

CY26049-36

FailSafe[™] PacketClock Global Communications Clock Generator

Features

- Fully Integrated Phase-Locked Loop (PLL)
- FailSafe[™] Output
- 8 kHz Reference Clock
- PLL Driven by a Crystal Oscillator that is Phase Aligned with External Reference
- Selectable Standard Communication Output Frequencies
- Low Jitter, High Accuracy Outputs
- 3.3 V Operation
- 16-pin TSSOP Package
- Commercial and Industrial Temperature Ranges

Functional Description

CY26049 is a FailSafe frequency synthesizer with a reference clock input and three clock outputs. The device provides an optimum solution for applications which require continuous operation in case of primary clock failure. The continuous, glitch-free operation is achieved by using a DCXO which serves as a primary clock source. The FailSafe control circuit synchronizes the DCXO with the reference as long as the reference is within the pull range of the crystal.

In the event of a reference clock failure the DCXO maintains the last frequency and phase information of the reference clock. The unique feature of the CY26049-36 is that the DCXO is, in fact, the primary clocking source. When the reference clock is restored, the DCXO automatically resynchronizes to the reference. The status of the reference clock input, as detected by the CY26049-36, is reported by the SAFE pin.

In the buffer mode (FS3:FS0 = 1110 or 1111), the CY26049-36 can be used as a jitter attenuator. In this mode, extensive jitter on the input clock is 'filtered', resulting in a low jitter output clock.

For a complete list of related documentation, click here.

Logic Block Diagram

Cypress Semiconductor Corporation Document Number: 38-07415 Rev. *I 198 Champion Court • San Jose, CA 95134-1709 • 408-943-2600 Revised May 23, 2016

Contents

Pin Configuration	3
Pin Definitions	3
Frequency Select Tables	4
Absolute Maximum Conditions	5
Recommended Pullable Crystal Specifications	5
Recommended Operating Conditions	5
DC Electrical Specifications	
DC Electrical Specifications	6
Thermal Resistance	6
AC Electrical Specifications	7
Voltage and Timing Definitions	7
Test Circuit	8
Ordering Information	8
Ordering Code Definitions	8

Package Diagram	9
Acronyms	10
Document Conventions	10
Units of Measure	10
Document History Page	11
Sales, Solutions, and Legal Information	
Worldwide Sales and Design Support	12
Products	12
PSoC®Solutions	12
Cypress Developer Community	
Technical Support	12

Pin Configuration

Figure 1. 16-pin TSSOP pinout (Top View)

CY26049-36

Pin Definitions

Pin Name	Pin Number	Pin Description
ICLK	1	Reference Input Clock; 8 kHz or 10 to 60 MHz.
8K	2	Clock Output; 8 kHz or high impedance in buffer mode.
FS1	3	Frequency Select 1; Determines CLK outputs according to Table 1 on page 4.
FS2	4	Frequency Select 2; Determines CLK outputs according to Table 1 on page 4.
VDD	5	Voltage Supply; 3.3 V.
VSS	6	Ground
CLK/2	7	Clock Output; Frequency according to Table 1 on page 4.
XIN	8	Pullable Crystal Input; 18.432 MHz.
XOUT	9	Pullable Crystal Output; 18.432 MHz.
SAFE	10	High = reference ICLK within range, Low = reference ICLK out of range.
VSS	11	Ground
VDD	12	Voltage Supply; 3.3 V.
FS3	13	Frequency Select 3; Determines CLK outputs according to Table 1 on page 4.
FS0	14	Frequency Select 0; Determines CLK outputs according to Table 1 on page 4.
CLK	15	Clock Output; Frequency according to Table 1 on page 4.
NC	16	No Connect

Frequency Select Tables

ICLK	FS3	FS2	FS1	FS0	CLK/2	CLK	8K	Crystal
8 kHz	0	0	0	0	1.544	3.088	8 kHz	18.432
8 kHz	0	0	0	1	2.048	4.096	8 kHz	18.432
8 kHz	0	0	1	0	22.368	44.736	8 kHz	18.432
8 kHz	0	0	1	1	17.184	34.368	8 kHz	18.432
8 kHz	0	1	0	0	77.76	155.52	8 kHz	18.432
8 kHz	0	1	0	1	16.384	32.768	8 kHz	18.432
8 kHz	0	1	1	0	14.352	28.704	8 kHz	18.432
8 kHz	0	1	1	1	High Z ^[1]	High Z ^[1]	High Z ^[1]	18.432
8 kHz	1	0	0	0	18.528	37.056	8 kHz	18.432
8 kHz	1	0	0	1	12.352	24.704	8 kHz	18.432
8 kHz	1	0	1	0	7.68	15.36	8 kHz	18.432
8 kHz	1	0	1	1	High Z ^[1]	High Z ^[1]	High Z ^[1]	18.432
8 kHz	1	1	0	0	12.288	24.576	8 kHz	18.432
8 kHz	1	1	0	1	16.384	32.768	8 kHz	18.432

