAC, unless otherwise specified.

SNAS212C-JULY 2003-REVISED MAY 2013

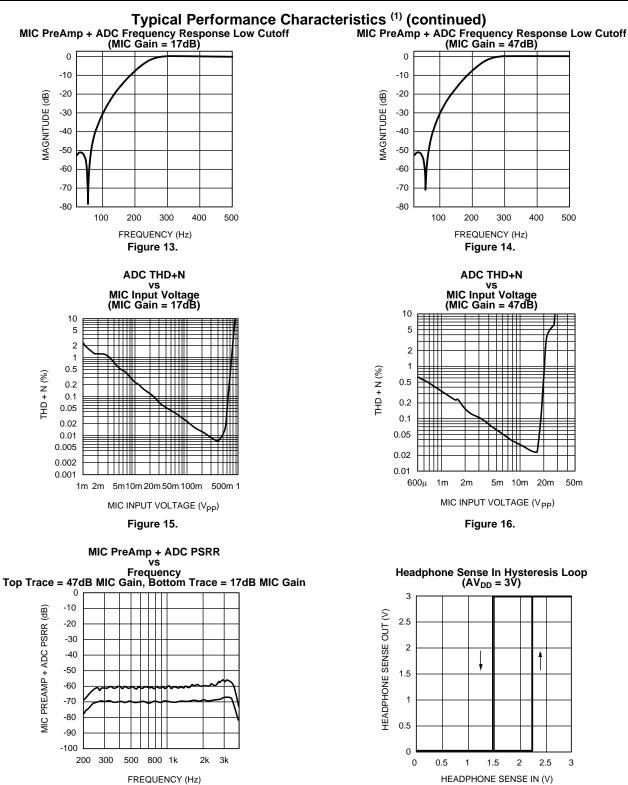
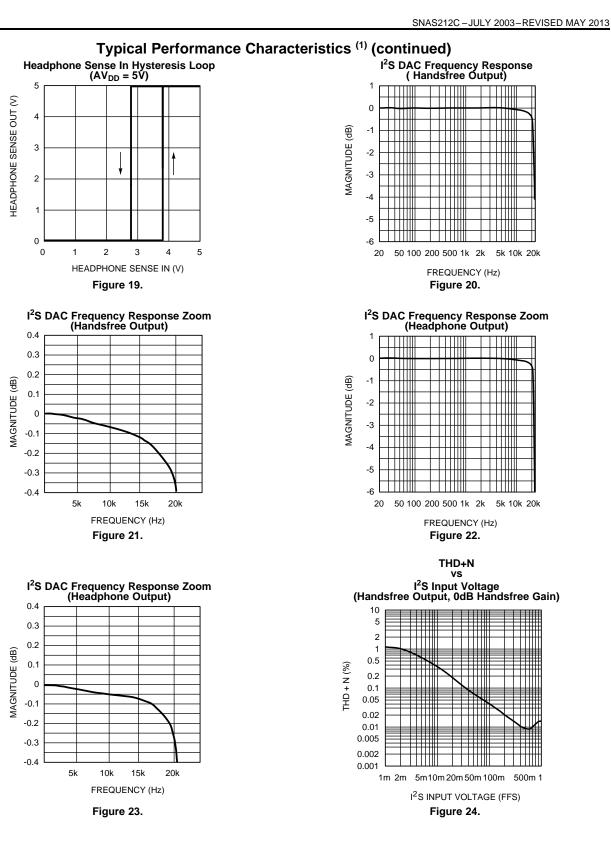
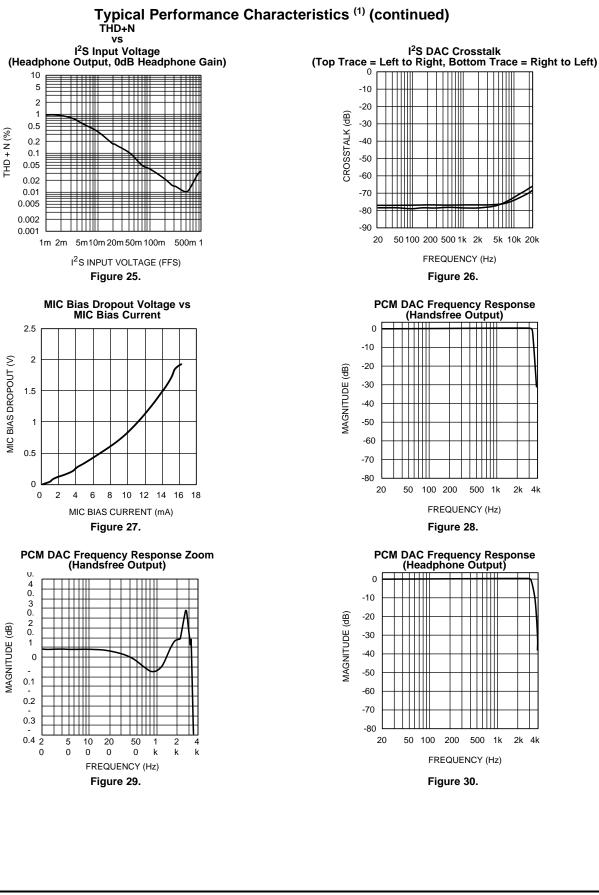
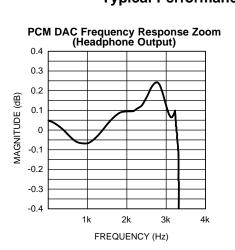
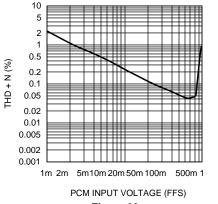
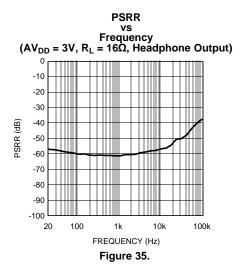
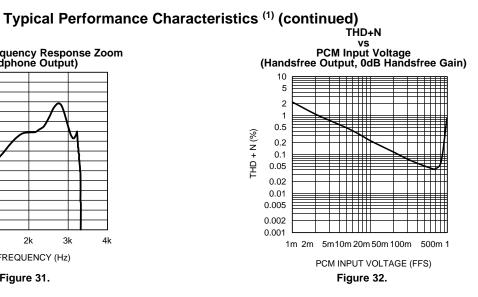
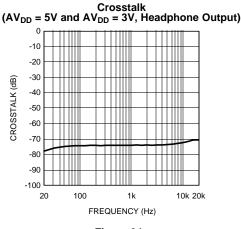



