RD890 SYSTEM CLOCK FOR AMD-BASED SERVERS 932S890C ## **General Description** The 932S890C is a main clock synthesizer chip for SR5690/SR5670 AMD Servers. An SMBus interface allows full control of the device. ## **Recommended Application** SR5690/SR5670 AMD-based Servers ## **Output Features** - Low power differential outputs with integrated series resistors for Zo=50ohm systems - 4 -Differential 200MHz CPU pairs - 2 Differential 100MHz HT3 pairs - 14 Differential PCIe Gen2 SRC pairs - 1 Differential non-spread SATA clock - 2 48MHz USB clocks (180 degrees out of phase for EMI reduction) - 2 SIO clocks (selectable 48MHz or 24MHz). 180 degrees out of phase for EMI reduction - 2 14.318MHz REF clock outputs ### Features/Benefits - Spread Spectrum; EMI reduction - Outputs may be disabled via SMBus; saves power - External crystal load capacitors; maximum frequency accuracy ### **Key Specifications** - CPU output cycle-to-cycle jitter <100ps - SRC output cycle-to-cycle jitter <125ps - 48MHz output cycle-to-cycle jitter <130ps - SIO output cycle-to-cycle jitter <150ps - SRC output phase jitter <3.1ps rms (PCle Gen2) - +/- 50ppm frequency accuracy on all clocks, assuming REF is trimmed to 0 ppm) #### Table 1: 932 S890 Functionality | CPU | HTT | SRC | SATA | REF | SIO | USB | DOT | |--------|--------|--------|--------|--------|-------|-------|-------| | MHz | MHz | MHz | SAIA | MHz | 310 | MHz | MHz | | 200.00 | 100.00 | 100.00 | 100.00 | 14.318 | 24/48 | 48.00 | 96.00 | ## **Pin Configuration** * Indicates that pin has 120Kohm internal pullup resistor. # **Pin Descriptions** | PIN # | PIN NAME | PIN TYPE | DESCRIPTION | | | | | |-------|-------------------|----------|---|--|--|--|--| | 1 | VDDSATA_3.3 | PWR | Power supply for SATA core logic, nominal 3.3V | | | | | | 2 | SATAC_LPRS | OUT | Complement clock of low power differential SATA clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | | | | 3 | SATAT_LPRS | OUT | True clock of low power differential SATA clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | | | | 4 | GNDSATA | GND | Ground pin for the SATA output | | | | | | 5 | CPUKG0C_LPRS | OUT | Complementary signal of low-power differential push-pull AMD "Greyhound" clock with integrated series resistor. (no 33 ohm series resistor needed and no 50 ohm pull down resistor needed) | | | | | | 6 | CPUKG0T_LPRS | OUT | True signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor(no 33 ohm series resistor needed and no 50 ohm pull down resistor needed) | | | | | | 7 | CPUKG1C_LPRS | OUT | Complementary signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor. (no 33 ohm series resistor needed and no 50 ohm pull down resistor needed) | | | | | | 8 | CPUKG1T_LPRS | OUT | True signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor(no 33 ohm series resistor needed and no 50 ohm pull down resistor needed) | | | | | | 9 | VDDCPU_3.3 | PWR | Supply for CPU core and outputs, 3.3V nominal | | | | | | 10 | GNDCPU | GND | Ground pin for the CPU outputs | | | | | | 11 | CPUKG2C_LPRS | OUT | Complementary signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor. (no 33 ohm series resistor needed and no 50 ohm pull down resistor needed) | | | | | | 12 | CPUKG2T_LPRS | OUT | True signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor(no 33 ohm series resistor needed and no 50 ohm pull down resistor needed) | | | | | | 13 | CPUKG3C_LPRS | OUT | Complementary signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor. (no 33 ohm series resistor needed and no 50 ohm pull down resistor needed) | | | | | | 14 | CPUKG3T_LPRS | OUT | True signal of low-power differential push-pull AMD "Greyhound" CPU clock with integrated series resistor(no 33 ohm series resistor needed and no 50 ohm pull down resistor needed) | | | | | | 15 | RESTORE# | I/O | Open Drain I/O. As an input it restores the PLL's to power up default state. As an output, this signal is driven low when the internal watchdog hardware timer expires. It is cleared when the internal watchdog hardware timer is reset or disabled. The input is falling edge triggered. 0 = Restore Settings, 1 = normal operation. | | | | | | 16 | HTT0C_LPRS | OUT | Complementary signal of low-power differential push-pull Hypertransport 3 clock with integrated series resistor. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | | | | 17 | HTT0T_LPRS | OUT | True signal of low-power differential push-pull Hypertransport 3 clock with integrated series resistor. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | | | | 18 | GNDHTT | PWR | Ground pin for the HTT outputs | | | | | | 19 | VDDHTT_3.3 | PWR | Supply for HTT clocks, nominal 3.3V. | | | | | | 20 | HTT1C_LPRS | OUT | Complementary signal of low-power differential push-pull Hypertransport 3 clock with integrated series resistor. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | | | | 21 | HTT1T_LPRS | OUT | True signal of low-power differential push-pull Hypertransport 3 clock with integrated series resistor. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | | | | 22 | SMBCLK | IN | Clock pin of SMBus circuitry, 5V tolerant. | | | | | | 23 | SMBDAT | I/O | Data pin for SMBus circuitry, 5V tolerant. | | | | | | 24 | X1 | IN | Crystal input, nominally 14.318MHz | | | | | | 25 | X2 | OUT | Crystal output, nominally 14.318MHz | | | | | | 26 | VDDREF_3.3 | PWR | Ref, XTAL power supply, nominal 3.3V | | | | | | 27 | REF0 | OUT | 14.318 MHz reference clock, 3.3V | | | | | | 28 | REF1 | OUT | 14.318 MHz reference clock, 3.3V | | | | | | 29 | GNDREF | GND | Ground pin for the REF outputs. | | | | | | | GND48 | GND | Ground pin for the 48MHz outputs | | | | | | 31 | 48MHz_0 | OUT | 48MHz clock output. | | | | | | 32 | 48MHz_1 | OUT | 48MHz clock output. (180 degrees out of phase with 48MHz_0) | | | | | | 33 | VDD48_3.3 | PWR | Power pin for the 48MHz and SIO outputs and core. 3.3V | | | | | | 34 | SIO_0_1.8/SIO_SEL | I/O | Selectable 48MHz or 24MHz output/SIO Select Latched Input
0 = 24MHz, 1 = 48MHz. | | | | | | 35 | SIO_1_1.8 | OUT | Selectable 48MHz or 24MHz output. (180 out of phase with SIO 0. Selected by SIO latched input. 0 = 24MHz, 1 = 48MHz. | | | | | | 36 | GNDSIO | GND | Ground pin for the SIO outputs | | | | | 2 932S890C # **Pin Descriptions (cont.)** | SPRICE_LPRS OUT Complement dock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm shurit resistor to GND and no 33 ohm series resistor. Price clock of low power differential SRC clock pair. (no 50 ohm | PIN # | | PIN TYPE | DESCRIPTION |
--|----------|--------------|----------|---| | 38 RRC0T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Presistor needed) 39 RRC1C_LPRS OUT A SRC1T_LPRS OUT A SRC1T_LPRS OUT A SRC2T_LPRS OUT A SRC2C_LPRS SRC | | | | | | SRCIT_LPRS | 37 | SRC0C_LPRS | OUT | <u> </u> | | set SPLCUT_LPRS OUT Complement acok of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series to SPLCUT_LPRS OUT Set | | | | | | SPECIC_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series series. Proeded) SRC2C_LPRS OUT SINCER_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proeded) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock | 38 | SRC0T_LPRS | OUT | | | SPICIT_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SUPPLY for SRC one and outputs, 3.3V nominal for SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SUPPLY for SRC one and outputs, 3.3V nominal for series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock of Inv. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC | | | | | | 40 SRC1T_LPRS OUT Procedure And Development dock of low power differential SRC cock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC2C_LPRS OUT Omplement dock of low power differential SRC cock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series series resistor. PMR SRC3C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC3C_LPRS OUT SRC3C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC3C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PMR SRC4C_LPRS OUT Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed). Thus clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and n | 39 | SRC1C_LPRS | OUT | <u> </u> | | 41 VIDDSRC 3.3 PWR Supply for SRC core and outputs, 3.3V nominal 42 (SNDSRC GND GND GROUND FOR SRC core and outputs, 3.3V nominal 43 SRC2C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 45 SRC3C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 46 SRC3T_LPRS OUT Series resistor needed) 47 SRC4C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 48 SRC4T_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 49 GNDSRC GND Ground pin for the SRC outputs 50 VDDSRC 3.3 PWR Supply for SRC core and outputs 3.3V nominal 51 SRC5C_LPRS OUT Ground pin for the SRC outputs 52 SRC5T_LPRS OUT Ground pin for the SRC outputs 53 SRC6C_LPRS OUT Ground pin for the SRC outputs 54 SRC6C_LPRS OUT Ground pin for the SRC outputs 55 SRC6C_LPRS OUT Ground pin for