 Table 1. CY26049-36 Frequency Select–Output Decoding Table–External Mode (MHz except as noted)

Table 2. CY26049-36 Frequency Select–Output Decoding Table–Buffer Mode

ICLK	FS3	FS2	FS1	FS0	CLK/2	CLK	8K	Crystal
20 to 60 MHz	1	1	1	0	ICLK/2	ICLK	High Z ^[1]	ICLK/2
10 to 30 MHz	1	1	1	1	2 × ICLK	4 × ICLK	High Z ^[1]	ICLK

Absolute Maximum Conditions

Exceeding maximum ratings may shorten the useful life of the device. User guidelines are not tested.

Supply Voltage (V _{DD})	–0.5 to +7.0 V
DC Input Voltage0	.5 V to V _{DD} + 0.5 V

Storage Temperature (Non-Condensing)–55 °C to +125 °C	°C
Junction Temperature40 °C to +125 °C	°C
Data Retention at T _J = 125 °C> 10 yea	irs
Package Power Dissipation	W
ESD (Human Body Model) MIL-STD-883 2000	V

Recommended Pullable Crystal Specifications

Parameter ^[2]	Description	Comments	Min	Тур	Max	Units
F _{NOM}	Nominal crystal frequency	Parallel resonance, fundamental mode, AT cut	-	18.432	-	MHz
C _{LNOM}	Nominal load capacitance		-	14	-	pF
R ₁	Equivalent series resistance (ESR)	Fundamental mode	-	-	25	Ω
R ₃ /R ₁	Ratio of third overtone mode ESR to fundamental mode ESR	Ratio used because typical R ₁ values are much less than the maximum spec	3	-	-	
DL	Crystal drive level	No external series resistor assumed	-	0.5	2	mW
F _{3SEPHI}	Third overtone separation from $3 \times F_{NOM}$	High side	400	-	_	ppm
F _{3SEPLO}	Third overtone separation from $3 \times F_{NOM}$	Low side	-	-	-200	ppm
C ₀	Crystal shunt capacitance		-	-	7	pF
C ₀ /C ₁	Ratio of shunt to motional capacitance		180	-	250	
C ₁	Crystal motional capacitance		14.4	18	21.6	fF

Recommended Operating Conditions

Parameter	Description	Min	Тур	Max	Unit
V _{DD}	Operating Voltage	3.15	3.3	3.45	V
T _{AC}	Ambient Temperature (Commercial Temperature)	0	-	70	°C
T _{AI}	Ambient Temperature (Industrial Temperature)		-	85	°C
C _{LOAD}	Max Output Load Capacitance		-	15	pF
t _{PU}	Power up time for all $V_{\text{DD}}\text{s}$ to reach minimum specified voltage (power ramps must be monotonic)		-	500	ms
t _{ER(I)}	8 kHz Input Edge Rate, 20% to 80% of V_{DD} = 3.3 V	0.07	-	-	V/ns

DC Electrical Specifications

Commercial Temperature: 0 °C to 70 °C

Parameter	Description	Test Conditions	Min	Тур	Мах	Unit
I _{OH}	Output High Current	$V_{OH} = V_{DD} - 0.5 V,$ $V_{DD} = 3.3 V $ (source)	12	24	-	mA
I _{OL}	Output Low Current	V _{OL} = 0.5 V, V _{DD} = 3.3 V (sink)	12	24	-	mA
V _{IH}	Input High Voltage	CMOS Levels	0.7	-	-	V _{DD}
V _{IL}	Input High Voltage	CMOS Levels	-	-	0.3	V _{DD}
I _{IH}	Input High Current	V _{IH} = V _{DD}	-	5	10	μA
IIL	Input Low Current	V _{IL} = 0 V	-	5	10	μA
C _{IN}	Input Capacitance		-	-	7	pF
I _{OZ}	Output Leakage Current	High Z ^[3] output	-	±5	-	μA
I _{DD}	Supply Current	C _{LOAD} = 15 pF, V _{DD} = 3.45 V, FS [3:0] = 0100	-	-	45	mA
		C _{LOAD} = 15 pF, V _{DD} = 3.45 V, FS [3:0] = 1101	-	_	30	mA