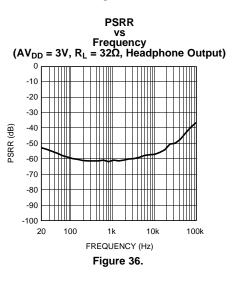
Figure 17.

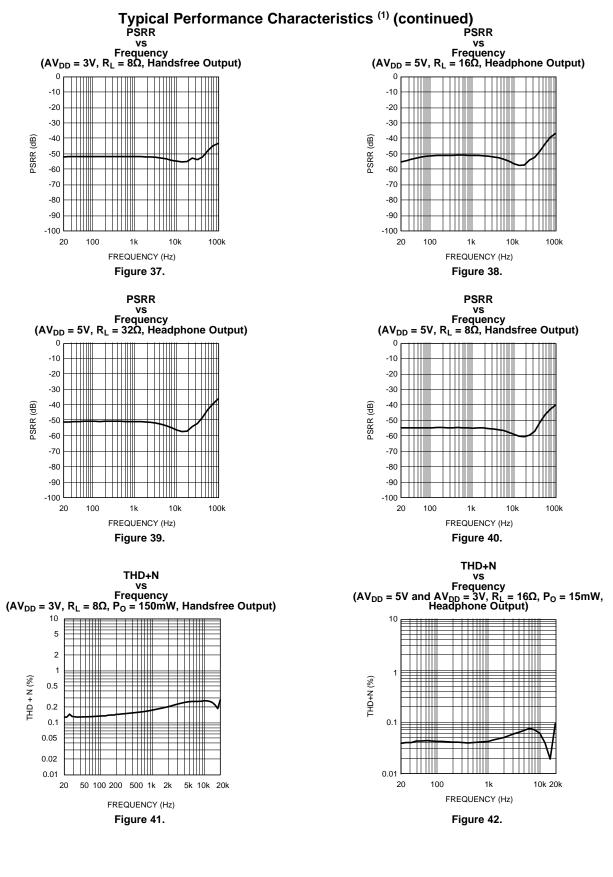

Figure 18.