the SRC outputs 56 SRC6C_LPRS OUT Ground pin for the SRC outputs 57 SRC6C_LPRS OUT Ground pin for the SRC outputs 58 SRC6C_LPRS OUT Ground pin for the SRC outputs 59 SRC6C_LPRS OUT Ground pin for the SRC outputs 50 SRC6C_LPRS OUT Ground pin for the SRC outputs 50 SRC6C_LPRS OUT Ground pin for the SRC outputs 50 SRC6C_LPRS OUT Ground pin for the SRC outputs 50 SRC6C_LPRS OUT Ground pin for the SRC outputs 50 SRC6C_LPRS OUT Ground pin for the SRC outputs 50 SRC6C_LPRS OUT Ground pin for the SRC outputs 50 SRC6C_LPRS OUT Ground pin for the SRC outputs 50 SRC6C_LPRS OUT Ground pin for the SRC outputs 51 SRC6C_LPRS OUT Ground pin for the SRC outputs 52 SRC6C_LPRS OUT Ground pin for the SRC outputs 53 SRC6C_LPRS OUT Ground pin for the SRC outputs 54 SRC6C_LPRS OUT Ground pin for the SRC outputs 55 SRC6C_LPRS OUT Ground pin for the SRC outputs 66 SRC7L_PRS OUT Ground pin for the SRC outputs 67 SRC6C_LPRS OUT Ground pin for the SRC outputs | | | | | | 41 VDDSRC 3.3 PWR Supply for SRC one and outputs, 3.3V nominal | 40 | SRC1T_LPRS | OUT | | | 43 SRC2C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 44 SRC2T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 45 SRC3C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 46 SRC3T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 47 SRC4C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 48 SRC4T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 49 GNDSRC OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 50 NDSRC OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 51 SRC5C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 52 SRC5T_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 53 SRC6C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 54 SRC7T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 55 SRC7C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC7T_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 SRC8 | //1 | VDDSRC 33 | PWR | | | 43 SRC2C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series series to create the resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series series to create the resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series series to create the resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series series to cell the series of the company of the resistor needed) SRC5C_LPRS OUT SRC5C_LPRS OUT SRC5C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC5C_LPRS OUT SRC5C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC5C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and n | | | | | | series resistor needed) SRC2T_LPRS OUT Tue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC3C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Tue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Proceeded) White series resistor needed on the resis | | | | | | 44 SRC2T_LPRS OUT resistor needed) 45 SRC3C_LPRS OUT resistor needed) 46 SRC3C_LPRS OUT resistor needed) 47 SRC4C_LPRS OUT resistor needed) 48 SRC4T_LPRS OUT resistor needed) 49 SRC4T_LPRS OUT resistor needed) 49 SRC5T_LPRS OUT resistor needed) 50 SRC5T_LPRS OUT resistor needed) 51 SRC5C_LPRS OUT resistor needed) 52 SRC5T_LPRS OUT resistor needed) 53 SRC5T_LPRS OUT resistor needed) 54 SRC5T_LPRS OUT resistor needed) 55 SRC5C_LPRS OUT resistor needed) 56 SRC5T_LPRS OUT resistor needed) 57 SRC5C_LPRS OUT resistor needed) 58 SRC5T_LPRS OUT resistor needed) 59 SRC5T_LPRS OUT resistor needed) 50 SRC5T_LPRS OUT resistor needed) 58 SRC5T_LPRS OUT resistor needed) 59 SRC5T_LPRS OUT resistor needed) 50 51 SRC5C_LPRS OUT resistor needed) 52 SRC5T_LPRS OUT resistor needed) 53 SRC5T_LPRS OUT resistor needed) 54 SRC5T_LPRS OUT resistor needed) 55 SRC5T_LPRS OUT resistor needed) 56 SRC5T_LPRS OUT resistor needed) 57 SRC5C_LPRS OUT resistor needed) 58 SRC5T_LPRS OUT resistor needed) 59 SRC5T_LPRS OUT resistor needed) 50 SRC5T_LPRS OUT resistor needed) 50 SRC5T_LPRS OUT resistor needed) 56 SRC5T_LPRS OUT resistor needed) 57 SRC5C_LPRS OUT resistor needed) 58 SRC5T_LPRS OUT resistor needed) 59 SRC5T_LPRS OUT resistor needed) 50 51 SRC5T_LPRS OUT resistor needed) 52 SRC5T_LPRS OUT resistor needed) 53 SRC5T_LPRS OUT resistor nee | 43 | SRC2C_LPRS | OUT | | | Provided | | | | | | 45 SRC3C_LPRS OUT Scries resistor in ceded of the power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 47 SRC4C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 48 SRC4T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 49 GNDSRC GND GNDSRC GND GNDSRC GND GNDSRC GND | 44 | SRC2T_LPRS | OUT | | | SRC3C_LPRS OUT Series resistor needed) ARC3C_LPRS OUT celock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) ARC4C_LPRS OUT celock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. (no 50 ohm shu | | | _ | | | The clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) AS RC4C_LPRS OUT The clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) AS RC4T_LPRS OUT The clock of low power differential SRC clock pair. (no 50 ohm shunt resistor
to GND and no 33 ohm series resistor needed) AS RC4T_LPRS OUT SRC5C_LPRS OUT SRC5C_LPRS OUT The clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC5C_LPRS OUT The clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC5C_LPRS OUT The clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC5C_LPRS OUT The clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) The clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC7C_LPRS OUT SRC5C_LPRS | 45 | SRC3C_LPRS | OUT | | | SRC4C_LPRS OUT resistor needed) OUT complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC4T_LPRS OUT resistor needed.) SRC5T_LPRS OUT series resistor needed.) SRC5C_LPRS Complement clock of low power differenti | | | _ | | | SRC4C_LPRS | 46 | SRC3T_LPRS | OUT | | | Series resistor needed) WDDSRC GND GNDSRC GND Growle pin for the SRC outputs SRCSC_LPRS OUT Tree clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. LPRS SRCSC_LPRS OUT Tree clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. LPRS SRCSC_LPRS OUT Tree clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Lock pair. (no 50 ohm shunt resistor to GND and no 33 | | | | | | 48 SRC4T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series no series provided to the SRC cutouts SPACSC_LPRS OUT Series resistor needed). 50 VDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal. 51 SRC5C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Needed). 52 SRC5T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Needed). 53 SRC6C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Needed). 54 SRC6T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Needed). 55 SRC7C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Needed). 56 SRC7T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Needed). 57 SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Needed). 58 SRC8T_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. Needed). 58 SRC8T_LPRS OUT SRC come and outputs, 3.3V nominal. 60 GNDSRC GND | 47 | SRC4C_LPRS | 001 | series resistor needed) | | 49 ANDSRC 50 VDDSRC 3.3 FWR 50 VDDSRC 3.3 FWR 50 VDDSRC 3.3 FWR 51 SRC5C_LPRS 52 SRC5C_LPRS 53 SRC6C_LPRS 54 SRC6C_LPRS 55 SRC6C_LPRS 56 SRC7C_LPRS 57 SRC6C_LPRS 58 SRC7C_LPRS 59 VDDSRC 3.3 FWR 50 FW | 40 | 0004T D00 | 6117 | | | Supply for SRC core and outputs, 3.3 / nominal | 48 | SRC41_LPRS | 001 | resistor needed) | | SRCSC_LPRS OUT Complement dock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC6C_LPRS OUT SINCE PROVIDED THE Clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC6C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC6C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC7C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC7L_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC8C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC8C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC8C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC11_LPRS OUT Series resistor needed) GOUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) GOUT Complement clock of low | 49 | GNDSRC | GND | Ground pin for the SRC outputs | | SHCSC_LPRS OUT Series resistor needed) SRCST_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRCSC_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRCSC_LPRS OUT Series resistor needed) SRCSC_LPRS OUT SERCE Clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRCSC_LPRS OUT SERCE Clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRCSC_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRCSC_LPRS OUT SRC core and outputs, 3.3V nominal GNDSRC GND Ground pin for the SRC outputs SRCSC_LPRS OUT SCRC core and outputs, 3.3V nominal GNDSRC GND True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRCSC_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRCSC_LPRS OUT SCRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRCSC_LPRS OUT SCRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resis | 50 | VDDSRC_3.3 | PWR | | | Secretary Session research Secretary Session research True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC6C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC7C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC7C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC7C_LPRS OUT True clock of low
