RENESAS FemtoClock® Crystal-to-LVDS **Clock Generator** DATA SHEET ## GENERAL DESCRIPTION The 844021I-01 is an Ethernet Clock Generator. The 844021I-01 uses an 18pF parallel resonant crystal over the range of 24.5MHz - 34MHz. For Ethernet appli-cations, a 25MHz crystal is used. The 844021I-01 has excellent <1ps phase jitter performance, over the 1.875MHz - 20MHz integration range. The 844021I-01 is packaged in a small 8-pin TSSOP, making it ideal for use in systems with limited board space. ### **FEATURES** - · One Differential LVDS output - Crystal oscillator interface, 18pF parallel resonant crystal (24.5MHz - 34MHz) - Output frequency range: 122.5MHz 170MHz - VCO range: 490MHz 680MHz - RMS phase jitter @ 125MHz, using a 25MHz crystal (1.875MHz - 20MHz): 0.32ps (typical) @ 3.3V - 3.3V or 2.5V operating supply - -40°C to 85°C ambient operating temperature - Available in lead-free (RoHS 6) package #### COMMON CONFIGURATION TABLE - Gb ETHERNET | | Output Frequency | | | | |-------------------------|------------------|---|-----------------------------|--------| | Crystal Frequency (MHz) | М | N | Multiplication
Value M/N | (MHz) | | 25 | 20 | 4 | 5 | 125 | | 26.666 | 20 | 4 | 5 | 133.33 | | 33.33 | 20 | 4 | 5 | 166.66 | ### **BLOCK DIAGRAM** ## PIN ASSIGNMENT ### 844021I-01 8-Lead TSSOP 4.40mm x 3.0mm x 0.925mm package body G Package Top View TABLE 1. PIN DESCRIPTIONS | Number | Name | Туре | | Description | |---------|----------------------|--------|--------|--| | 1 | V _{DDA} | Power | | Analog supply pin. | | 2 | GND | Power | | Power supply ground. | | 3,
4 | XTAL_OUT,
XTAL_IN | Input | | Crystal oscillator interface. XTAL_IN is the input, XTAL_OUT is the output. | | 5 | OE | Input | Pullup | Output enable pin. When HIGH, Q/nQ output is active. When LOW, the Q/nQ output is in a high impedance state. LVCMOS/LVT-TL interface levels. | | 6, 7 | nQ, Q | Output | | Differential clock outputs. LVDS interface levels. | | 8 | V _{DD} | Power | | Core supply pin. | NOTE: Pullup refers to internal input resistors. See Table 2, Pin Characteristics, for typical values. Table 2. Pin Characteristics | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|-----------------------|-----------------|---------|---------|---------|-------| | C _{IN} | Input Capacitance | | | 4 | | pF | | R | Input Pullup Resistor | | | 51 | | kΩ | #### ABSOLUTE MAXIMUM RATINGS Supply Voltage, V_{DD} 4.6V Inputs, V_{DD} -0.5 V to V_{DD} + 0.5 V Outputs, I_o (LVDS) Continuous Current 10mA Surge Current 15mA Package Thermal Impedance, θ_{MA} 129.5°C/W (0 mps) Storage Temperature, T_{STG} -65°C to 150°C NOTE: Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These ratings are stress specifications only. Functional operation of product at these conditions or any conditions beyond those listed in the *DC Characteristics* or *AC Characteristics* is not implied. Exposure to absolute maximum rating conditions for extended periods may affect product reliability. Table 3A. Power Supply DC Characteristics, $V_{DD} = 3.3V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|------------------------|---------|-----------------|-------| | V _{DD} | Core Supply Voltage | | 3.135 | 3.3 | 3.465 | V | | V _{DDA} | Analog Supply Voltage | | V _{DD} - 0.10 | 3.3 | V _{DD} | V | | I _{DD} | Power Supply Current | | | | 75 | mA | | I _{DDA} | Analog Supply Current | | | | 10 | mA | Table 3B. Power Supply DC Characteristics, $V_{DD} = 2.5V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------|-----------------------|-----------------|------------------------|---------|---------|-------| | V _{DD} | Core Supply Voltage | | 2.375 | 2.5 | 2.625 | V | | V _{DDA} | Analog Supply Voltage | | V _{DD} - 0.10 | 2.5 | V | V | | I _{DD} | Power Supply Current | | | | 70 | mA | | I _{DDA} | Analog Supply Current | | | | 10 | mA | Table 3C. LVCMOS/LVTTL DC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |-----------------|---------------------|---|---------|---------|-----------------------|-------| | V _{IH} | Input High Voltage | $V_{_{DD}} = 3.3V$ | 2 | | V _{DD} + 0.3 | V | | | input night voltage | $V_{_{DD}} = 2.5V$ | 1.7 | | V _{DD} + 0.3 | V | | \ <u></u> | Innest Law Valtage | $V_{_{DD}} = 3.3V$ | -0.3 | | 0.8 | V | | V _{IL} | Input Low Voltage | $V_{_{DD}} = 2.5V$ | -0.3 | | 0.7 | V | | I _{IH} | Input High Current | $V_{DD} = V_{IN} = 