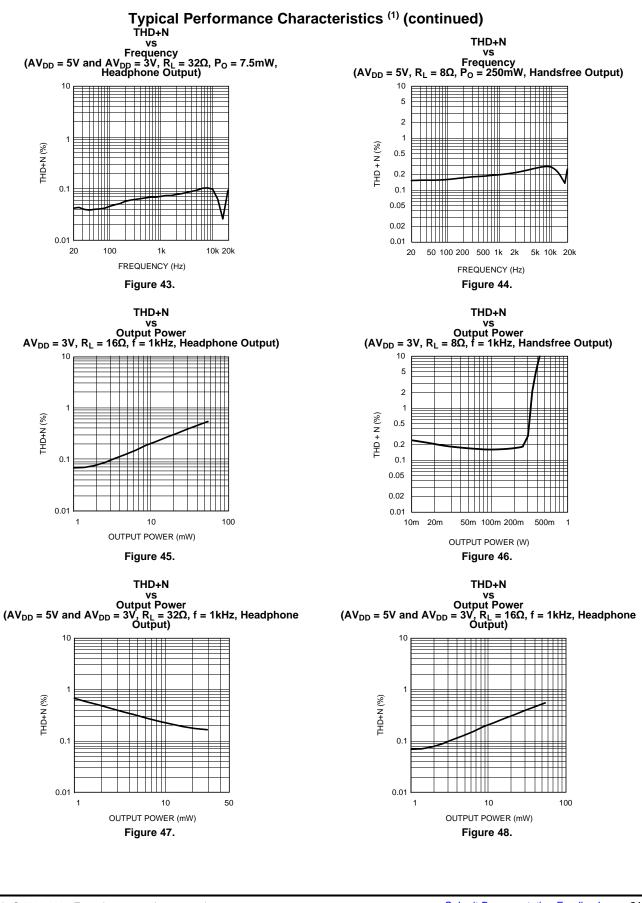


SNAS212C - JULY 2003 - REVISED MAY 2013

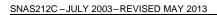





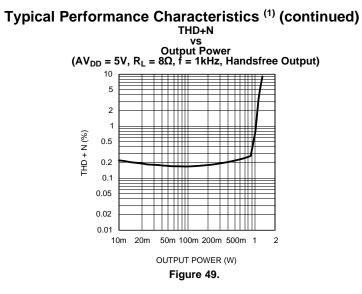

Figure 33.




TEXAS INSTRUMENTS

www.ti.com


SNAS212C - JULY 2003-REVISED MAY 2013



TEXAS INSTRUMENTS

APPLICATION INFORMATION

REFERENCE DESIGN BOARD AND LAYOUT

LM4930ITL Board Layout

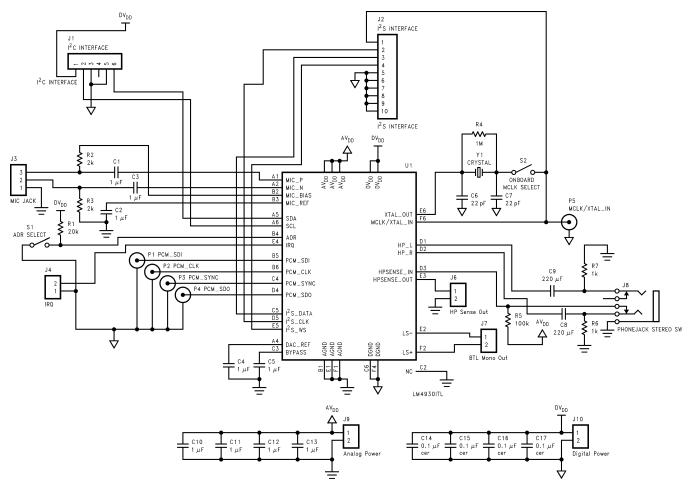
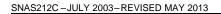



Figure 50. LM4930ITL Demo Board Schematic

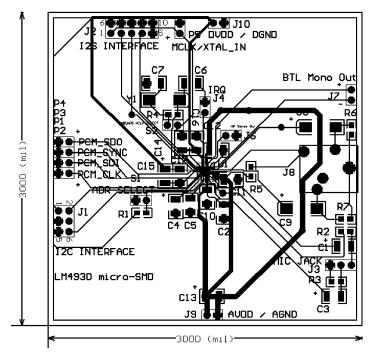


Figure 51. LM4930ITL Demo Board Composite View

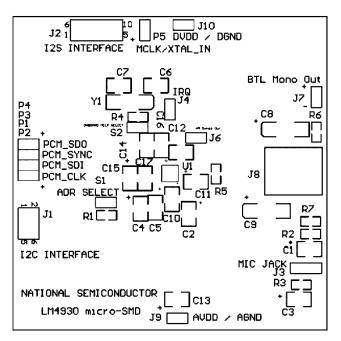


Figure 52. LM4930ITL Demo Board Silkscreen

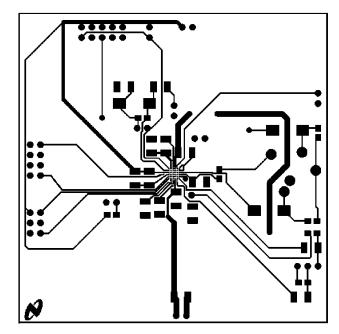
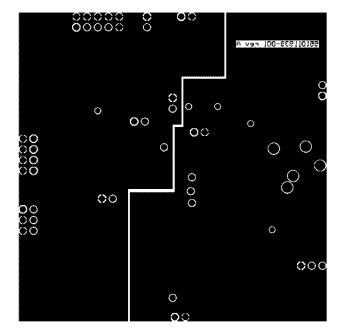