power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC8C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no | F-1 | CDCEC LDDC | OUT | Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm | | SRC6_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 55 SRC7C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PRS 56 SRC7C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor. PRS 57 SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 58 SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 58 SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 59 VDDSRC_33 PWR Supply for SRC core and outputs, 3.3V nominal 60 GNDSRC GND Ground pin for the SRC outputs Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 61 SRC9C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 62 SRC9T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 63 SRC10C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 64 SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 65 SRC11C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 76 GNDSRC GNDSRC GND GNDGRC GND | 51 | SHC5C_LPH5 | 001 | | | SRC6C_LPRS OUT complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 54 SRC7C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 55 SRC7C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 56 SRC7T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 57 SRC8C_LPRS OUT SRC6C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 58 SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 59 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 60 GNDSRC GND Ground pin for the SRC outputs 61 SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 62 SRC9T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 63 SRC10C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 64 SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 65 SRC11C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_33 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT True clock of low power differential SRC clock pair. (no | 50 | CDCET I DDC | OUT | True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | | SRC8C_LPRS OUT Series resistor needed) 54 SRC7C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 55 SRC7C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 56 SRC7T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 57 SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 58 SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 59 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 60 GNDSRC GND Ground pin for the SRC outputs Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 58 SRC9T_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 62 SRC9T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 63 SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 64 SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 65 SRC11C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT True clock of low power different | 52 | ShC31_LFh3 | 001 | | | SRC6T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 55 SRC7C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 56 SRC7T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 57 SRC8C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 58 SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 59 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 60 GNDSRC GND GROND GND GND GND GND GND GND GND GND GND G | E2 | SDCSC LDDS | OUT | Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm | | SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 56 SRC7C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 57 SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 58 SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 59 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 60 GNDSRC GND GND Ground pin for the SRC outputs 61 SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 62 SRC9T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 63 SRC10C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 64 SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 65
SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 71 SRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm sh | 55 | ShCoc_LFh3 | 001 | series resistor needed) | | Fresistor needed) SRC7C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low pow | 54 | SBC6T LPBS | OUT | True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | | series resistor needed) 56 SRC7T_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 57 SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 58 SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 59 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 60 GNDSRC GND Ground pin for the SRC outputs Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 62 SRC9T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 63 SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 64 SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 65 SRC11C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs SRC12C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 71 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series res | | 011001_21110 | 001 | | | SRC8C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC8C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Ground pin for the SRC outputs GND Ground pin for the SRC outputs SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND | 55 | SRC7C LPRS | OUT | | | resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) PWR Supply for SRC core and outputs, 3.3V nominal GO GNDSRC GND Ground pin for the SRC outputs Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pai | | | | | | Fesistor needed) SRC8C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of
low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | 56 | SRC7T LPRS | OUT | | | SPICES_LERS OUT Series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC9C_LPRS OUT OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RC10C_LPRS OUT OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLEMENT CLOCK of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) COMPLE | | | | | | SRC8T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 59 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 60 GNDSRC GND Ground pin for the SRC outputs 61 SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 62 SRC9T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 63 SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 64 SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 65 SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 71 SRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 72 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 73 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | 57 | SRC8C_LPRS | OUT | | | resistor needed) PWR Supply for SRC ore and outputs, 3.3V nominal GNDSRC GND Ground pin for the SRC outputs Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC10T_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC11T_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC12C_LPRS OUT Supply for SRC core and outputs, 3.3V nominal Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC12C_LPRS OUT Supply for SRC core and outputs, 3.3V nominal Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC12C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) RRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | _ | | | | Fesistor needed) OUT Supply for SRC ore and outputs, 3.3V nominal OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT Series resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT Series resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Firue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | 58 | SRC8T_LPRS | OUT | | | 60 GNDSRC GND Ground pin for the SRC outputs 61 SRC9C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 62 SRC9T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 63 SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 64 SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 65 SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND
Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 71 SRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 72 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 75 True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 76 True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 77 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | VDDCDC 0.0 | DWD | | | Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC12C_LPRS OUT SRC12C_LPRS OUT SRC13C_LPRS OUT SRC13C_LPRS OUT SRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | | | | SRC9T_LPRS OUT Series resistor needed) SRC9T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC12C_LPRS OUT SRC12C_LPRS OUT SRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | 60 | GNDSHC | GND | | | True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series SRC10C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) SRC11C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series SRC11T_LPRS OUT SRC12C_LPRS OUT SRC12C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series SRC13C_LPRS OUT SRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | 61 | SRC9C_LPRS | OUT | | | resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series PVDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) To SRC12C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | H | | 1 | | | Gomplement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) GRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) GSRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) GRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) GRDSRC GND Ground pin for the SRC outputs Supply for SRC core and outputs, 3.3V nominal Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power
differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | 62 | SRC9T_LPRS | OUT | l · · · · · · · · · · · · · · · · · · · | | series resistor needed) 64 SRC10T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 65 SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12C_LPRS OUT SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | - | | + | , , , , , , , , , , , , , , , , , , , | | Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Frue clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | 63 | SRC10C_LPRS | OUT | | | resistor needed) 65 SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12T_LPRS OUT SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | 1 | | | 65 SRC11C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 71 SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 72 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series) | 64 | SRC10T_LPRS | OUT | | | series resistor needed) 66 SRC11T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12T_LPRS OUT SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | <u> </u> | | 1 - | | | True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series Fresistor needed) GNDSRC GND Ground pin for the SRC outputs SRC12C_LPRS OUT SRC12T_LPRS OUT SRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | 65 | SRC11C_LPRS | OUT | | | resistor needed) 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT 70 SRC12T_LPRS OUT SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 71 SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) | | | 1 | | | 67 GNDSRC GND Ground pin for the SRC outputs 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT 70 SRC12T_LPRS OUT SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 71 SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | 66 | SHC11 [_LPRS | OUT | · · · · · · · · · · · · · · · · · · · | | 68 VDDSRC_3.3 PWR Supply for SRC core and outputs, 3.3V nominal 69 SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series 70
SRC12T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series 71 SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series 72 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series 73 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | 67 | GNDSRC | GND | | | 69 SRC12C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 70 SRC12T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 71 SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 72 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | | | | Supply for SRC core and outputs, 3.3V nominal | | SRC12T_LPRS OUT Series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) To src13C_LPRS OUT SRC13C_LPRS OUT SRC13T_LPRS True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series) | | | | Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm | | True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series SRC13C_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | 69 | SHU12U_LPRS | 001 | series resistor needed) | | 71 SRC13C_LPRS OUT Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series resistor needed) 72 SRC13T_LPRS OUT 73 SRC13T_LPRS OUT | 70 | CDC10T LDDC | CUIT | | | 71 SRC13C_LPRS OUT series resistor needed) 72 SRC13T_LPRS OUT True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | | SHUIZI_LPHS | 001 | | | Series resistor needed) True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm series | 71 | CDC12C LDDC | OUT | Complement clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no 33 ohm | | 1 72 ISBC131 IPBS - 1 OIII - 1 | | SHUISU_LPRS | 001 | | | resistor needed) | 72 | SBC13T LDDS | OUT | True clock of low power differential SRC clock pair. (no 50 ohm shunt resistor to GND and no $\overline{33}$ ohm series | | | 12 | SHOISI_LPRS | 1 001 | resistor needed) | 3 # **Block Diagram** 932S890 Power Hookup | Pin No | umber | Description | | | |-------------|-------------|--------------------------|--|--| | VDD | GND | Description | | | | 1 | 4 | SATA PLL and output | | | | 9 | 10 | CPU PLL and outputs | | | | 19 18 | | HTT outputs | | | | 26 | 29 | XTAL Osc and REF outputs | | | | 33 | 30 | 48MHz PLL and Outputs | | | | 33 36 | | SIO Outputs | | | | 41, 50, 59, | 42, 49, 60, | SRC PLL and Outputs | | | | 68 | 67 | Sho PLL and Outputs | | | Table 2: IO_Vout select table | B5b2 | B5b1 | B5b0 | IO_Vout | |------|------|------|---------| | 0 | 0 | 0 | 0.3V | | 0 | 0 | 1 | 0.4V | | 0 | 1 | 0 | 0.5V | | 0 | 1 | 1 | 0.6V | | 1 | 0 | 0 | 0.7V | | 1 | 0 | 1 | 0.8V | | 1 | 1 | 0 | 0.9V | | 1 | 1 | 1 | 1.0V | ## **CPU Frequency Selection Table** | | CPU FS4 | CPU FS3 | | | | | | | |------|---------|---------|---------|---------|---------|--------|--------|-----------| | | Byte 3, | Byte 3, | CPU FS2 | CPU FS1 | CPU FS0 | CPU | HTT | 0 | | Line | bit 4 | bit 3 | Byte3, | Byte3, | Byte3, | Speed | Speed | Spread | | | (Spread | (DN/CTR | bit2 | bit1 | bit0 | (MHz) | (MHz) | % | | | Enable) | Spread) | | | | , | , | | | 0 | 0 | 0 | 0 | 0 | 0 | 184.47 | 92.24 | | | 1 | 0 | 0 | 0 | 0 | 1 | 188.24 | 94.12 | | | 2 | 0 | 0 | 0 | 1 | 0 | 192.08 | 96.04 | | | 3 | 0 | 0 | 0 | 1 | 1 | 196.00 | 98.00 | SSOFF | | 4 | 0 | 0 | 1 | 0 | 0 | 200.00 | 100.00 | 0% | | 5 | 0 | 0 | 1 | 0 | 1 | 204.00 | 102.00 | | | 6 | 0 | 0 | 1 | 1 | 0 | 208.08 | 104.04 | | | 7 | 0 | 0 | 1 | 1 | 1 | 212.24 | 106.12 | | | 8 | 0 | 1 | 0 | 0 | 0 | 184.47 | 92.24 | | | 9 | 0 | 1 | 0 | 0 | 1 | 188.24 | 94.12 | | | 10 | 0 | 1 | 0 | 1 | 0 | 192.08 | 96.04 | | | 11 | 0 | 1 | 0 | 1 | 1 | 196.00 | 98.00 | SS OFF | | 12 | 0 | 1 | 1 | 0 | 0 | 200.00 | 100.00 | 0% | | 13 | 0 | 1 | 1 | 0 | 1 | 204.00 | 102.00 | | | 14 | 0 | 1 | 1 | 1 | 0 | 208.08 | 104.04 | | | 15 | 0 | 1 | 1 | 1 | 1 | 212.24 | 106.12 | | | 16 | 1 | 0 | 0 | 0 | 0 | 184.47 | 92.24 | | | 17 | 1 | 0 | 0 | 0 | 1 | 188.24 | 94.12 | | | 18 | 1 | 0 | 0 | 1 | 0 | 192.08 | 96.04 | DOWN | | 19 | 1 | 0 | 0 | 1 | 1 | 196.00 | 98.00 | SPREAD'- | | 20 | 1 | 0 | 1 | 0 | 0 | 200.00 | 100.00 | 0.5% | | 21 | 1 | 0 | 1 | 0 | 1 | 204.00 | 102.00 | 0.5% | | 22 | 1 | 0 | 1 | 1 | 0 | 208.08 | 104.04 | | | 23 | 1 | 0 | 1 | 1 | 1 | 212.24 | 106.12 | | | 24 | 1 | 1 | 0 | 0 | 0 | 184.47 | 92.24 | | | 25 | 1 | 1 | 0 | 0 | 1 | 188.24 | 94.12 | | | 26 | 1 | 1 | 0 | 1 | 0 | 192.08 | 96.04 | CENTER | | 27 | 1 | 1 | 0 | 1 | 1 | 196.00 | 98.00 | SPREAD | | 28 | 1 | 1 | 1 | 0 | 0 | 200.00 | 100.00 | | | 29 | 1 | 1 | 1 | 0 | 1 | 204.00 | 102.00 | '+/-0.25% | | 30 | 1 | 1 | 1 | 1 | 0 | 208.08 | 104.04 | | | 31 | 1 | 1 | 1 | 1 | 1 | 212.24 | 106.12 | | **SRC Frequency Selection Table** | | SRC FS4 | SRC FS3 | | | | | | | |------|---------|----------|---------|---------|---------|--------|--------------|--| | | Byte 4, | Byte 4, | SRC FS2 | SRC FS1 | SRC FS0 | | | | | | bit 4 | bit 3 | Byte 4, | Byte 4, | Byte 4, | SRC | Sprd | | | | (Spread | (DWN/CTR | bit2 | bit1 | bit0 | (MHz) | % | | | Line | Enable) | Spread) | | | 2110 | | | | | 0 | 0 | 0 | 0 | 0 | 0 | 92.24 | | | | 1 | 0 | 0 | 0 | 0 | 1 | 94.12 | | | | 2 | 0 | 0 | 0 | 1 | 0 | 96.04 | | | | 3 | 0 | 0 | 0 | 1 | 1 | 98.00 | SS OFF | | | 4 | 0 | 0 | 1 | 0 | 0 | 100.00 | 0% | | | 5 | 0 | 0 | 1 | 0 | 1 | 102.00 | 1 | | | 6 | 0 | 0 | 1 | 1 | 0 | 104.04 | 1 | | | 7 | 0 | 0 | 1 | 1 | 1 | 106.12 | 1 | | | 8 | 0 | 1 | 0 | 0 | 0 | 92.24 | | | | 9 | 0 | 1 | 0 | 0 | 1 | 94.12 | 1 | | | 10 | 0 | 1 | 0 | 1 | 0 | 96.04 |] | | | 11 | 0 | 1 | 0 | 1 | 1 | 98.00 | SS OFF
0% | | | 12 | 0 | 1 | 1 | 0 | 0 | 100.00 | | | | 13 | 0 | 1 | 1 | 0 | 1 | 102.00 | | | | 14 | 0 | 1 | 1 | 1 | 0 | 104.04 | | | | 15 | 0 | 1 | 1 | 1 | 1 | 106.12 | | | | 16 | 1 | 0 | 0 | 0 | 0 | 92.24 | | | | 17 | 1 | 0 | 0 | 0 | 1 | 94.12 | | | | 18 | 1 | 0 | 0 | 1 | 0 | 96.04 | DOWN | | | 19 | 1 | 0 | 0 | 1 | 1 | 98.00 | SPREAD' | | | 20 | 1 | 0 | 1 | 0 | 0 | 100.00 | 0.5% | | | 21 | 1 | 0 | 1 | 0 | 1 | 102.00 | 0.5 /6 | | | 22 | 1 | 0 | 1 | 1 | 0 | 104.04 | | | | 23 | 1 | 0 | 1 | 1 | 1 | 106.12 | | | | 24 | 1 | 1 | 0 | 0 | 0 | 92.24 | | | | 25 | 1 | 1 | 0 | 0 | 1 | 94.12 | | | | 26 | 1 | 1 | 0 | 1 | 0 | 96.04 | CENTER | | | 27 | 1 | 1 | 0 | 1 | 1 | 98.00 | SPREAD | | | 28 | 1 | 1 | 1 | 0 | 0 | 100.00 | '+/-0.25% | | | 29 | 1 | 1 | 1 | 0 | 1 | 102.00 | 17 0.23/6 | | | 30 | 1 | 1 | 1 | 1 | 0 | 104.04 | | | | 31 | 1 | 1 | 1 | 1 | 1 | 106.12 | | | ## **Absolute Maximum Ratings** Stresses above the ratings listed below can cause permanent damage to the 932S890C. These ratings, which are standard values for IDT commercially rated parts, are stress ratings only. Functional operation of the device at these or any other conditions above those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods can affect product reliability. Electrical parameters are guaranteed only over the recommended operating temperature range. | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | Notes | |--------------------------|----------|------------|------|-----|------------|-------|-------| | 3.3V Core Supply Voltage | VDDxxx | - | | 3.3 | GND + 3.9V | ٧ | 1 | | Storage Temperature | Ts | - | -65 | | 150 | °C | 1 | | Ambient Operating Temp | Tambient | - | 0 | | 70 | °C | 1 | | Case Temperature | Tcase | - | | | 115 | °C | 1 | | Input ESD protection HBM | ESD prot | - | 2000 | | | V | 1 | ¹Guaranteed by design and characterization, not 100% tested in production. ## **Electrical Characteristics-Input/Supply/Common Output Parameters** | PARAMETER | SYMBOL | CONDITIONS* | MIN | TYP | MAX | UNITS | Notes | |--|------------------------|---|-----------------------|----------|----------------|-------|-------| | 3.3V Core Supply Voltage | VDDxxx | - | 3.135 | 3.3 | 3.465 | V | 1 | | Input High Voltage | V_{IH} | VDD = 3.3 V +/-5% | 2 | | $V_{DD} + 0.3$ | ٧ | 1 | | Input Low Voltage | V _{IL} | VDD = 3.3 V +/-5% | V _{SS} - 0.3 | | 0.8 | ٧ | 1 | | Input High Current | I _H | $V_{IN} = V_{DD}$ | -5 | | 5 | uA | 1 | | Input Low Current | I _{IL1} | V _{IN} = 0 V; Inputs with no pull-up resistors | -5 | | | uA | 1 | | input Low Current | l _{IL2} | V _{IN} = 0 V; Inputs with pull-up resistors | -200 | | | uA | 1 | | Operating Current | I _{DD3.3OP} | all outputs driven | | | 250 | mA | 1 | | Input Frequency | Fi | VDD = 3.3 V +/-5% | | 14.31818 | | MHz | 2 | | Pin Inductance | L_{pin} | | | | 7 | nH | 1 | |