3.465 \text{V or } 2.625 \text{V}$ | | | 5 | μΑ | | I | Input Low Current | $V_{_{DD}} = 3.465V \text{ or } 2.625V, V_{_{IN}} = 0V$ | -150 | | | μΑ | Table 3D. LVDS DC Characteristics, $V_{_{DD}} = 3.3V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------------|----------------------------------|-----------------|---------|---------|---------|-------| | V _{od} | Differential Output Voltage | | 275 | | 425 | mV | | Δ V $_{_{ m OD}}$ | V _{ob} Magnitude Change | | | | 50 | mV | | Vos | Offset Voltage | | 1.15 | | 1.45 | V | | ΔV_{os} | V _{os} Magnitude Change | | | | 50 | mV | NOTE: Please refer to Parameter Measurement Information for output information. Table 3E. LVDS DC Characteristics, $V_{_{DD}} = 2.5V \pm 5\%$, Ta = -40°C to $85^{\circ}C$ | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |--------------------------|----------------------------------|-----------------|---------|---------|---------|-------| | V _{od} | Differential Output Voltage | | 215 | | 430 | mV | | Δ V $_{_{ m OD}}$ | V _{op} Magnitude Change | | | | 50 | mV | | V _{os} | Offset Voltage | | 1.05 | | 1.45 | V | | ΔV_{os} | V _{os} Magnitude Change | | | | 50 | mV | NOTE: Please refer to Parameter Measurement Information for output information. TABLE 4. CRYSTAL CHARACTERISTICS | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |------------------------------------|-----------------|---------|------------|---------|-------| | Mode of Oscillation | | F | undamental | | | | Frequency | | 24.5 | | 34 | MHz | | Equivalent Series Resistance (ESR) | | | | 50 | Ω | | Shunt Capacitance | | | | 7 | pF | NOTE: It is not recommended to overdrive the crystal input with an external clock. Table 5. AC Characteristics, $V_{DD} = 3.3V \pm 5\%$ or $2.5V \pm 5\%$, Ta = -40°C to 85°C | Symbol | Parameter | Test Conditions | Minimum | Typical | Maximum | Units | |---------------------------------|---------------------------------------|---|---------|---------|---------|-------| | f _{out} | Output Frequency | | 122.5 | | 170 | MHz | | tjit(Ø) | RMS Phase Jitter (Random);
NOTE 1 | 125MHz @ Integration Range:
1.875MHz - 20MHz | | 0.32 | | ps | | t _R / t _F | Output Rise/Fall Time | 20% to 80% | 200 | | 400 | ps | | odc | Output Duty Cycle | | 48 | | 52 | % | NOTE 1: Please refer to the Phase Noise Plots following this section. # PARAMETER MEASUREMENT INFORMATION #### LVDS 3.3V OUTPUT LOAD AC TEST CIRCUIT ### LVDS 2.5V OUTPUT LOAD AC TEST CIRCUIT #### **RMS PHASE JITTER** ## OUTPUT DUTY CYCLE/PULSE WIDTH/PERIOD #### **OUTPUT RISE/FALL TIME** ### OFFSET VOLTAGE SETUP # **APPLICATION INFORMATION** ### Power Supply Filtering Techniques As in any high speed analog circuitry, the power supply pins are vulnerable to random noise. To achieve optimum jitter performance, power supply isolation is required. The 844021I-01 provides separate power supplies to isolate any high switching noise from the outputs to the internal PLL. $V_{_{\rm DD}}$ and $V_{_{\rm DDA}}$ should be individually connected to the power supply plane through vias, and 0.01µF bypass capacitors should be used for each pin. Figure 1 illustrates this for a generic V $_{_{\rm DD}}$ pin and also shows that V $_{_{\rm DDA}}$ requires that an additional10 Ω resistor along with a 10µF bypass capacitor be connected to the V $_{_{\rm DDA}}$ pin. FIGURE 1. POWER SUPPLY FILTERING ### **CRYSTAL INPUT INTERFACE** The 844021I-01 has been characterized with 18pF parallel resonant crystals. The capacitor values, C1 and C2, shown in *Figure 2* below were determined using a 25MHz, 18pF parallel resonant crystal and were chosen to minimize the ppm error. The optimum C1 and C2 values can be slightly adjusted for different board layouts. FIGURE 2. CRYSTAL INPUT INTERFACE # 3.3V, 2.5V LVDS DRIVER TERMINATION A general LVDS interface is shown in Figure 4 In a 100Ω differential transmission line environment, LVDS drivers require a matched load termination of 100Ω across near the receiver input. For a multiple LVDS outputs buffer, if only partial outputs are used, it is recommended to terminate the unused outputs. FIGURE 4. TYPICAL LVDS DRIVER TERMINATION ### SCHEMATIC LAYOUT Figure 5 shows an example of 844021I-01 application schematic. In this example, the device is operated at $V_{\tiny DD} = 3.3V$. The decoupling capacitor should be located as close as possible to the power pin. The 18pF parallel resonant 25MHz crystal is used. The C1 = 33pF and C2 = 27pF are recommended for frequency accuracy. For different board layout, the C1 and C2 may be slightly adjusted for optimizing frequency accuracy. For the LVDS output drivers, place a 100Ω resistor as close to the receiver as possible. FIGURE 5. 