Figure 53. LM4930ITL Demo Board Top Layer

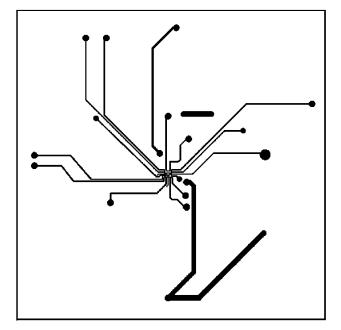
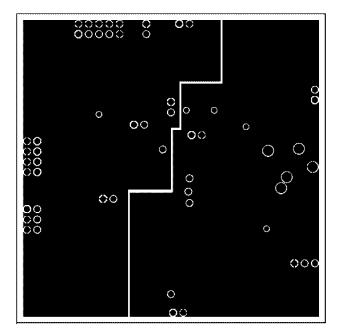
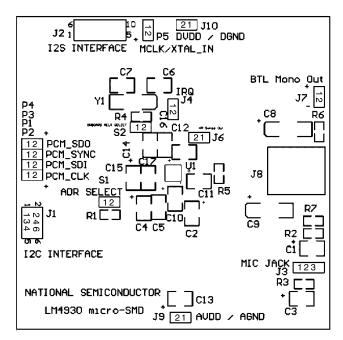



Figure 55. LM4930ITL Demo Board Inner Layer 1



EXAS

NSTRUMENTS

BILL OF MATERIALS FOR LM4930

Footprint	Designators
0805	R6, R7
0805	R2, R3
0805	R1
0805	R5
0805	R4
1210	C6, C7
1210	C16, C17
1210	C14, C15
1210	C1, C2, C3, C4, C5, C10, C11, C12, C13
7243	C8, C9
7243	Y1
	0805 0805 0805 0805 0805 1210 1210 1210 1210 1210 7243

Table 5. Two-Wire Control Interface (J1)

Pin	Function
1	DVDD
2	SCL
3	DGND
4	NC
5	DGND
6	SDA

TEXAS INSTRUMENTS

www.ti.com

SNAS212C-JULY 2003-REVISED MAY 2013

Table 6. PCM Interface (P4, P3, P1, P2)

Header	Function
P1	PCM_SDI
P2	PCM_CLK
P3	PCM_SYNC
P4	PCM_SDO

Table 7. I2S Interface (J2)

Pin	Function
1	MCLK
2	I2S-CLK
3	I2S-DATA
4	12S-WS
5	DGND
6	DGND
7	DGND
8	DGND
9	DGND
10	DGND

Table 8. MIC Jack

Pin	Function
1	AGND
2	MIC-
3	MIC+

Table 9. Misc Jumpers and Headers DVDD/DGND (J10)

Pin	Function
1	DGND
2	AVDD

Table 10. Misc Jumpers and Headers AVDD/AGND (J9)

Pin	Function
1	AGND
2	AVDD

Table 11. Misc Jumpers and Headers MCLK/XTAL_IN (P5)

Pin	Function
1	DGND
2	MCLK/XTAL_IN

ADR SELECT (S1)

Jumper IN = LOW

Control interface responds to addresses 001000b (BASICCONFIG), 0010001b (VOICETESTCONFIG)), and 0010010b (GAINCONFIG)

Jumper OUT = HIGH

Control interface responds to addresses 111000b (BASICCONFIG), 1110001b (VOICETESTCONFIG)), and 1110010b (GAINCONFIG)

Table 12. HP Sense Out (J6)

Pin	Function
1	AGND
2	HPSense_Out

Table 13. IRQ (J4)

Pin	Function
1	DGND
2	IRQ

Onboard MCLK Select (S2)

Jumper IN = Onboard MCLK

Jumper OUT = External MCLK

LM4930ITL DEMO BOARD OPERATION

The LM4930ITL demo board is a complete evaluation platform, designed to give easy access to the control pins of the part and comprise all the necessary external passive components. Besides the separate analog (J9) and digital (J10) supply connectors, the board features seven other major input and control blocks: a two wire interface bus (J1) for the control lines, a PCM interface bus (P1-P4) for voiceband digital audio, an I2S interface bus (J2) for full-range digital audio, an analog mic jack input (J3) for connection to an external microphone, a BTL mono output (J7) for connection to an external speaker, a stereo headphone output (J8), and an external MCLK input (P5) for use in place of the crystal on the demoboard.

Two-wire Interface Bus (J1)

This is the main control bus for the LM4930. It is a two-wire interface with an SDA line (data) and SCL line (clock). Each transmission from the baseband controller to the LM4930 is given MSB first and must follow the timing intervals given in the Electrical Characteristics section of the datasheet to create the start and stop conditions for a proper transmission. The start condition is detected if SCL is high on the falling edge of SDA. The stop condition is detected if SCL is high on the falling edge of SDA. The stop condition is detected if SCL is high on the rising edge of SDA. Repeated start signals are handled correctly. Data is then transmitted as shown in Figure 4. After the start condition has been achieved the chip address is sent, followed by a set write bit, wait for ack (SDA will be pulled low by LM4930), data bits 7-0, wait for ACK (SDA will be pulled low by LM4930)and finally the stop condition is given.

