

SN5495A, SN54LS95B, SN7495A, SN74LS95B

4-Bit Parallel-Access Shift Registers

These 4-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation: Parallel (broadside) load, shift right (the direction Q_A toward Q_D), and shift left (the direction Q_D toward Q_A). Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

Quality Overview

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.

SN5495A, SN54LS95B, SN7495A, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS M

SN5495A, SN54LS95B . . . J OR W PACKAGE

IARCH	1974	_	REVISED	MARCH	198

TYPE	TYPICAL MAXIMUM CLOCK FREQUENCY	TYPICAL POWER DISSIPATION
'95A	36 MHz	195 mW
'LS95B	36 MHz	65 mW

description

These 4-bit registers feature parallel and serial inputs, parallel outputs, mode control, and two clock inputs. The registers have three modes of operation:

Parallel (broadside) load Shift right (the direction Q_A toward Q_D) Shift left (the direction QD toward QA)

Parallel loading is accomplished by applying the four bits of data and taking the mode control input high. The data is loaded into the associated flip-flops and appears at the outputs after the high-to-low transition of the clock-2 input. During loading, the entry of serial data is inhibited.

Shift right is accomplished on the high-to-low transition of clock 1 when the mode control is low; shift left is accomplished on the high-to-low transition of clock 2 when the mode control is high by connecting the output of each flip-flop to the parallel input of the previous flip-flop (QD to input C, etc.) and serial data is entered at input D. The clock input may be applied commonly to clock 1 and clock 2 if both modes can be clocked from the same source. Changes at the mode control input should normally be made while both clock inputs are low; however, conditions described in the last three lines of the function table will also ensure that register contents are protected.

SN54LS95B . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

	INPUTS									PUTS	
MODE	MODE CLOCKS			PARALLEL				0.	0-	0.0	0-
CONTROL	2 (L)	1 (R)	SERIAL	A	B	С	D	QA	а _в	٥c	٥D
н	н	x	x	x	x	x	х	QAO	QB0	QC0	QD0
н	+	х	x	а	ь	с	đ	а	b	С	d
н	L +	x	×	QBt	QC [†]	QDt	d	QBn	QCn	QDn	đ
L	L	н	×	×	х	×	x	QAO	OBO	QC0	QDO
L	x	4	н	x	×	×	×	н	QAn	QBn	QCn
L	x	4	ι	x	х	×	×	L	QAn	QBn	QCn
t	L	L	×	x	x	x	×	QAO	QB0	QCO	QDO
Ļ	ι	L	×	x	x	x	x	QA0	QB0	QC0	QDO
ŧ	L	н	×	×	x	×	×	QA0	QBO	QCO	QDO
t	н	L	×	x	x	x	x	QAO	QB0	QCO	QDO
t	н	н	x	×	×	x	×	QAO	QB0	QC0	QDO

FUNCTION TABLE

[†]Shifting left requires external connection of Ω_B to A, Ω_C to B, and Ω_D to C. Serial data is entered at input D. H = high level (steady state), L = low level (steady state), X = irrelevant (any input, including transitions)

1 = transition from high to low level, 1 = transition from low to high level

a, b, c, d = the level of steady state input at inputs A, B, C, or D, respectively.

QA0, QB0, QC0, QD0 = the level of QA, QB, QC, or QD, respectively, before the indicated steady-state input conditions were established.

QAn, QBn, QCn, QDn = the level of QA, QB, QC, or QD, respectively, before the most-recent 4 transition of the clock.

PRODUCTION DATA documents contain information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

ITL Devices

SN5495A, SN54LS95B, SN7495A, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

logic symbol[†]

2

ł

 † This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages.

SN5495A, SN54LS95B, SN7495A, SN74LS95G 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

	SN54'	SN54LS'	SN74'	SN74LS'	UNIT
Supply voltage, VCC (see Note 1)	7	7	7	7	V
Input voltage	5.5	7	5.5	7	V
Interemitter voltage (see Note 2)	5.5		5.5		V
Operating free-air temperature range	- 55	to 125	0	0 to 70	
Storge temperature range	- 65	to 150	°C		

NOTES: 1. Voltage values, except interemitter voltage, are with respect to network ground terminal.