844021I-01 SCHEMATIC LAYOUT ## POWER CONSIDERATIONS This section provides information on power dissipation and junction temperature for the 844021I-01 Equations and example calculations are also provided. #### 1. Power Dissipation. The total power dissipation for the 844021I-01 is the sum of the core power plus the analog plus the power dissipated in the load(s). The following is the power dissipation for $V_{\infty} = 3.3V + 5\% = 3.465V$, which gives worst case results. • Power (core)_{MAX} = $V_{DD,MAX}$ * ($I_{DD,MAX}$ + $I_{DDA,MAX}$) = 3.465V * (75mA + 10mA) = **294.5mW** #### 2. Junction Temperature. Junction temperature, Tj, is the temperature at the junction of the bond wire and bond pad and directly affects the reliability of the device. The maximum recommended junction temperature is 125°C. The equation for Tj is as follows: Tj = θ_{JA} * Pd_total + T_A Tj = Junction Temperature θ_{JA} = Junction-to-Ambient Thermal Resistance Pd_total = Total Device Power Dissipation (example calculation is in section 1 above) T_A = Ambient Temperature In order to calculate junction temperature, the appropriate junction-to-ambient thermal resistance θ_{JA} must be used. Assuming no air flow and a multi-layer board, the appropriate value is 129.5°C/W per Table 6 below. Therefore, Tj for an ambient temperature of 85°C with all outputs switching is: 85°C + 0.295W * 129.5°C/W = 123.2°C. This is below the limit of 125°C. This calculation is only an example. Tj will obviously vary depending on the number of loaded outputs, supply voltage, air flow, and the type of board (single layer or multi-layer). #### Table 6. Thermal Resistance θ_{JA} for 8-Lead TSSOP, Forced Convection # θ_{JA} by Velocity (Meters per Second) 0 1 2.5 Multi-Layer PCB, JEDEC Standard Test Boards 129.5°C/W 125.5°C/W 123.5°C/W # RELIABILITY INFORMATION Table 7. $\theta_{_{\mathrm{JA}}}$ vs. Air Flow Table for 8 Lead TSSOP # $\theta_{\mbox{\tiny JA}}$ by Velocity (Meters per Second) 0 1 2.5 Multi-Layer PCB, JEDEC Standard Test Boards 129.5°C/W 125.5°C/W 123.5°C/W ### TRANSISTOR COUNT The transistor count for 844021I-01 is: 2533 # PACKAGE OUTLINE & DIMENSIONS #### PACKAGE OUTLINE - G SUFFIX FOR 8 LEAD TSSOP TABLE 8. PACKAGE DIMENSIONS | CVMDOL | Millin | neters | | | |--------|---------|---------|--|--| | SYMBOL | Minimum | Maximum | | | | N | 8 | | | | | Α | | 1.20 | | | | A1 | 0.05 | 0.15 | | | | A2 | 0.80 | 1.05 | | | | b | 0.19 | 0.30 | | | | С | 0.09 | 0.20 | | | | D | 2.90 | 3.10 | | | | E | 6.40 E | BASIC | | | | E1 | 4.30 | 4.50 | | | | е | 0.65 E | BASIC | | | | L | 0.45 | 0.75 | | | | α | 0° | 8° | | | | aaa | | 0.10 | | | Reference Document: JEDEC Publication 95, MO-153 ### TABLE 9. ORDERING INFORMATION | Part/Order Number | Marking | Package | Shipping Packaging | Temperature | |--------------------|---------|--------------------------|--------------------|---------------| | ICS844021BGI-01LF | BI01L | 8 lead "Lead-Free" TSSOP | tube | -40°C to 85°C | | ICS844021BGI-01LFT | BI01L | 8 lead "Lead-Free" TSSOP | tape & reel | -40°C to 85°C | NOTE: Parts that are ordered with an "LF" suffix to the part number are the Pb-Free configuration and are RoHS compliant. | REVISION HISTORY SHEET | | | | | |------------------------|----------|-------------------|--|----------| | Rev | Table | Page | Description of Change | Date | | А | T4
T9 | 1
4
8
12 | Deleted HiPerClockS references. Crystal Characteristics Table - added note. Deleted application note, LVCMOS to XTAL Interface. Deleted quantity from tape and reel. | 9/23/12 | | А | Т9 | 12 | Ordering Information - removed leaded devices. Updated data sheet format. | 10/27/15 | #### **IMPORTANT NOTICE AND DISCLAIMER** RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products. (Rev.1.0 Mar 2020) ## **Corporate Headquarters** TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com #### **Trademarks** Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners. #### **Contact Information** For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/