This same sequence follows for any control bus transmission to the LM4930. The chip address is hardwire selected by the ADR Select pin which may be jumpered high or low with its application at S1 on the demo board. The chip address is then given as a combination of the identifying bits for the LM4930 plus the 2-bit address of the desired control register (00b = BasicConfig, 01b = VoicetestConfig, 10b = GainConfig). Acceptable addresses are shown here in Table 14.

Table 14. LM4930 Control Bus Addresses

Address Bits					Register Address		
ADR = 0							
6	5	4	3	2	1	0	
0	0	1	0	0	0	0	
0	0	1	0	0	0	1	
0	0	1	0	0	1	0	
ADR = 1	·		·	i.		L	
1	1	1	0	0	0	0	
1	1	1	0	0	0	1	
1	1	1	0	0	1	0	

Data is sampled only if the address is in range and the R/W bit is clear. Data for each register is given in the System Control Registers section of the datasheet. Texas Instruments also features a special control board for quick evaluation of the LM4930 demo board with your PC. This is a serial control interface board, complete with header compatible with the interface header (J1) on the LM4930 board. This also features demonstration software to allow for complete control and evaluation of the various modes and functions of the LM4930 through the bus.

Pullup resistors are required to achieve reliable operation. 750Ω pullup resistors on the SDA and SCL lines achieves best results when used with TI's parallel-to-serial interface board. Lower value pullup resistors will decrease the rise and fall times on the bus which will in turn decrease susceptibility to bus noise that may cause a false trigger. The cost comes at extra current use. Control bus reliability will thus depend largely on bus noise and may vary from design to design. Low noise is critical for reliable operation.

PCM Bus Interface (P1, P2, P3, P4)

PCM_SDO (P4), PCM_SYNC (P3), PCM_SDI (P1), and PCM_CLK (P2) form the PCM interface bus for simple communication with most baseband ICs with voiceband communications and follow the PCM-1900 communications standard. The PCM interface features frame lengths of 16, 32, or 64 bits, A-law and u-law companding, linear mode, short or long frame sync, an energy-saving power down mode, and master only operation.

The PCM bus does not support a slave mode. It operates as a master only. Thus PCM_SYNC and PCM_CLK are solely generated by the LM4930. PCM_SYNC is the word sync line for the bus. It operates at a fixed frequency of 8kHz and may be set in the BASICCONFIG register (bit 5 PCM_LONG) for short or long frame sync. A short frame sync is 1 PCM_CLK cycle (PCM_LONG=0), a long frame sync is 2 PCM_CLK cycles long (PCM_LONG=1). A long sync pulse is also delayed one clock cycle relative to a short sync pulse. This is illustrated in Figure 5. PCM_CLK is the bit clock for the bus. It's frequency depends on the number of 16-bit frames per sync pulse and can be 128kHz, 256kHz, 512kHz.

The other two lines, PCM_SDO and PCM_SDI, are for serial data out and serial data in, respectively. The type of data may also be set in the BASICCONFIG register by bits 6 and 7. Bit 6 controls whether the data is linear or companded. If set to 1, the 8 MSBs are presumed to be companded data and the 8 LSBs are ignored. If cleared to 0, the data is treated as 2's complement PCM data. Bit 7 controls which PCM law is used if Bit 6 is set for companded (G711) data. If set to 1, the companded data is assumed to be A-law. If cleared to 0, the companded data is treated as µ-law.

Bits 8:9 of the BASICCONFIG register set the PCM_SYNC_MODE settings. This controls the number of 16 bit frames per sync pulse. The feature allows the LM4930 to function harmoniously with other devices or channels on the PCM bus by adjusting the number of 16 bit frames per sync pulse to 1 (00b), 2 (01b), or 4 (10b). The LM4930 will transmit PCM data in the first frame and then tri-state the PCM_SDO pin on later frames.

In addition, the LM4930 provides control to allow the PCM_CLK and PCM_SYNC clocks to continue functioning even when the LM4930 is in Standby mode. By setting bit 10 of the BASICCONFIG register to 1 PCM_ALWAYS_ON is enabled and the LM4930 will continue to drive the PCM clock and sync lines when in Standby mode. This bit should be set if another codec is using the PCM bus. Powerdown mode will disable these outputs.

I2S Interface Bus (J2)

The I2S standard provides a uni-directional serial interface designed specifically for digital audio. For the LM4930, the interface provides access to a 48kHz, 16 bit full-range stereo audio DAC. This interface uses a three port system of clock (I2S_CLK), data (I2S_DATA), and word (I2S_WS). The clock and word lines can be either master or slave as set by bit 11 in the BASICCONFIG register.

A bit clock (I2S_CLK) at 32 or 64 times the sample frequency is established by the I2S system master and a word select (I2S_WS) line is driven at a frequency equal to the sampling rate of the audio data, in this case 48kHz. The word line is registered to change on the negative edge of the bit clock. The serial data (I2S_DATA) is sent MSB first, again registered on the negative edge of the bit clock, delayed by 1 bit clock cycle relative to the changing of the word line (typical I2S format - see Figure 6).