2. This is the voltage between two emitters of a multiple-emitter input transistor. This rating applies between the clock-2 input and the mode control input of the '95A.

SN5495A, SN7495A **4-BIT PARALLEL-SHIFT REGISTERS**

recommended operating conditions

		SN5495A			SN7495A			
	MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
	4.5	5	5.5	4.75	5	5.25	V	
Supply voltage, VCC			-800			-800	μA	
High-level output current, IOH				<u> </u>		16	mA	
Low-level output current, IOL			16	<u> </u>		25	MHz	
Clock frequency, fclock	0		25	0		25		
Width of clock pulse, tw(clock) (See Figure 1)	20			20			ns	
Setup time, high-level or low-level data, t _{su} (See Figure 1)	15			15			ns	
Hold time, high-level or low-level data, th (See Figure 1)	0			0			ns	
Time to enable clock 1, tenable 1 (See Figure 2)	15			15			ns	
Time to enable clock 1, tenable 1, (cost 1, gate da	15			15			ns	
Time to enable clock 2 (See Figure 2)	5			5			ns	
Time to inhibit clock 1, tinhibit 1 (See Figure 2)				5			ns	
Time to inhibit clock 2, tinhibit 2 (See Figure 2)			105			70	°c	
Operating free-air temperature, TA	-55	_	125	0		/0	L_~	

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				1	N5495	A	SN7495A			UNIT
PARAMETER		TEST CONDITIONS [†]		TYP [‡]	MAX	MIN	TYP‡	MAX	0.411	
				2			2			v_
VIH	High-level input voltage					0.8			0.8	V
VIL	Low-level input voltage		Vcc = MIN, 11 = -12 mA	<u>+</u>		-1.5			-1.5	V
Vik	Input clamp voltage			+						
			$V_{CC} = MIN, V_{IH} = 2V,$	2.4	3.4		2.4	3.4		V
∨он	High-level output voltag	e	VIL = 0.8 V, 10H = -800 µA							
			V _{CC} = MIN, V _{1H} = 2 V, V _{1L} = 0.8 V, I _{OL} = 16 mA		0.2	0.4	ļ	0.2	0.4	V V
Vol	Low-level output voltag	e			0.2					
	Input current at	·	V _{CC} = MAX, V _I = 5.5 V			1	1		1	mA
կ	maximum input voltage		+CC							+
		Serial, A, B, C, D,				40			40	μΑ
Чн	High-level	Clock 1 or 2	V _{CC} = MAX, V ₁ = 2.4 V							- i -
.14	input current	Mode control]			80			80	+
		Serial, A, B, C, D,				1.6			-1.6	
ЧL	Low-level	Clock 1 or 2	V _{CC} = MAX, V _I = 0.4 V	L						^ mA
	input current	Mode control				-3.2	+		-3.2	
los	Short-circuit output cu	rrent§	V _{CC} = MAX	18		-57	-18		57	_
1cc	Supply current		VCC = MAX, See Note 3		39	63		39	63	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at $V_{CC} = 5 V$, $T_A = 25 °C$.

§ Not more than one output should be shorted at a time.

NOTE 3: ICC is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V; and a momentary 3 V, then ground, applied to both clock inputs.

switching characteristics, VCC = 5 V, TA = 25° C

PARAMETER	TEST CONDITION	S MIN	TYP	MAX	UNIT
fmay Maximum clock frequency		25	36		MHz
They are a service and a service high level output from clock	$C_{L} = 15 pF, R_{L} = 40$	0 \$2,	18	27	ns
tPLH Propagation delay time, high-to-low-level output from clock	See Figure 1		21	32	ns