 C _{IN} | Logic Inputs | | | 5 | pF | 1 | | Input Capacitance | C _{OUT} | Output pin capacitance | | | 6 | pF | 1 | | | C _{INX} | X1 & X2 pins | | | 5 | pF | 1 | | Clk Stabilization | T _{STAB} | From VDD Power-Up to 1st clock | | | 1.8 | ms | 1 | | Modulation Frequency | | Triangular Modulation | 30 | | 33 | kHz | 1 | | SMBus Voltage | V_{DDSMB} | | 2.7 | | 5.5 | ٧ | 1 | | Low-level Output Voltage | V_{OLSMB} | @ I _{PULLUP} | | | 0.4 | ٧ | 1 | | Current sinking at V _{OL} = 0.4 V | I _{PULLUPSMB} | | 4 | 6 | | mA | 1 | | SMBCLK/SMBDAT
Clock/Data Rise Time | T _{RSMB} | (Max V IL - 0.15) to
(Min VIH + 0.15) | | | 1000 | ns | 1 | | SMBCLK/SMBDAT Clock/Data Fall Time | T _{FSMB} | (Min VIH + 0.15) to
(Max VIL - 0.15) | | | 300 | ns | 1 | ^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V + /-5% ¹Guaranteed by design and characterization, not 100% tested in production. ² Input frequency should be measured at the REF pin and tuned to ideal 14.31818MHz to meet ppm frequency accuracy on PLL outputs. ## AC Electrical Characteristics-Low-Power DIF Outputs: CPUKG and HTT | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | NOTES | |---|-----------------------|-----------------------------------|-------|-----|------|-------|-------| | Crossing Point Variation | ΔV_{CROSS} | Single-ended Measurement | | | 140 | mV | 1,2,5 | | CPU Frequency
(HTT = 1/2 of CPU Frequency) | f _{CPU} | Spread Specturm On | 198.8 | | 200 | MHz | 1,3 | | Long Term Accuracy | ppm | Spread Specturm Off | -50 | | +50 | ppm | 1,11 | | Rising Edge Slew Rate | S _{RISE} | Differential Measurement | 0.5 | | 10 | V/ns | 1,4 | | Falling Edge Slew Rate | S _{FALL} | Differential Measurement | 0.5 | | 10 | V/ns | 1,4 | | Slew Rate Variation | t _{SLVAR} | Single-ended Measurement | | | 20 | % | 1 | | CPU, DIF HTT Jitter - Cycle to Cycle | CPUJ _{C2C} | Differential Measurement | | | 150 | ps | 1,6 | | Accumulated Jitter | t _{JACC} | See Notes | | | 1 | ns | 1,7 | | Peak to Peak Differential Voltage | $V_{D(PK-PK)}$ | Differential Measurement | 400 | | 2400 | mV | 1,8 | | Differential Voltage | V_D | Differential Measurement | 200 | | 1200 | mV | 1,9 | | Duty Cycle | D _{CYC} | Differential Measurement | 45 | | 55 | % | 1 | | Amplitude Variation | ΔV _D | Change in V_D DC cycle to cycle | -75 | | 75 | mV | 1,10 | | CPU[3:0] Skew | CPU _{SKEW30} | Differential Measurement | | | 200 | ps | 1 | | HTT[1:0] Skew | HTT _{SKEW10} | Differential Measurement | | | 100 | ps | 1 | ¹ Guaranteed by design and characterization, not 100% tested in production. ² Single-ended measurement at crossing point. Value is maximum – minimum over all time. DC value of common mode is not important due to the blocking cap. ³ Minimum Frequency is a result of 0.5% down spread spectrum ⁴ Differential measurement through the range of ±100 mV, differential signal must remain monotonic and within slew rate spec when crossing through this region. ⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#. $^{^{\}widehat{\text{6}}}\text{Max}$ difference of t_{CYCLE} between any two adjacent cycles. ⁷ Accumulated tjc over a 10 µs time period, measured with JIT2 TIE at 50ps interval. ⁸ VD(PK-PK) is the overall magnitude of the differential signal. ⁹ VD(min) is the amplitude of the ring-back differential measurement, guaranteed by design, that ring-back will not cross 0V VD. VD(max) is the largest amplitude allowed. ¹⁰ The difference in magnitude of two adjacent VD_DC measurements. VD_DC is the stable post overshoot and ring-back part of the signal. ¹¹ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz ## AC Electrical Characteristics-Low-Power DIF Outputs: SRC, SATA | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | NOTES | |-----------------------------|------------------------|---|------|------|------|--------|-------| | SRC/SATA Frequency | f _{SRC_SATA} | Spread Specturm Off | | 100 | | MHz | 1,6 | | Long Term Accuracy | ppm | Spread Specturm Off | -50 | | +50 | ppm | 1,6 | | Rising Edge Slew Rate | t _{SLR} | Differential Measurement | 2.5 | | 8 | V/ns | 1,2 | | Falling Edge Slew Rate | t _{FLR} | Differential Measurement | 2.5 | | 8 | V/ns | 1,2 | | Slew Rate Variation | t _{SLVAR} | Single-ended Measurement | | | 20 | % | 1 | | Maximum Output Voltage | V_{HIGH} | Includes overshoot | | | 1150 | mV | 1 | | Minimum Output Voltage | V_{LOW} | Includes undershoot | -300 | | | mV | 1 | | Differential Voltage Swing | V_{SWING} | Differential Measurement | 300 | | | mV | 1 | | Crossing Point Voltage | V_{XABS} | Single-ended Measurement | 300 | | 550 | mV | 1,3,4 | | Crossing Point Variation | $V_{XABSVAR}$ | Single-ended Measurement | | | 140 | mV | 1,3,5 | | Duty Cycle | D _{CYC} | Differential Measurement | 45 | | 55 | % | 1 | | Jitter - Cycle to Cycle | SRCJ _{C2C} | Differential Measurement | | | 125 | ps | 1 | | SRC[13:0] Skew Even Outputs | SRC _{SKEW_E} | Differential Measurement | | | 200 | ps | 1,8 | | SRC[13:0] Skew Odd Outputs | SRC _{SKEW_O} | Differential Measurement | | | 200 | ps | 1,8 | | SRC[13:0] Even to Odd Skew | SRC _{SKEW} | Differential Measurement | 1275 | 1375 | 1475 | ps | 1,8 | | | | PCle Gen 1 specs
(1.5 - 22 MHz) | | 40 | 86 | ps | 1, 7 | | Jitter, Phase | ^t jphaseSRC | PCIe Gen 2 (8-16 MHz, 5-16 MHz)
Lo-band content
(10kHz to 1.5MHz) | | 1.6 | 3 | ps rms | 1, 7 | | | | PCIe Gen 2 (8-16 MHz, 5-16 MHz)
Hi-band content
(1.5MHz to Nyquist) | | 2.6 | 3.1 | ps rms | 1, 7 | ¹Guaranteed by design and characterization, not 100% tested in production. ² Slew rate measured through V swing centered around differential zero ³ Vxabs is defined as the voltage where CLK = CLK# ⁴ Only applies to the differential rising edge (CLK rising and CLK# falling) ⁵ Defined as the total variation of all crossing voltages of CLK rising and CLK# falling. Matching applies to rising edge rate of CLK and falling edge of CLK#. It is measured using a +/-75mV window centered on the average cross point where CLK meets CLK#. ⁶ All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz ⁷ Applicable to all SRC outputs. See http://www.pcisig.com for complete specs. Guaranteed by design and characterization, not tested in production. ⁸ SRC outputs are divided into two banks, odd and even. The odd bank skew window is 200 ps. The even bank skew window is 200ps. The skew between the even and odd banks is intentionally set at 1375ps. ## Electrical Characteristics-USB - 48MHz, SIO 48/24MHz | PARAMETER | SYMBOL | CONDITIONS* | MIN | TYP | MAX | UNITS | NOTES | |------------------------|---------------------|---|--------|--------|--------|-------|-------| | Long Accuracy | ppm | see Tperiod min-max values | -50 | | +50 | ppm | 1,2 | | Clock period | T _{PERIOD} | USB output nominal | 20.702 | 20.833 | 20.964 | ns | 3,5 | | Clock Low Time | T_{LOW} | Measure from < 0.6V | 9.375 | | 11.458 | ns | 3 | | Clock High Time | T _{HIGH} | Measure from > 2.0V | 9.375 | | 11.458 | ns | 3 | | Rise Time | t _{r_USB} | V_{OL} = 20% of Voh,
V_{OH} = 80%of Voh | 0.5 | | 3 | ns | 1 | | Fall Time | t_{f_USB} | $V_{OL} = 20\%$ of Voh,
$V_{OH} = 80\%$ of Voh | 0.5 | | 3 | ns | 1 | | Output High Voltage | V_{OHUSB} | I _{OH} = -1 mA | 2.4 | | | V | 1,3 | | Output Low Voltage | V _{OLUSB} | I _{OL} = 1 mA | | | 0.4 | V | 1,3 | | Output High Voltage | V _{OHSIO} | I _{OH} = -0.2 mA | 1.8 | 2 | 2.2 | V | 1,4 | | Output Low Voltage | V _{OLSIO} | $I_{OL} = 0.2 \text{ mA}$ | | | 0.4 | V | 1,4 | | Duty Cycle | d _{CYCUSB} | V _T = 1.5 V | 45 | | 55 | % | 1,3 | | Skew | t _{SKEW} | $V_{T} = 1.5 V$ | | | 250 | ps | 1 | | Jitter, Cycle to cycle | tjcyc-cyc | $V_T = 1.5 V$ | | | 130 | ps | 1,3 | ^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V + /-5% ### **Electrical Characteristics—REF-14.318MHz** | PARAMETER | SYMBOL | CONDITIONS | MIN | TYP | MAX | UNITS | Notes | |------------------------|------------------------|--|---------|---------|---------|-------|-------| | Long Accuracy | ppm | see Tperiod min-max values | -50 | | +50 | ppm | 1,2 | | Long Term Jitter | t _{jLT} | @ 1us | | | 500 | ps | 1,2 | | Clock period | T _{PERIOD} | 14.318MHz output nominal | 69.6378 | 69.8413 | 70.0448 | ns | 2,3 | | Clock Low Time | T_{LOW} | Measure from $V_T = 50\%$ | 2 | | | ns | 2 | | Clock High Time | T _{HIGH} | Measure from $V_T = 50\%$ | 2 | | | ns | 2 | | Output High Voltage | V_{OH} | I _{OH} = -1 mA | 2.4 | 2.8 | 3.3 | V | 1 | | Output Low Voltage | V_{OL} | I _{OL} = 1 mA | 0 | | 0.4 | V | 1 | | Rise Time | t _R | $V_{OL} = 20\%$ of V_{OH} ,