The resolution of the I2S interface may be set by modifying the I2S_RES bit (bit 12) in the BASICCONFIG register. If set to 1, the LM4930 operates at 32 bits per frame (3.072MHz). If cleared to 0, then 16 bits per frame is selected (1.536MHz). This has a corresponding effect on the bit clock.

The I2S Interface Bus also provides for an additional MCLK connection to an external device from the LM4930 demo board. This may be used in conjunction with Texas Instruments' SPDIF->I2S Conversion Board for quick evaluation. This board features a connection header that interfaces with pins 1-5 of the I2S Interface Bus. Pins 6-10 are provided as digital ground references for the case of discrete connections.

MCLK/XTAL_IN (P5)

This is the input for an external Master Clock. The jumper at S2 must be removed (disconnecting the onboard crystal from the circuit) when using an external Master Clock.

BTL Mono Out (J7)

This is the mono speaker output, designed for use with an 8 ohm speaker. The outputs are driven in bridge-tiedload (BTL) mode, so both sides have signal. Outputs are normally biased at one half AVDD when the LM4930 is in active mode.

Additionally, if the CLASS bit is set to 1 in the VOICETESTCONFIG register (bit 0) the BTL mono output is internally configured as a buffer amplifier designed for use with an external class D amp.

Stereo Headphone Out (J8)

This is the stereo headphone output. Each channel is single-ended, with 220uF DC blocking capacitors mounted on the demo board. The jack features a typical stereo headphone pinout.

A headphone sense pin is provided at J6. This pin provides a clean logic high or low output to indicate the presence of headphones in the headphone jack. A common application circuit for this is given in the Reference Board Schematic shown in Figure 50. In this application HPSENSE_IN is pulled low by the 1k ohm resistor when no headphone is present. This gives a corresponding logic low output on the HPSENSE_OUT pin. When a headphone is placed in the jack the 1k ohm pull-down is disconnected and a 100k ohm pull-up resistor creates a high voltage condition on HPSENSE_IN. This in turn creates a logic high on HPSENSE_OUT. This output may be used to reliably drive an external microcontroller with headphone status.

MIC Jack (J3)

This jack is for connection to an external microphone like the kind typically found in mobile phones. Pin 1 is GND, pin 2 is the negative input pin, and pin 3 is the positive pin, with phantom voltage supplied by MIC_BIAS on the LM4930.

IRQ (J4)

This pin provides simple status updates from the LM4930 to an external microcontroller if desired. IRQ is logic high when the LM4930 is in a stable state and changes to low when changing modes. This can also be useful for simple software/driver development to monitor mode changes, or as a simple debugging tool.

BASIC OPERATION

The LM4930 is a highly integrated audio subsystem with many different operating modes available. These modes may be controlled in the BASICCONFIG register in bits 3:0. These mode settings are shown in the BASICCONFIG register table and are described here below:

Powerdown Mode (0000b)

Part is powered down, analog outputs are not biased. This is a minimum current mode. All part features are shut down.

Standby Mode (0001b)

The LM4930 is powered down, but outputs are still biased at one half AVDD. This comes at some current cost, but provides a much faster turn-on time with zero "click and pop" transients on the headphone out. Standby mode can be toggled into and out of rapidly and is ideal for saving power whenever continuous audio is not a requirement. All other part functions are suspended unless PCM_ALWAYS_ON (bit 10 in BASICCONFIG register) is enabled, in which case PCM_CLK and PCM_SYNC will continue to function.

Mono Speaker Mode (0010b)

Part is active. All analog outputs are biased. Audio from the voiceband codec is routed to the mono speaker out. Stereo headphone out is silent.

Headphone Call Mode (0011b)

Part is active. All analog outputs are biased. Audio from voiceband codec is routed to the stereo headphones. Both left and right channels are the same. Mono speaker out is silent.

Conference Call Mode (0100b)

Part is active. All analog outputs are biased. Audio from the voiceband codec is routed to the mono speaker out and to the stereo headphones.

L+R Mixed to Mono Speaker (0101b)

Part is active. All analog outputs are biased. Full-range audio from the 16bit/48kHz audio DAC is mixed together and routed to the mono speaker out. Stereo headphones are silent.

Headphone Stereo Audio (0110b)

Part is active. All analog outputs are biased. Full-range audio from the 16bit/48kHz audio DAC is sent to the stereo headphone jack. Each channel is heard discretely. The mono speaker is silent.

L+R Mixed to Mono Speaker + Stereo Headphone Audio (0111b)

Part is active. All analog outputs are biased. Full-range audio from the 16bit/48kHz audio DAC is sent discretely to the stereo headphone jack and also mixed together and sent to the mono speaker out.

Mixed Mode (1000b)

Part is active. All analog outputs are biased. This provides one channel (the left channel) of full range audio to the mono speaker out. Audio from the voiceband codec is then sent to the stereo headphones, the same on each channel.