2

TTL Devices

recommended operating conditions

	SI	SN54LS95B		SN74LS95B			
	MIN	NOM	MAX	MIN	NOM	MAX	
Supply voltage, V _{CC}	4.5	5	5.5	4.75	5	5.25	V
High-level output current, IOH			-400			-400	μA
Low-level output current, IOL			4			8	mA
Clock frequency, fclock	0		25	0		25	MHz
Width of clock pulse, tw(clock) (see Figure 1)	20			20			ns
Setup time, high-level or low-level data, tsu (see Figure 1)	20			20			ns
Hold time, high-level or low-level data, th (see Figure 1)	20			10			ns
Time to enable clock 1, tenable 1 (see Figure 2)	20			20			ns
Time to enable clock 2, tenable 2 (see Figure 2)	20			20			ns
Time to inhibit clock 1, tinhibit 1 (see Figure 2)	20			20			ns
Time to inhibit clock 2, tinhibit 2 (see Figure 2)	20			20		-	ns
Operating free-air temperature, TA	-55		125	0		70	°c

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER	TEST CO		SI	V54LS9	58	S			
	PARAMETER	TEST CO	NDITIONS'	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT
V_{IH}	High-level input voltage			2			2			V
VIL	Low-level input voltage		· · · · · · · · · · · · · · · · · · ·			0.7			0.8	V
VIK	Input clamp voltage	V _{CC} = MIN,	I₁'= −18 mA			-1.5	1		-1.5	V
v _{он}	High-level output voltage	V _{CC} = MIN, VIL ≍ VIL max,	V _{IH} = 2 V, I _{OH} = -400 µA	2.5	3.4		2.7	3.4		v
Voi	Low-level output voltage	V _{CC} = MIN, V _{IH} = 2 V,	IOL = 4 mA		0.25	0.4		0.25	0.4	
VOL	Low-rever output vortage	VIL = VIL max	I _{OL} = 8 mA					0.35	0.5	ľ
II.	Input current at maximum input voltage	V _{CC} = MAX,	V ₁ = 7 V			0.1			0.1	mA
ŧн	High-level	V _{CC} = MAX,	V _I = 2.7 V			20			20	μA
46	Low-level input current	V _{CC} = MAX,	V _I = 0.4 V			-0.4			0.4	mA
los	Short-circuit output current §	V _{CC} = MAX		-20		-100	20		-100	mA
1CC	Supply current	$V_{CC} = MAX,$	See Note 3		13	21		13	21	mA

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] All typical values are at V_{CC} = 5 V, T_A = 25 °C.

⁵ Not more than one output should be shorted at a time, and duration of the short-circuit should not exceed one second. NOTE 3: I_{CC} is measured with all outputs and serial input open; A, B, C, and D inputs grounded; mode control at 4.5 V; and a momentary 3 V,

then ground, applied to both clock inputs.

switching characteristics, $V_{CC} = 5 V$, $T_A = 25^{\circ}C$

PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
fmax Maximum clock frequency	$C_{L} = 15 pF$, $R_{L} = 2 k\Omega$,	25	36		MHz
tPLH Propagation delay time, low-to-high-level output from clock	See Figure 1		18	27	ns
tPHL Propagation delay time, high-to-low-level output from clock	oee rigure r		21	32	ns

÷

TTL Devices

SN5495A, SN54LS95B, SN7495A, SN74LS95B 4-BIT PARALLEL-ACCESS SHIFT REGISTERS

NOTES: A. Input pulses are supplied by a generator having the following characteristics: $t_f \le 10 \text{ ns}$, $t_f \le 10 \text{ ns}$, and $Z_{out} \approx 50 \Omega$. For the data pulse generator, PRR = 500 kHz; for the clock pulse generator, PRR = 1 MHz. When testing f_{max} , vary PRR. For '95A, $t_w(data) \ge 20 \text{ ns}$, $t_w(clock) \ge 15 \text{ ns}$.

- B. CL includes probe and jig capacitance.
- C. All diodes are 1N3064 equivalent.
- D. For '95A, V_{ref} = 1.5 V; for 'LS95B, V_{ref} = 1.3 V.

VOLTAGE WAVEFORMS FIGURE 1-SWITCHING TIMES

PARAMETER MEASUREMENT INFORMATION

NOTES: A. Input is at a low level.

B. For '95A, V_{ref} = 1.5 V; for 'LS958, V_{ref} = 1.3 V.

VOLTAGE WAVEFORMS FIGURE 2-CLOCK ENABLE/INHIBIT TIMES