DC Electrical Specifications

Industrial Temperature: -40 °C to 85 °C

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
I _{OH}	Output High Current	$V_{OH} = V_{DD} - 0.5 V,$ $V_{DD} = 3.3 V (source)$	10	20	-	mA
I _{OL}	Output Low Current	V _{OL} = 0.5 V, V _{DD} = 3.3 V (sink)	10	20	-	mA
V _{IH}	Input High Voltage	CMOS Levels	0.7	-	-	V _{DD}
V _{IL}	Input High Voltage	CMOS Levels	-	-	0.3	V _{DD}
IIH	Input High Current	$V_{IH} = V_{DD}$	-	5	10	μA
I _{IL}	Input Low Current	V _{IL} = 0 V	-	5	10	μA
C _{IN}	Input Capacitance		-	-	7	pF
I _{OZ}	Output Leakage Current	High Z ^[3] output	-	± 5	-	μA
I _{DD}	Supply Current	C _{LOAD} = 15 pF, V _{DD} = 3.45 V, FS [3:0] = 0100	-	-	50	mA
		C _{LOAD} = 15 pF, V _{DD} = 3.45 V, FS [3:0] = 1101	-	-	35	mA

Thermal Resistance

Parameter ^[4]	Description	Test Conditions	16-pin TSSOP	Unit
θ_{JA}	5	Test conditions follow standard test methods and procedures for measuring thermal impedance, in		°C/W
θ _{JC}	Thermal resistance (junction to case)	accordance with EIA/JESD51.	12	°C/W

Notes

High Z = high impedance.
 These parameters are guaranteed by design and are not tested.

AC Electrical Specifications

Commercial Temperature: 0 °C to 70 °C and Industrial Temperature: -40 °C to 85 °C

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
f _{ICLK-E}	Frequency, Input Clock	Input Clock Frequency, External Mode	-	8.00	-	kHz
f _{ICLK-B}	Frequency, Input Clock	Input Clock Frequency, Buffer Mode	10	_	60	MHz
LR	FailSafe Lock Range ^[5]	Range of reference ICLK for Safe = High	-250	-	+250	ppm
$t_{\rm DC} = t_2/t_1$	Output Duty Cycle	Duty Cycle defined in Figure 2, measured at 50% of V_{DD}	45	50	55	%
t _{PJIT1}	Clock Jitter; output > 5 MHz	Period Jitter, Peak to Peak, 10,000 periods	-	-	250	ps
		RMS Period Jitter, RMS	_	-	50	ps
t _{PJIT2}	Clock Jitter; output < 5 MHz	Period Jitter, Peak to Peak, 10,000 periods	-	-	500	ps
		RMS Period Jitter, RMS	_	-	100	ps
t _{P_LOCK}	PLL Lock Time ^[6]	Time for PLL to lock within ±150 ppm of target frequency	-	-	3	ms
t _{FS_LOCK}	Failsafe Lock Time ^[6]	Time for PLL to lock to ICKL (outputs phase aligned with ICKL and Safe = High)	_	_	7	S
f _{ERROR}	Frequency Synthesis Error	Actual mean frequency error versus target	-	0	-	ppm
ER	Rising Edge Rate	Output Clock Edge Rate, Measured from 20% to 80% of V_{DD} , C_{LOAD} = 15 pF. See Figure 3.	0.8	1.4	2	V/ns
EF	Falling Edge Rate	Output Clock Edge Rate, Measured from 20% to 80% of V_{DD} , C_{LOAD} = 15 pF. See Figure 3.	0.8	1.4	2	V/ns

Voltage and Timing Definitions

Figure 2. Duty Cycle Definition; DC = t2/t1

Figure 3. Rise and Fall Time Definitions: ER = 0.6 × VDD / t3, EF = 0.6 × VDD / t4

Notes

5. Dependent on crystals chosen and crystal specs.

6. Lock times are measured beginning when VDD has reached its minimum specified value and ICLK is stable.

Test Circuit

Figure 4. Test Circuit

Ordering Information

Ordering Code	Package Type	Operating Temperature Range
Pb-free		
CY26049ZXC-36	16-pin TSSOP	Commercial, 0 °C to 70 °C
CY26049ZXC-36T	16-pin TSSOP–Tape and Reel	Commercial, 0 °C to 70 °C
CY26049ZXI-36	16-pin TSSOP	Industrial, –40 °C to 85 °C
CY26049ZXI-36T	16-pin TSSOP-Tape and Reel	Industrial, –40 °C to 85 °C