Mixed Mode (1001b)

Part is active. All analog outputs are biased. Mixed voiceband and full-range audio (left channel only) is sent to the mono speaker out. Audio from the voiceband codec only is sent to the stereo headphones, the same on each channel.

Mixed Mode (1010b)

Part is active. All analog outputs are biased. Audio from the voiceband codec is sent to the mono speaker out. The left channel only of the full range audio is then sent to both the left and right channels of the stereo headphone out.

REGISTERS

The LM4930 starts on power-up with all registers cleared in Powerdown mode. Powerdown mode is the recommended time to make setup changes to the digital interfaces (PCM bus, I2S bus). Although the configuration registers can be changed in any mode, changes made during Standby or Powerdown prevent unwanted audio artifacts that may occur during rapid mode changes with the outputs active. The LM4930 also features a soft reset. This reset is enabled by setting bit 4 of the BASICCONFIG register.

The VOICETESTCONFIG register is used to set various configuration parameters on the voiceband and fullrange audio codecs. SIDETONE_ATTEN (bits 4:1) refers to the level of signal from the MIC input that is fed back into the analog audio output path (commonly used in headphone applications and killed in hands-free applications). Setting the AUTOSIDE bit (bit 5) automatically mutes the sidetone in voice over mono speaker modes so feedback isn't an issue.

Quick mute functions are also located in this register, with bits 13:15 muting the mono speaker amp, the headphone amp, and the mic preamp respectively.

This register also has a CLOCK_DIV bit (bit 6) which, if set, allows for the use of a 24.576MHz clock instead of the default 12.288MHz.

The GAINCONFIG register is used to control the gain of the mono speaker amp , the headphone amp, and the mic preamp. This allows flexible mono speaker gains from -34.5dB to +12dB in 1.5dB steps, headphone amp gains of -46.5dB to 0dB in 1.5dB steps, and mic preamp gains of 17dB to 47dB in 2dB steps. Gain levels may be modified in any mode, but may wait for a zero cross detect in the DAC to eliminate volume control artifacts. This wait for zero cross may be disabled by setting the ZXD_DISABLE bit (bit 7) in the VOICETESTCONFIG register to allow immediate changes.

ANALOG INPUTS AND OUTPUTS

The LM4930 features an analog mono BTL output for connection to an 8 Ω external speaker. This output can provide up to 1W of power into an 8 Ω load with a 5V analog supply. A single-ended stereo headphone output is also featured, providing up to 30mW of power per channel into 32 Ω with a 5V analog supply.

A Headphone Sense output is provided on J6 for connection to an external controller. This pin goes high when a heaphone is present (when used as shown in Figure 50) and will function in all modes independent of other operations the LM4930 may be currently processing.

The MIC Jack input (J3) provides for a low level analog input. Pin 3 provides the power to the MIC and the positive input of the LM4930. Gain for the MIC preamp is set in the GAINCONFIG register.

REVISION HISTORY	
Changes from Revision B (May 2013) to Revision C	Page

•	Changed layout of National Data Sheet to TI format	33

9-Aug-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type		Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Device Marking	Samples
	(1)		Drawing		Qty	(2)		(3)		(4/5)	
LM4930ITL/NOPB	ACTIVE	DSBGA	YZR	36		TBD	Call TI	Call TI	-30 to 85	G B6	Samples
LM4930ITLX/NOPB	ACTIVE	DSBGA	YZR	36	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-1-260C-UNLIM	-30 to 85	G B6	Samples
LM4930LQ/NOPB	ACTIVE	WQFN	NJN	44	250	Green (RoHS & no Sb/Br)	CU SN	Level-2-260C-1 YEAR	-30 to 85	L4930LQ	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

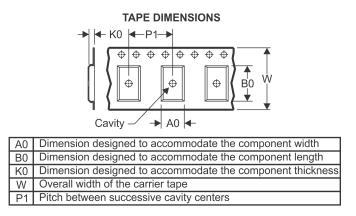
⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