$V_{OH} = 80\%$ of V_{OH} | | | 1.5 | ns | 1 | | Fall Time | t _F | $V_{OL} = 20\%$ of V_{OH} ,
$V_{OH} = 80\%$ of V_{OH} | | | 1.5 | ns | 1 | | Skew | t _{SKEW} | Measure from $V_T = 50\%$ | | | 250 | ps | 1 | | Duty Cycle | d _{t1} | $V_T = V_{OH}/2$ | 45 | | 55 | % | 1 | | Jitter, Cycle to Cycle | t _j cyc-cyc | Measure from $V_T = 50\%$ | | | 200 | ps | 1 | | Jitter, Peak to Peak | t _{jPK-PK} | $\begin{aligned} &\text{Measure from V}_{\text{T}} = 50\% \text{ (0.9V)} \\ &t_{jpk-pk} = [lt_{jcyc\text{-cyc}} maxl + lt_{jcyc\text{-cyc}} minl]/2 \end{aligned}$ | | | 200 | ps | 1 | ^{*}TA = 0 - 70°C; Supply Voltage VDD = 3.3 V + /-5% ¹Guaranteed by design and characterization, not 100% tested in production. ²IDT recommended and/or chipset vendor layout guidelines must be
followed to meet this specification ³Applies to USB outputs only ⁴Applies to SIO outputs only ⁵SIO 24MHz outputs are 1/2 of USB48MHz frequency (twice the period). Includes cycle to cycle jitter. ¹Guaranteed by design and characterization, not 100% tested in production. ² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz ³ Includes cycle to cycle jitter. ## Clock Periods-Differential Outputs with Spread Spectrum Enabled | Measuren | nent Window | 1 Clock | 1us | 0.1s | 0.1s | 0.1s | 1us | 1 Clock | | | |-------------|-------------|-------------------------------|-------------------------------|-------------------------------|----------|----------------------|-----------------------|----------|-------|-------| | Symbol | | Lg- | -SSC | -ppm error | 0ppm | + ppm error | +SSC | Lg+ | | | | Definition | | Absolute
Period | Short-term
Average | Long-Term
Average | Period | Long-Term
Average | Short-term
Average | Period | | | | | | Minimum
Absolute
Period | Minimum
Absolute
Period | Minimum
Absolute
Period | Nominal | Maxim um | Maximum | Maximum | Units | Notes | | Signal Name | HTT/SRC 100 | 9.87456 | 9.99956 | 10.02456 | 10.02506 | 10.02556 | 10.05056 | 10.17556 | ns | 1,2 | | Signal Name | CPU 200 | 4.84978 | 4.99978 | 5.01228 | 5.01253 | 5.01278 | 5.02528 | 5.17528 | ns | 1,2 | # Clock Periods-Differential Outputs with Spread Spectrum Disabled | Measuren | Measurement Window | | 1us | 0.1s | 0.1s | 0.1s | 1us | 1 Clock | | | |-------------|--------------------|---|-------------------------------|-------------------------------|----------|-------------|---------|----------|-------|-------| | Symbol | | Lg- | -SSC | -ppm error | 0ppm | + ppm error | +SSC | Lg+ | | | | Definition | | Absolute Short-term Long-Term Period Average Period Average Period Average Period Average Period Average Period Average | | Period | | | | | | | | Dei | Definition | | Minimum
Absolute
Period | Minimum
Absolute
Period | Nominal | Maxim um | Maximum | Maximum | Units | Notes | | | SRC 100 | 9.87450 | | 9.99950 | 10.00000 | 10.00050 | | 10.12550 | ns | 1,2 | | Signal Name | SATA 100 | 9.87450 | | 9.99950 | 10.00000 | 10.00050 | | 10.12550 | ns | 1,2 | | | CPU 200 | 4.84975 | | 4.99975 | 5.00000 | 5.00025 | | 5.15025 | ns | 1,2 | ¹Guaranteed by design and characterization, not 100% tested in production. ² All Long Term Accuracy and Clock Period specifications are guaranteed assuming that REFOUT is at 14.31818MHz ## **General SMBus Serial Interface Information** #### **How to Write** - · Controller (host) sends a start bit - Controller (host) sends the write address - IDT clock will acknowledge - Controller (host) sends the beginning byte location = N - IDT clock will acknowledge - Controller (host) sends the byte count = X - IDT clock will acknowledge - Controller (host) starts sending Byte N through Byte N+X-1 - IDT clock will acknowledge each byte one at a time - Controller (host) sends a Stop bit | | Index Blo | ock ' | Write Operation | |-----------|----------------|--------|----------------------| | Controll | er (Host) | | IDT (Slave/Receiver) | | Т | starT bit | | | | Slave A | Address | | | | WR | WRite | | | | | | | ACK | | Beginning | g Byte = N | | | | | | | ACK | | Data Byte | Count = X | | | | | | | ACK | | Beginnin | g Byte N | | | | | | | ACK | | 0 | | × | | | 0 | | X Byte | 0 | | 0 | | ē | 0 | | | | | 0 | | Byte N | Byte N + X - 1 | | | | | | | ACK | | Р | stoP bit | | | | Read Address | Write Address | |-------------------|-------------------| | D3 _(H) | D2 _(H) | #### **How to Read** - Controller (host) will send a start bit - Controller (host) sends the write address - IDT clock will acknowledge - Controller (host) sends the beginning byte location = N - IDT clock will acknowledge - Controller (host) will send a separate start bit - Controller (host) sends the read address - IDT clock will acknowledge - IDT clock will send the data byte count = X - IDT clock sends Byte N+X-1 - IDT clock sends Byte 0 through Byte X (if X_(H) was written to Byte 8) - Controller (host) will need to acknowledge each byte - Controller (host) will send a not acknowledge bit - · Controller (host) will send a stop bit | | Index Block F | Read O | peration | |------|--------------------|--------|----------------------| | Cor | ntroller (Host) | | IDT (Slave/Receiver) | | Т | starT bit | | | | SI | ave Address | | | | WR | WRite | | | | | | | ACK | | Begi | Beginning Byte = N | | | | | | | ACK | | RT | Repeat starT | | | | SI | ave Address | | | | RD | ReaD | | | | | | | ACK | | | | | | | | • | | Data Byte Count=X | | | ACK | | | | | | | Beginning Byte N | | | ACK | | | | | | ē | 0 | | | 0 | X Byte | 0 | | | 0 | × | 0 | | | 0 | | | | | | | Byte N + X - 1 | | N | Not acknowledge | | | | Р | stoP bit | | | SMBus Table: Output Enable Control Register | Byte | 0 | Name | Description | Туре | 0 | 1 | Default | |------|-------|------------|---------------|------|---------|---------|---------| | | Bit 7 | HTT1_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 6 | HTT0_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 5 | REF0_OE | Output Enable | RW | Low | Enabled | 1 | | | Bit 4 | REF1_OE | Output Enable | RW | Low | Enabled | 1 | | | Bit 3 | SIO_0_OE | Output Enable | RW | Hi-Z | Enabled | 1 | | | Bit 2 | SIO_1_OE | Output Enable | RW | Low | Enabled | 1 | | | Bit 1 | 48MHz_1_OE | Output Enable | RW | Low | Enabled | 1 | | | Bit 0 | 48MHz_0_OE | Output Enable | RW | Low | Enabled | 1 | SMBus Table:Output Enable Control Register | Byte | 1 | Name | Control Function | Type | 0 | 1 | Default | |------|-------|----------|------------------|------|---------|---------|---------| | - | Bit 7 | SRC13_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 6 | SRC12_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 5 | SRC11_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 4 | SRC10_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 3 | SRC9_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 2 | SRC8_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 1 | SRC7_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | Bit 0 | SRC6_OE | Output Enable | RW | Low/Low | Enabled | 1 | SMBus Table: Output Enable Control Register | | ompac tubic. output middle oction riogical | | | | | | | | |------|--|---------|------------------|------|---------|---------|---------|--| | Byte | 2 | Name | Control Function | Type | 0 | 1 | Default | | | | Bit 7 | SRC5_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | | Bit 6 | SRC4_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | | Bit 5 | SRC3_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | | Bit 4 | SRC2_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | | Bit 3 | SRC1_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | | Bit 2 | SRC0_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | | Bit 1 | SATA_OE | Output Enable | RW | Low/Low | Enabled | 1 | | | | Bit 0 | CPU0_OE | Output Enable | RW | Low/Low | Enabled | 1 | | SMBus Table: CPU/HTT Frequency and Output Enable Control Register | Byte | 3 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|-----------------|--------------------------|------|--|----------------------------------|---------| | | Bit 7 | CPU3_OE | Output enable | RW | Low/Low | Enabled | 1 | | | Bit 6 | CPU2_OE | Output enable | RW | Low/Low | Enabled | 1 | | | Bit 5 | CPU1_OE | Output enable | RW | Low/Low | Enabled | 1 | | | Bit 4 | CPU SS Enable | Spread Enable | RW | SS Off | SS On | 0 | | | Bit 3 | CPU Spread Type | Down or Center Spread | RW | 0.5% Down Spread | 0.5% Center Spread
(+/-0.25%) | 0 | | | Bit 2 | CPU_FS2 | CPU Frequency Select | RW | • | ency Select Table | 1 | | | Bit 1 | CPU_FS1 | CPU Frequency Select | RW | Default value corresponds to 200MHz. Note that HTT frequency tracks the CPU frequency and is equal to 1/2 for CPU. | | 0 | | | Bit 0 | CPU_FS0 | CPU Frequency Select LSB | RW | | | 0 | SMBus Table: SRC Frequency Control Register | Byte | 4 | Name | Control Function | Type | 0 | 1 | Default | |------|-------|-----------------|--|--------|------------------|--------------------|---------| | | Bit 7 | | R | eserve | i | | 0 | | | Bit 6 | | R | eserve | i | | 0 | | | Bit 5 | | R | eserve | i | | 0 | | | Bit 4 | SRC SS Enable | Spread Enable | RW | SS Off | SS On | 0 | | | Bit 3 | SRC Spread Type | Down or Center Spread | RW | 0.5% Down Spread | 0.5% Center Spread | 0 | | | Bit 2 | SRC_FS2 | SRC Frequency Select | RW | Soo SDC Frogue | anov Salaat Tabla | 1 | | | Bit 1 | SRC_FS1 | SRC Frequency Select RW See SRC Frequency Select Table | | | 0 | | | | Bit 0 | SRC_FS0 | Detault Corresponds to 100MHz | | | | 0 | SMBus Table: N-Step Select and SIO Readback Register | Byte | 5 | Name | Control Function | Туре | 0 | 1 | Default | | |------|-------|------------|---|------|---|------------------------------|---------|--| | | Bit 7 | SIO_SEL | Selects 24MHz or 48MHz | R | 24MHz | 48MHz | Latch | | | | Bit 6 | CPU M/N En | CPU PLL M/N Prog. Enable | RW | M/N Prog. Disabled | M/N Prog. Enabled | 0 | | | | Bit 5 | SRC M/N En | SRC M/N Prog.Enable | RW | M/N Prog. Disabled | M/N Prog. Enabled | 0 | | | | Bit 4 | Test_Sel | Selects Test Mode | RW | Normal mode | All ouputs are REF/N | 0 | | | | Bit 3 | | Reserved | | | | | | | | Bit 2 | IO_VOUT2 | IO Output Voltage Select
(Most Significant Bit) | RW | See Table 9: V | 0 - T-11-0 W 10 0 - 1 - 11-1 | | | | | Bit 1 | IO_VOUT1 | IO Output
Voltage Select | RW | See Table 2: V_IO Selection (Default is 0.8V) | | | | | | Bit 0 | IO_VOUT0 | IO Output Voltage Select
(Least Significant Bit) | RW | (Delauli | 1 | | | SMBus Table: Byte Count Register | Byte | 6 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|-------------------------------|------------------------|---------------------------|--------------------------|-----------------------------|---------| | | Bit 7 | | F | Reserve | d | | 0 | | | Bit 6 | | F | Reserve | d | | 0 | | | Bit 5 | BC5 | Byte Count bit 5 (MSB) | Byte Count bit 5 (MSB) RW | | 0 | | | | Bit 4 | BC4 | Byte Count bit 4 | RW | RW | | 0 | | | Bit 3 | BC3 | Byte Count bit 3 | RW | Determines the number of | of bytes that are read back | 1 | | | Bit 2 | BC2 | Byte Count bit 2 | RW | from the device. | Default is 08 hex. | 0 | | | Bit 1 | lit 1 BC1 Byte Count bit 1 RW | | 0 | | | | | | Bit 0 | BC0 | Byte Count bit 0 (LSB) | RW | | | 0 | SMBus Table: Device ID register | Byte | 7 | Name | Control Function | Type | 0 | 1 | Default | |------|-------|------------|------------------|------|-----------|-----------|---------| | | Bit 7 | Device ID7 | | R | | | Х | | | Bit 6 | Device ID6 | 1 | R | | | Х | | | Bit 5 | Device ID5 | | R | | | Х | | | Bit 4 | Device ID4 | Device ID | R | 90 hoy fo | r 932S820 | Х | | | Bit 3 | Device ID3 | Device ib | R | 69 Hex IC | 1 9323020 | Х | | | Bit 2 | Device ID2 | | R | | | Х | | | Bit 1 | Device ID1 | | R | | | Х | | | Bit 0 | Device ID0 | 1 | R | | | Х | SMBus Table: Vendor & Revision ID Register | Byte | 8 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|------|------------------|------|------------------------------|--------|---------| | | Bit 7 | RID3 | | R | Boy A | = 0000 | Х | | | Bit 6 | RID2 | REVISION ID | R | - | | Х | | | Bit 5 | RID1 | HEVISION ID | R | Rev B = 0001
Rev C = 0010 | Х | | | | Bit 4 | RID0 | | R | | Х | | | | Bit 3 | VID3 | | R | - | - | 0 | | | Bit 2 | VID2 | VENDOR ID | R | | - | 0 | | | Bit 1 | VID1 | VENDOR ID | R | | 0 | | | | Bit 0 | VID0 | | R | - | - | 1 | SMBus Table: WatchDog Timer Control Register | | | | Control Function | Type | U | I | Default | |---|-------|----------------|--------------------------------------|------|---|----------------------------|---------| | E | Bit 7 | HWD_EN | Watchdog Hard Alarm Enable | RW | Disable and Reload Hartd
Alarm Timer, Clear WD
Hard status bit. | Enable Timer | 0 | | | Bit 6 | SWD_EN | Watchdog Soft Alarm Enable | RW | Disable | Enable | 0 | | | Bit 5 | WD Hard Status | WD Hard Alarm Status | R | Normal | Alarm | Χ | | | Bit 4 | WD Soft Status | WD Soft Alarm Status | R | Normal | Alarm | Χ | | E | Bit 3 | WDTCtrl | Watch Dog Alarm Time base
Control | RW | 290ms Base | 1160ms Base | 0 | | | Bit 2 | HWD2 | WD Hard Alarm Timer Bit 2 | RW | These bits represent the n | umber of Watch Dog Time | 1 | | E | Bit 1 | HWD1 | WD Hard Alarm Timer Bit 1 | RW | Base Units that pass before | e the Watch Alarm expires. | 1 | | E | Bit 0 | HWD0 | WD Hard Alarm Timer Bit 0 | RW | Default is 7 X | (290ms = 2s. | 1 | SMBus Table: WD Timer Safe Frequency Control Register | Byte | 10 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|--------|---------------------------|------|-------------------------------|--|---------| | | Bit 7 | SWD2 | WD Soft Alarm Timer Bit 2 | RW | These bits represent the n | umber of Watch Dog Time | 1 | | | Bit 6 | SWD1 | WD Soft Alarm Timer Bit 1 | RW | Base Units that pass befor | at pass before the Watch Alarm expires. | | | | Bit 5 | SWD0 | WD Soft Alarm Timer Bit 0 | RW | | (290ms = 2s. | 1 | | | Bit 4 | WD SF4 | | RW | ı | fe frequency that the device | 0 | | | Bit 3 | WD SF3 | Watch Dog Hard Alarm Safe | RW | returns to if the Watchdoo | Hardware Timer expires. | 0 | | | Bit 2 | WD SF2 | Freg Programming bits | RW | The value show here cor | responds to the power up | 1 | | | Bit 1 | WD SF1 | Tred Frogramming bits | RW | default of the device. See th | of the device. See the various Frequency Selection | | | | Bit 0 | WD SF0 | | RW | Tables for the ex | cact frequencies. | 0 | SMBus Table: CPU PLL Frequency Control Register | Byte | 11 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|--------|------------------------------|------|------------------------------|------------------------------|---------| | | Bit 7 | N Div2 | N Divider Prog bit 2 | RW | | | Х | | | Bit 6 | N Div1 | N Divider Prog bit 1 | RW | | | Χ | | | Bit 5 | M Div5 | | RW | The decimal representation | n of M and N Divider in Byte | Χ | | | Bit 4 | M Div4 | | RW | 16 and 17 will configure the | VCO frequency. Default at | Χ | | | Bit 3 | M Div3 | M Divider Programming bits | RW | power up = Byte 3 Rom t | able. See M/N Caculation | Χ | | | Bit 2 | M Div2 | Wi Divider i Togramming bits | RW | Tables for VCO fr | equency formulas. | Х | | | Bit 1 | M Div1 | | RW | | | Χ | | | Bit 0 | M Div0 | | RW | | | Х | SMBus Table: CPU PLL Frequency Control Register | Byte | 12 | Name | Control Function | Type | 0 | 1 | Default | |------|-------|---------|-----------------------|------|------------------------------|------------------------------|---------| | | Bit 7 | N Div10 | | RW | | | Χ | | | Bit 6 | N Div9 | | RW | | | Χ | | | Bit 5 | N Div8 | | RW | The decimal representation | n of M and N Divider in Byte | Х | | | Bit 4 | N Div7 | N Divider Programming | RW | 16 and 17 will configure the | VCO frequency. Default at | Χ | | | Bit 3 | N Div6 | b(10:3) | RW | power up = Byte 3 Rom t | able. See M/N Caculation | Χ | | | Bit 2 | N Div5 | | RW | Tables for VCO fr | equency formulas. | Χ | | | Bit 1 | N Div4 | | RW | | | Χ | | | Bit 0 | N Div3 | | RW | | | Х | SMBus Table: CPU PLL Spread Spectrum Control Register | Byte | 13 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|------|--------------------|------|------------------------|-------------------------|---------| | | Bit 7 | SSP7 | | RW | | | Х | | | Bit 6 | SSP6 | | RW | | | Х | | | Bit 5 | SSP5 | | RW | | | Х | | | Bit 4 | SSP4 | Spread Spectrum | RW | These bits set the CPU | spread pecentage.Please | Х | | | Bit 3 | SSP3 | Programming b(7:0) | RW | contact IDT for the | appropriate values. | Х | | | Bit 2 | SSP2 | 7 | RW | | | Х | | | Bit 1 | SSP1 | | RW | | | X | | | Bit 0 | SSP0 | | RW | | | Х | SMBus Table: CPU PLL Spread Spectrum Control Register | Byte | 14 | Name | Control Function | Type | 0 | 1 | Default | |------|-------|-------|----------------------|------|------------------------|-------------------------|---------| | | Bit 7 | SSP15 | | RW | | | Χ | | | Bit 6 | SSP14 | | RW | | | Χ | | | Bit 5 | SSP13 | | RW | | | Χ | | | Bit 4 | SSP12 | Spread Spectrum | RW | These bits set the CPU | spread pecentage.Please | Χ | | | Bit 3 | SSP11 | Programming b (15:8) | RW | contact IDT for the | appropriate values. | Х | | | Bit 2 | SSP10 | | RW | | | Х | | | Bit 1 | SSP9 | | RW | | | Х | | | Bit 0 | SSP8 | | RW | | | X | Note: If CLKREQA and CLKREQB are both selected to control an output, the control condition is an OR function. CLKREQA# = 0 OR CLKREQB = 0 results in the controlled output running. SMBUS Table: SRC Frequency Control Register | Byte | 15 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|--------|-----------------------|------|---|---------------------------|---------| | | Bit 7 | N Div2 | N Divider Prog bit 2 | RW | | | Χ | | | Bit 6 | N Div1 | N Divider Prog bit 1 | RW | | | | | | Bit 5 | M Div5 | | RW | The decimal representation of M and N Divider in Byte | Χ | | | | Bit 4 | M Div4 | | RW | • | SRC VCO frequency. See | Χ | | | Bit 3 | M Div3 | M Divider Programming | RW | _ | r VCO frequency formulas. | Χ | | | Bit 2 | M Div2 | bit (5:0) | RW | W/N Caculation Tables to | r vco irequency formulas. | Χ | | | Bit 1 | M Div1 | | RW | | | | | | Bit 0 | M Div0 | | RW | | | Χ | SMBUS Table: SRC Frequency Control Register | Byte | 16 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|---------|----------------------------|------|----------------------------|------------------------------|---------| | | Bit 7 | N Div10 | | RW | | | Χ | | | Bit 6 | N Div9 | | RW | | | Χ | | | Bit 5 | N Div8 | N Divider Programming | RW | The decimal representation | n of M and N Divider in Byte | Χ | | | Bit 4 | N Div7 | Byte16 bit(7:0) and Byte15 | RW | • | SRC VCO frequency. See | Χ | | | Bit 3 | N Div6 | bit(7:6) | RW | _ | r VCO frequency formulas. | Χ | | | Bit 2 | N Div5 | Dit(7.0) | RW | W/N Caculation Tables 10 | vco frequency formulas. | Χ | | | Bit 1 | N Div4 | | RW | | | Χ | | | Bit 0 | N Div3 | | RW | | | X | SMBUS Table: SRC Spread Spectrum Control Register | Byte | 17 | Name | Control Function | Type | 0 | 1 | Default | |------|-------|------|----------------------|------|--------------------------|-------------------------|---------| | | Bit 7 | SSP7 | | RW | | | X | | | Bit 6 | SSP6 | | RW | | | Х | | | Bit 5 | SSP5 | | RW | | | Х | | | Bit 4 | SSP4 | Spread Spectrum | RW | These bits set the SRC s | pread pecentages.Please | Х | | | Bit 3 | SSP3 | Programming bit(7:0) | RW | contact IDT for the | appropriate values. | Х | | | Bit 2 | SSP2 | . , , | RW | | | Х | | | Bit 1 | SSP1 | | RW | | | Х | | | Bit 0 | SSP0 | | RW | | | Х | SMBUS Table: SRC Spread Spectrum Control Register | Byte | 18 | Name | Control Function | Type | 0 | 1 | Default | |------|-------|-------|-----------------------|------|--------------------------|-------------------------|---------| | | Bit 7 | SSP15 | | RW | | | Х | | | Bit 6 | SSP14 | | RW | | | Х | | | Bit 5 | SSP13 | | RW | | | Χ | | | Bit 4 | SSP12 | Spread Spectrum | RW | These bits set the SRC s | pread pecentages.Please | Х | | | Bit 3 | SSP11 | Programming bit(15:8) | RW | contact IDT for the | appropriate values. | Χ | | | Bit 2 |
SSP10 | | RW | | | Х | | | Bit 1 | SSP9 | | RW | | | Χ | | | Bit 0 | SSP8 | | RW | | | Χ | SMBus Table: SRC N Divider Control Register | Byte | 19 | Name | Control Function | Type | 0 | 1 | Default | |------|-------|-----------|---------------------------|----------|---------------------------|----------------------|---------| | | Bit 7 | SRC NDiv0 | LSB N Divider Programming | RW | N Divider LSB (bit 0) for | SRC M/N programming. | X | | | Bit 6 | | F | Reserved | | | 0 | | | Bit 5 | | F | Reserved | | | 0 | | | Bit 4 | | F | Reserved | | | 0 | | | Bit 3 | | F | Reserved | | | 0 | | | Bit 2 | | F | Reserved | | | 0 | | | Bit 1 | | F | Reserved | | | 0 | | | Bit 0 | | F | Reserved | | | 0 | SMBUS Table: CPU Output Divider Register | Byte | 20 | Name | Control Function | Туре | 0 | 1 | Default | |------|-------|-----------|---------------------------|---------|--------------------------|---------------------------|---------| | | Bit 7 | CPU NDiv0 | LSB N Divider Programming | RW | Byte 20 has the N Divide | r LSB (bit 0) for CPU M/N | Χ | | | Bit 6 | | R | eservec | | | 0 | | | Bit 5 | | R | eservec | | | 0 | | | Bit 4 | | R | eservec | | | 0 | | | Bit 3 | CPUDiv3 | | RW | 0000:/2 ; 0100:/4 | 1000:/8 ; 1100:/16 | Χ | | | Bit 2 | CPUDiv2 | CPU Divider Ratio | RW | 0001:/3 ; 0101:/6 | 1001:/12 ; 1101:/24 | Χ | | | Bit 1 | CPUDiv1 | Programming Bits | RW | 0010:/5; 0110:/10 | 1010:/20 ; 1110:/40 | Χ | | ſ | Bit 0 | CPUDiv0 | | RW | 0011:/9; 0111:/18 | 1011:/36 ; 1111:/72 | Х | ### Bytes 21 to 63 Are Reserved ### CPU, SRC and PCI Divider Ratios | Div(3:0) | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 | |----------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------| | Divider | 2 | 3 | 5 | 15 | 4 | 6 | 10 | 30 | 8 | 12 | 20 | 60 | 16 | 24 | 40 | 120 | ## **Drive Strength and Terminations** | SRC13T_LPRS | SRC13C_LPRS | SRC12T_LPRS | SRC12C_LPRS | VDDSRC_3.3 | GNDSRC | SRC11T_LPRS | SRC11C_LPRS | SRC10T_LPRS | SRC10C_LPRS | SRC9T_LPRS | SRC9C_LPRS | GNDSRC | VDDSRC_3.3 | SRC8T_LPRS | SRC8C_LPRS | SRC7T_LPRS | SRC7C_LPRS | | |-------------|-------------|-------------|-------------|------------|--------|-------------|-------------|-------------|-------------|------------|------------|--------|------------|------------|------------|------------|------------|--| | 72 | 71 | 70 | 69 | 68 | 67 | 66 | 65 | 64 | 63 | 62 | 61 | 60 | 59 | 58 | 57 | 56 | 55 | | | Drive | Rs(ohm) | CL(pF) | Pin Type | |--------|---------|--------|----------| | Vdd | Vdd | Vdd | PWR | | N/A | 0 ohm | 2pF | OUT | | N/A | 0 ohm | 2pF | OUT | | Ground | Ground | Ground | GND | | N/A | 0 ohm | 2pF | OUT | | N/A | 0 ohm | 2pF | OUT | | N/A | 0 ohm | 2pF | OUT | | N/A | 0 ohm | 2pF | OUT | | Vdd | Vdd | Vdd | PWR | | Ground | Ground | Ground | GND | | N/A | 0 ohm | 2pF | OUT | | N/A | 0 ohm | 2pF | OUT | | N/A | 0 ohm | 2pF | OUT | | N/A | 0 ohm | 2pF | OUT | | I/O | I/O | I/O | I/O | | N/A | 0 ohm | 2pF | OUT | | N/A | 0 ohm | 2pF | OUT | | Ground | Ground | Ground | PWR | | | SRC 1 | SRC1 | SRC1 | SRC1 | VDDS | GNDS | SRC1 | SRC1 | SRC1 | SRC1 | SRC9 | SRC9 | GNDS | SGGA | SRC8 | SRC8 | SRC7 | SRC7 | | _ | | | | |--|------------|------------|------------|--------|--------|------|------|-------------|------|------|--------|-------|---------|---------|-----------|----------------|-----------|--------|--|--|---|---|--| | VDDSATA_3.3 1 SATAC_LPRS 2 SATAT_LPRS 3 GNDSATA 4 CPUKGOC_LPRS 5 CPUKGOT_LPRS 6 CPUKG1C_LPRS 7 CPUKG1T_LPRS 8 VDDCPU_3.3 9 GNDCPU 10 CPUKG2C_LPRS 11 CPUKG2C_LPRS 11 | | | | | | | 66 | 65 | 64 | 63 | | 61 | 60 | 59 | | | 56 | 55 | 53
52
51
50
49
48
47
46
45
44 | SRC6
SRC5
SRC5
VDDS
GND5
SRC4
SRC4
SRC3
SRC3
SRC3 | C_LP T_LP C_LP RC_C RC_C RC_C RT_LP C_LP C_LP RT_LP RC_LP | PRS
PRS
PRS
PRS
PRS
PRS
PRS
PRS
PRS | | | CPUKG3C_LPRS 13 CPUKG3C_LPRS 14 RESTORE# 15 HTT0C_LPRS 16 HTT0T_LPRS 17 GNDHTT 18 | | | 21 | | | | | | | 28 | | 30 | - | 32 | | _ | 35 | 36 | 42
41
40
39
38 | GNDS
VDDS
SRC1
SRC1
SRC0
SRC0 | SRC
RC_C
T_LP
C_LP
T_LP | 3.3
RS
PRS
RS | | | | VDDHTT_3.3 | HTT1C_LPRS | HTT1T_LPRS | SMBCLK | SMBDAT | X | X2 | VDD REF_3.3 | REFO | REF1 | GNDREF | GND48 | 48MHz_0 | 48MHz_1 | VDD48_3.3 | 0_0_1.8/SIO_SI | SIO_1_1.8 | GNDSIO | | | | | | | Pin Type | CL(pF) | Rs(ohm) | |----------|--------|---------| | OUT | 2pF | 0 ohm | | PWR | Vdd | Vdd | | GND | Ground | Ground | | OUT | 2pF | 0 ohm | | GND | Ground | Ground | | PWR | Vdd | Vdd | | OUT | 2pF | 0 ohm | | Pin Type | PWR | OUT | OUT | Z | 0/I | Z | OUT | PWR | OUT | TUO | GND | GND | TUO | TUO | PWR | 0/1 | TUO | GND | |----------------|-----|-------|-------|------|-------|------|------|-----|--------|--------|--------|--------|--------|--------|-----|--------|--------|--------| | CL(nF) | Ndd | 2pF | 2pF | SCLK | SDATA | 30pF | 30pF | ρpΛ | 3.9pF | 3.9pF | Ground | Ground | 3.9pf | 3.9pf | ррΛ | 3.9pf | 3.9pf | Ground | | Bs(ohm) CL(pF) | Vdd | 0 ohm | 0 ohm | SCLK | SDATA | N/A | N/A | ρpΛ | 39 ohm | 39 ohm | Ground | Ground | 39 ohm | 39 ohm | ρpΛ | 29 ohm | 29 ohm | Ground | | Drive | ppA | N/A | N/A | SCLK | SDATA | N/A | N/A | ρpΛ | 2X | 2X | Ground | Ground | 2X | 2X | ρpΛ | 1X | 1X | Ground | Resistor values are for default drive strength driving a single transmission line with Zo = 50 ohms! ## Package Outline and Package Dimensions (72-pin MLF) | | Millim | eters | |----------------|---------|---------| | Symbol | Min | Max | | Α | 0.8 | 1.0 | | A1 | 0 | 0.05 | | A3 | 0.25 Re | ference | | b | 0.18 | 0.3 | | е | 0.50 E | BASIC | | D x E BASIC | 10.00 > | (10.00 | | D2 MIN./MAX. | 5.75 | 6.15 | | E2 MIN./MAX. | 5.75 | 6.15 | | L MIN./MAX. | 0.3 | 0.5 | | N_D | 1 | 8 | | N _E | 1 | 8 | ## **Ordering Information** | Part / Order Number | Marking | Shipping Packaging | Package | Temperature | |---------------------|-------------|---------------------------|------------|-------------| | 932S890CKLF | see page 13 | Trays | 72-pin MLF | 0 to +70° C | | 932S890CKLFT | | Tape and Reel | 72-pin MLF | 0 to +70° C | [&]quot;LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. While the information presented herein has been checked for both accuracy and reliability, Integrated Device Technology (IDT) assumes no responsibility for either its use or for the infringement of any patents or other rights of third parties, which would result from its use. No other circuits, patents, or licenses are implied. This product is intended for use in normal commercial applications. Any other applications such as those requiring extended temperature range, high reliability, or other extraordinary environmental requirements are not recommended without additional processing by IDT. IDT reserves the right to change any circuitry or specifications without notice. IDT does not authorize or warrant any IDT product for use in life support devices or critical medical instruments. [&]quot;C" is the device revision designator (will not correlate with the datasheet revision). ## **Revision History** | Rev. | Issue Date | Who | Description | Page # | |------|------------|-----|--|-------------| | Α | 1/15/2009 | RDW | Updates to pin descriptions, electrical tables, power tables, release to final | Various | | В | 2/26/2009 | RDW | Updates to pin 71 & 72 descriptions. | 3 | | | | | 1. Updated PPM tolerances to +/-50ppm from +/-100ppm | | | | | | 2. Updated clock periods to reflect this. | | | | | | 3. Added footnote 3 to 14.318M Electrical Table | | | | | | 4. Updated ppm reference on page 1 to reflect this. | | | С | 2/10/2011 | RDW | 5. Added clock periods table after page 10. | 1,8,9,10,19 | | D | 5/20/2011 | RDW | Updated to new datasheet template. | Various | 932S890C RD890 SYSTEM CLOCK FOR AMD-BASED SERVERS **SYNTHESIZERS** #### **IMPORTANT NOTICE AND DISCLAIMER** RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms
and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) ### **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/