Ordering Code Definitions

0.09[[0.003] 0.20[0.008]

Package Diagram

Figure 5. 16-pin TSSOP 4.40 mm Body Z16.173/ZZ16.173 Package Outline, 51-85091

DIMENSIONS IN MMEINCHESI MIN. MAX. REFERENCE JEDEC MO-153

PACKAGE WEIGHT 0.05gms

PART #			
Z16.173	STANDARD PKG.		
ZZ16.173	LEAD FREE PKG.		

51-85091 *E

Acronyms

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
DCXO	Digital Controlled Crystal Oscillator
ESD	Electrostatic Discharge
ESR	Equivalent Series Resistance
JEDEC	Joint Electron Devices Engineering Council
PLL	Phase Locked Loop
TSSOP	Thin Shrunk Small Outline Package

Document Conventions

Units of Measure

Symbol	Unit of Measure	
°C	degree Celsius	
fF	femtofarad	
kHz	kilohertz	
MHz	megahertz	
μA	microampere	
mA	milliampere	
mm	millimeter	
ms	millisecond	
mW	milliwatt	
ns	nanosecond	
Ω	ohm	
%	percent	
pF	picofarad	
ppm	parts per million	
ps	picosecond	
S	second	
V	volt	

Document History Page

Rev.	ECN No.	Submission Date	Orig. of Change	Description of Change
**	114749	08/08/02	CKN	New data sheet
*A	120067	01/06/03	CKN	Changed "FailSafe is a trademark of Silicon Graphics, Inc." to read "FailSafe is a trademark of Cypress Semiconductor"
*В	128000	07/15/03	IJA	Changed Benefits to read "When reference is in range, SAFE pin is driven high Changed first sentence to "CY26049 is a FailSafe frequency synthesizer with a reference clock input and three clock outputs" Changed title from "Failsafe™ PacketClock™ Global Communications Clocks to "FailSafe™ PacketClock™ Global Communications Clock Generator" Changed definitions in Pin Description Table Replaced format for Absolute Maximum Conditions Replaced Recommended Pullable Crystal Specifications table Added t _{pu} to Recommended Operating Conditions Replaced AC Electrical Specifications Replaced AC Electrical Specifications from Cy26049-16 data sheet Changed Voltage and Timing Definitions to match CY2410 data sheet
*C	244412	See ECN	RGL	Spec. (t _{ER(I)}) Input Edge Rate in the Recommended Operating Conditions Table Added Lead Free Devices
*D	2865396	01/25/2010	TSAI / KVM	Added 8 kHz ref clock to p. 1 Features Moved Functional Description to p. 1, replacing Benefits section Removed Selector Guide table Added units (MHz) to ICLK column of Table 2 Standardized parameter name capitalization in AC Electrical table Changed timing parameter name t6 to t_{P_LOCK} Added footnote for t_{P_LOCK} and t_{FS_LOCK} Remove part numbers CY26049ZC-36, CY26049ZC-36T, CY26049ZI-36 and CY26049ZI-36T Updated to new template. Post to external web.
*E	2925613	04/30/10	KVM	Posting to external web.
*F	3377436	09/20/2011	PURU	Added Ordering Code Definitions. Updated Package Diagram. Added Acronyms and Units of Measure. Updated to new template.
*G	4545891	10/20/2014	TAVA	Updated Package Diagram: spec 51-85091 – Changed revision from *C to *E. Updated to new template. Completing Sunset Review.
*H	4587350	12/05/2014	TAVA	Updated Functional Description: Added "For a complete list of related documentation, click here." at the end.
*	5281528	05/23/2016	PSR	Added Thermal Resistance. Updated to new template.

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Lighting & Power Control	cypress.com/powerpsoc
Memory	cypress.com/memory
PSoC	cypress.com/psoc
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless/RF	cypress.com/wireless

PSoC[®]Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Forums | Projects | Video | Blogs | Training | Components

Technical Support cypress.com/support

© Cypress Semiconductor Corporation, 2002-2016. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infinged by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other luses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 38-07415 Rev. *I

FailSafe[™] is a trademark of Cypress Semiconductor Corporation.