⁽⁵⁾ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

9-Aug-2013

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

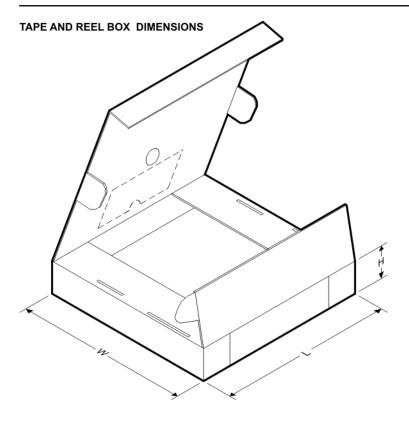

PACKAGE MATERIALS INFORMATION

www.ti.com

Texas Instruments

TAPE AND REEL INFORMATION

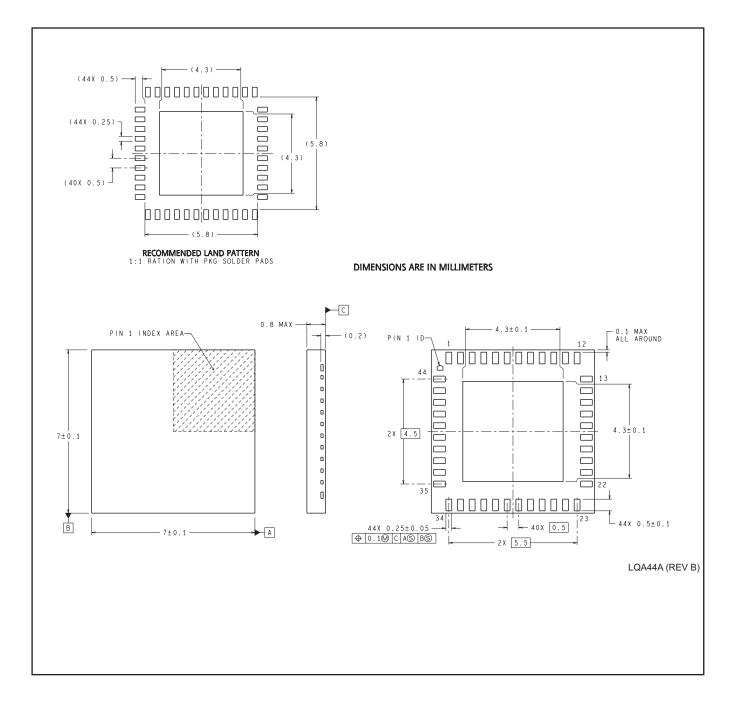
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE


*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
LM4930ITLX/NOPB	DSBGA	YZR	36	1000	178.0	12.4	3.43	3.59	0.76	8.0	12.0	Q1
LM4930LQ/NOPB	WQFN	NJN	44	250	178.0	16.4	7.3	7.3	1.3	12.0	16.0	Q1

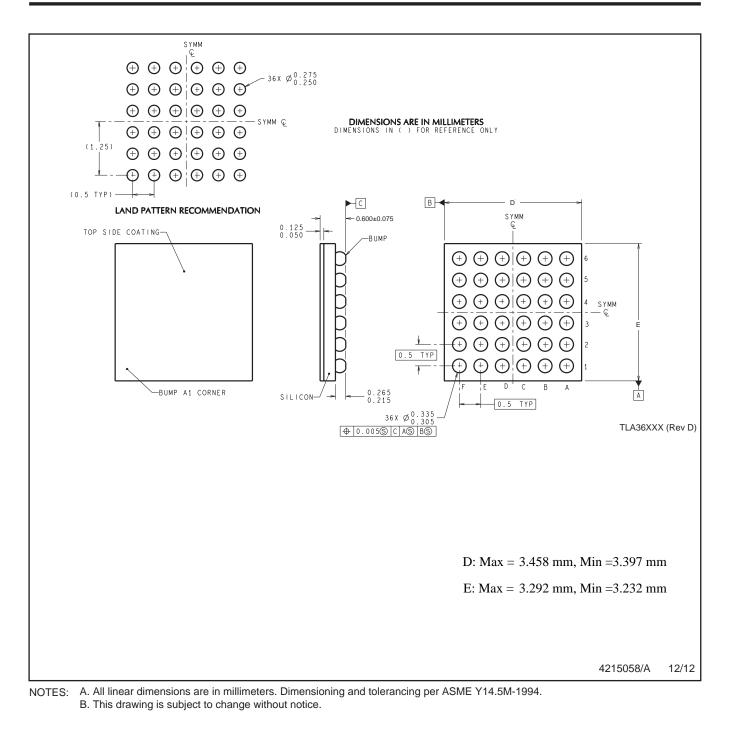
TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION


12-Aug-2013

*All dimensions are nominal


Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM4930ITLX/NOPB	DSBGA	YZR	36	1000	210.0	185.0	35.0
LM4930LQ/NOPB	WQFN	NJN	44	250	213.0	191.0	55.0

NJN0044A

YZR0036

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

Products		Applications	
Audio	www.ti.com/audio	Automotive and Transportation	www.ti.com/automotive
Amplifiers	amplifier.ti.com	Communications and Telecom	www.ti.com/communications
Data Converters	dataconverter.ti.com	Computers and Peripherals	www.ti.com/computers
DLP® Products	www.dlp.com	Consumer Electronics	www.ti.com/consumer-apps
DSP	dsp.ti.com	Energy and Lighting	www.ti.com/energy
Clocks and Timers	www.ti.com/clocks	Industrial	www.ti.com/industrial
Interface	interface.ti.com	Medical	www.ti.com/medical
Logic	logic.ti.com	Security	www.ti.com/security
Power Mgmt	power.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Applications Processors	www.ti.com/omap	TI E2E Community	e2e.ti.com
Wireless Connectivity	www.ti.com/wirelessconne	ectivity	

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated