February 1998

FAIRCHILD

DM74ALS251 3-STATE 1 of 8 Line Data Selector/Multiplexer

General Description

This Data Selector/Multiplexer contains full on-chip decoding to select one-of-eight data sources as a result of a unique three-bit binary code at the Select inputs. Two complementary outputs provide both inverting and non-inverting buffer operation. An Output Control input is provided which, when at the high level, places both outputs in the high impedance Off state. In order to prevent bus access conflicts, output disable times are shorter than output enable times. The Select input buffers incorporate internal overlap features to ensure that select input changes do not cause invalid output transients

Features

Function Table

- Advanced oxide-isolated, ion-implanted Schottky TTL process
- Switching performance is guaranteed over full
- temperature and $V_{\rm CC}$ supply range Pin and functional compatible with LS family counterpart
- Improved output transient handling capability
- Output control circuitry incorporates power-up 3-STATE feature

Connection Diagram

Order Number DM74ALS251M or DM74ALS251N See Package Number M16A or N16A

Inputs Outputs Strobe Select С в $\overline{\mathbf{s}}$ w Α Υ Х Х Х Н Ζ Ζ L L L L D0 DO L L Н L D1 D1 $\overline{D2}$ Н L 1 D2 T. D3 L Н н L. D3

ł	L	L	L	
ł	L	н	L	
ł	Н	L	L	
1	Н	н	L	
High I	مريما			

H = High Level L = Low Level

H

H

X = Don't Care

Z = High Impedance (Off) D0 thru D7 = The Level of the Respective D Input

DM74ALS251 3-STATE 1 of 8 Line Data Selector/Multiplexe

 $\overline{D4}$

D5

D6

D7

D4

D5 D6

D7

© 1998 Fairchild Semiconductor Corporation DS006214 www.fairchildsemi.com

Absolute Maximum Ratings (Note 1)

Supply Voltage, V _{CC}	7V
Input Voltage	7V
Voltage Applied to Disabled Output	5.5V
Operating Free Air Temperature Range	

DM74ALS251	0°C to +70°C
Storage Temperature Range	−65°C to +150°C
Τypical θ _{JA}	
N Package	78.0°C/ W
M Package	107.0°C/ W

Recommended Operating Conditions

Symbol	Parameter	Min	Nom	Max	Units
V _{cc}	Supply Voltage	4.5	5	5.5	V
V _{IH}	High Level Input Voltage	2			V
V _{IL}	Low Level Input Voltage			0.8	V
I _{он}	High Level Output Current			-2.6	mA
I _{OL}	Low Level Output Current			24	mA
TA	Free Air Operating Temperature	0		70	°C

Note 1: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Electrical Characteristics

over recommended operating free air temperature range. All typical values are measured at V_{CC} = 5V, T_A = 25°C.

Symbol	Parameter	Conditions		Min	Тур	Max	Units
VIK	Input Clamp Voltage	$V_{\rm CC} = 4.5 V, I_{\rm IN} = -18 \text{ mA}$				-1.5	V
V _{OH}	High Level Output	$V_{CC} = 4.5V$, $I_{OH} = Max$		2.4	3.2		V
	Voltage	$I_{OH} = -400 \ \mu A$, $V_{CC} = 4.5 V$ to	5.5V	V _{cc} -2			V
V _{OL}	Low Level Output	$V_{CC} = 4.5V$	I _{OL} = 24 mA		0.35	0.5	V
	Voltage						
l _i	Input Current at	$V_{\rm CC} = 5.5 V, V_{\rm IH} = 7 V$	•			0.1	mA
	Max Input Voltage						
I _{IH}	High Level Input Current	$V_{CC} = 5.5V, V_{IH} = 2.7V$				20	μA
l _{IL}	Low Level Input Current	$V_{\rm CC} = 5.5 V, V_{\rm IN} = 0.4 V$				-0.1	mA
1 ₀	Output Drive Current	$V_{\rm CC} = 5.5 V, V_{\rm OUT} = 2.25 V$		-30		-112	mA
I _{ozh}	Off-State Output	$V_{\rm CC} = 5.5 V, V_{\rm OUT} = 2.7 V$				20	μ A
	Current, High Bias						
lozl	Off-State Output	$V_{\rm CC} = 5.5 V, V_{\rm OUT} = 0.4 V$				-20	μA
	Current, Low Bias						
lcc	Supply Current	$V_{\rm CC}$ = 5.5V, Inputs = GND	Enabled		7	10	mA
		Inputs = 4.5V, V _{CC} = 5.5V	Disabled		9.4	14	

Symbol	Parameter	From	То	Conditions	Min	Max	Units
t _{PLH}	Propagation Delay Time	Select		$V_{\rm CC} = 4.5 V$	5	18	ns
	Low to High Level Output		Y	to 5.5V			
t _{PHL}	Propagation Delay Time	Select		C _L = 50 pF	8	24	ns
	High to Low Level Output			$R_L = 500\Omega$			
t _{PLH}	Propagation Delay Time	Select		1	8	24	ns
	Low to High Level Output		w				
t _{PHL}	Propagation Delay Time	Select			7	23	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	Data		1	2	10	ns
	Low to High Level Output		Y				
t _{PHL}	Propagation Delay Time	Data			3	15	ns
	High to Low Level Output						
t _{PLH}	Propagation Delay Time	Data		1	3	15	ns
	Low to High Level Output		w				
t _{PHL}	Propagation Delay Time	Data			3	15	ns
	High to Low Level Output						
t _{PZH}	Output Enable Time	Output] [3	15	ns
	to High Level	Control	Y				
t _{PZL}	Output Enable Time	Output			3	15	ns
	to Low Level	Control					
t _{PZH}	Output Enable Time	Output] [3	15	ns
	to High Level	Control	w				
t _{PZL}	Output Enable Time	Output			3	15	ns
	to Low Level	Control					
t _{PHZ}	Output Disable Time	Output		1 [2	10	ns
	from High Level	Control	Y				
t _{PLZ}	Output Disable Time	Output			1	10	ns
	from Low Level	Control					
t _{PHZ}	Output Disable Time	Output		1	2	10	ns
	from High Level	Control	w				
t _{PLZ}	Output Disable Time	Output	1		1	10	ns
_	from Low Level	Control					

Note 2: See Section 1 for test waveforms and output load.

www.fairchildsemi.com

www.fairchildsemi.com

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DE-VICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMI-CONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Fairchild Semiconductor	Fairchild Semiconductor	Fairchild Semiconductor	National Semiconducto
Corporation	Europe	Hong Kong Ltd.	Japan Ltd.
Americas	Fax: +49 (0) 1 80-530 85 86	13th Floor, Straight Block,	Tel: 81-3-5620-6175
Customer Response Center	Email: europe.support@nsc.com	Ocean Centre, 5 Canton Rd.	Fax: 81-3-5620-6179
Tel: 1-888-522-5372	Deutsch Tel: +49 (0) 8 141-35-0	Tsimshatsui, Kowloon	
	English Tel: +44 (0) 1 793-85-68-56	Hong Kong	
	Italy Tel: +39 (0) 2 57 5631	Tel: +852 2737-7200	
ww.fairchildsemi.com	,	Fax: +852 2314-0061	

Fairchild does not assume any responsibility for use of any circuity described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.