AXL F RS UNI 1H

Axioline F communication module for serial data transmission, 1 interface can be parameterized as RS-485/422 or RS-232

Data sheet 8533_en_04

© PHOENIX CONTACT 2018-03-26

1 Description

The module is designed for use within an Axioline F station. The module is used to operate standard I/O devices with serial interfaces on a bus system.

Features

- A serial input and output channel in RS-232, RS-422, and RS-485 format
- Various protocols supported
- Transmission speed can be set up to 250,000 baud
- Parameterization via the PDI channel
- Device rating plate stored

This data sheet is only valid in association with the UM EN AXL F SYS INST user manual.

Make sure you always use the latest documentation. It can be downloaded from the product at <u>phoenixcontact.net/products</u>.

2 1	Table of contents Description 1
2	Table of contents
3	Ordering data
4	Technical data4
5	Internal circuit diagram6
6	Terminal point assignment7
7	Connection notes
8	Connection examples
9	Local diagnostic and status indicators 10
10	Serial interfaces
11	Mass storage and transmission
12	Process data
13	Process data word 016
14	Commands
15	Parameter, diagnostics and information (PDI)21
16	Standard objects
17	Application objects
18	Device descriptions

3 Ordering data

Description	Туре	Order No.	Pcs./Pkt.
Axioline F communication module for serial data transmission, 1 interface can be parameterized as RS-485/422 or RS-232 (including bus base module and connectors)	AXL F RS UNI 1H	2688666	1
Accessories	Туре	Order No.	Pcs./Pkt.
Axioline F bus base module for housing type H (Replacement item)	AXL F BS H	2700992	5
Axioline F connector set (for e.g., AXL F DI16/1 1H) (Replacement item)	AXL CNS 2L-O/D/UI/E1/E2	2700985	1
Zack marker strip for Axioline F (device labeling), in 2 x 20.3 mm pitch, unprinted, 25-section, for individual labeling with B-STIFT 0.8, X-PEN, or CMS-P1-PLOTTER (Marking)	ZB 20,3 AXL UNPRINTED	0829579	25
Zack marker strip, flat, in 10 mm pitch, unprinted, 10- section, for individual labeling with M-PEN 0,8, X-PEN, or CMS-P1-PLOTTER (Marking)	ZBF 10/5,8 AXL UNPRINTED	0829580	50
Axioline shield connection set (contains 2 busbar holders and 2 SK 5 shield connection clamps)	AXL SHIELD SET	2700518	1
Insert label, Roll, white, unlabeled, can be labeled with: THERMOMARK ROLL, THERMOMARK ROLL X1, THERMOMARK ROLLMASTER 300/600, THERMOMARK X1.2, THERMOMARK S1.1, mounting type: snapped into marker carrier, lettering field size: 35 x 28 mm (Marking)	EMT (35X28)R	0801602	1
Documentation	Туре	Order No.	Pcs./Pkt.
User manual, English, Axioline F: System and installation	UM EN AXL F SYS INST	-	-
User manual, English, Axioline F: Diagnostic registers, and error messages	UM EN AXL F SYS DIAG	-	-

4 Technical data

Dimensions (nominal sizes in mm)

Width	35 mm
Height	126.1 mm
Depth	54 mm
Note on dimensions	The depth is valid when a TH 35-7,5 DIN rail is used (according to EN 60715).

General data		
Color	traffic grey A RAL 7042	
Weight	135 g (with connectors and bus base module)	
Mounting type	DIN rail	
Ambient temperature (operation)	-25 °C 60 °C	
Ambient temperature (storage/transport)	-40 °C 85 °C	
Permissible humidity (operation)	5 % 95 % (non-condensing)	
Permissible humidity (storage/transport)	5 % 95 % (non-condensing)	
Air pressure (operation)	70 kPa 106 kPa (up to 3000 m above sea level)	
Air pressure (storage/transport)	70 kPa 106 kPa (up to 3000 m above sea level)	
Degree of protection	IP20	
Protection class	III, IEC 61140, EN 61140, VDE 0140-1	
Mounting position	any (no temperature derating)	
Connection data: Axioline F connector		
Connection method	Push-in connection	
Conductor cross section solid / stranded	0.2 mm ² 1.5 mm ² / 0.2 mm ² 1.5 mm ²	
Conductor cross section [AWG]	24 16	
Stripping length	8 mm	

Stripping length	8 mm
Interface: Axioline F local bus	
Number	2
Connection method	Bus base module
Transmission speed	100 Mbps

Interface: RS-232, RS-485, RS-422		
Number of interfaces	1	
Connection method	Push-in connection	
Transmission speed	110 bps 250 kbps (can be parameterized)	
Transmission physics	Copper	
Protocols supported	Transparent, end-to-end, XON/XOFF, Modbus/RTU (master support)	
Input buffer	4 kByte	
Output buffer	1 kByte	
Data bits	5 8	
Stop bits	1 or 2	
Termination resistor	active, integrated	

Supply of the Axioline F local bus $\mathrm{U}_{\mathrm{Bus}}$

i	The I/O is also supplied from the communications power U _{Bus} . The I/O supply is electrically isolated from the local bus.	
Supply voltage		5 V DC (via bus base module)
Current draw		typ. 200 mA

typ. 200 mA	
max. 240 mA	

Configuration and parameter data in a PROFIBUS system		
Required parameter data	14 Byte	
Required configuration data	7 Byte	

Electrical isolation/isolation of the voltage areas	
Test section	Test voltage
5 V supply (logic)/5 V supply (I/O)	500 V AC, 50 Hz, 1 min.
5 V supply (logic)/functional earth ground	500 V AC, 50 Hz, 1 min.
5 V supply (I/O)/functional earth ground	500 V AC, 50 Hz, 1 min.

Error messages to the higher level control or computer system

I/O supply failure	Yes
Mechanical tests	
Vibration resistance in acc. with EN 60068-2-6/ IEC 60068-2-6	5g
Shock in acc. with EN 60068-2-27/IEC 60068-2-27	30g
Continuous shock according to EN 60068-2-27/ IEC 60068-2-27	10g

Conformance with EMC Directive 2014/30/EU		
Noise immunity test in accordance with EN 61000-6-2		
Electrostatic discharge (ESD) EN 61000-4-2/ IEC 61000-4-2	Criterion B, 6 kV contact discharge, 8 kV air discharge	
Electromagnetic fields EN 61000-4-3/IEC 61000-4-3	Criterion A, Field intensity: 10 V/m	
Fast transients (burst) EN 61000-4-4/IEC 61000-4-4	Criterion B, 2 kV	
Transient overvoltage (surge) EN 61000-4-5/ IEC 61000-4-5	Criterion B, DC supply lines: ±0.5 kV/±0.5 kV (symmetrical/ asymmetrical)	
Conducted interference EN 61000-4-6/IEC 61000-4-6	Criterion A; Test voltage 10 V	
Noise emission test according to EN 61000-6-3		
Radio interference properties EN 55022	Class B	

Approvals

For the latest approvals, please visit phoenixcontact.net/products.

5 Internal circuit diagram

Figure 1 Internal wiring of the terminal points

Key:

6 Terminal point assignment

Figure 2 Terminal point assignment

Connector 1					
Terminal point	Color	Assignment			
a1, a2	Red	Not used (internally jumpered)			
b1, b2	Blue	Not used (internally jumpered)			

1 You of the volta

You can use connector 1 for potential routing of the 24 V supply voltage, however the voltage is not used by the module.

Connector 2			RS-485	RS-485 RS-422	
Terminal point	Color	Signal	Description	Description	
00	Orange	TxD+	Not used	Transmit data	positive
10	Orange	RxD+	Transmit/receive data	Receive data	positive
20	Orange	RxD+	Transmit/receive data	Receive data	Positive; for external bridge to 30
30	Orange	R+	Termination resistor	Termination resistor	Positive pole; for external bridge to 20
01	Orange	TxD-	Not used	Transmit data	negative
11	Orange	RxD-	Transmit/receive data	Receive data	negative
21	Orange	RxD-	Transmit/receive data	Receive data	Negative; for external bridge to 31
31	Orange	R-	Termination resistor	Termination resistor	Negative pole; for external bridge to 21

Connector 3: RS	Connector 3: RS-232						
Terminal point	Color	Signal	Description				
02	Orange	RxD	Serial data input				
12	Orange	RTS	Request to send	Request to send; handshake signal; output			
22	Orange	DTR	Data terminal ready	Startup request to the connected device; handshake signal; output			
32	Orange	DCD	Data carrier detect	Connected device ready to operate; handshake signal; input			
03	Orange	TxD	Serial data output	·			
13	Orange	CTS	Clear to send	Permission to send; connected device ready to receive; handshake signal; input			
23	Orange	DSR	Data set ready	Connected device ready to operate; handshake signal; input			
33	Orange	GND	Ground for the serial interface				

7 Connection notes

- Connect the shield to a busbar before the module
- Fit the receive signals of the RS-485 or RS-422 network with a termination resistor at the relevant end point.
- If you use the integrated termination resistor, the polarization of the data cable will also be active.

8 Connection examples

Operating mode	Special feature	Notes	Image
RS-485	Module as the network end point	Termination resistor required	Figure 3
RS-485	Module in the network center		Figure 4
RS-422	Module is last receiver	Termination resistor required	Figure 5
RS-232	Four-wire handshake		Figure 6
RS-232	Without handshake		Figure 7

8.2

8.1 RS-485: module as the network end point

Figure 3 RS-485 interface wiring: Module as the network end point

RS-485: module in the network center

8.3 RS-422

8.4 RS-232: with 4-wire handshake

Figure 6 RS-232 interface wiring: four-wire handshake

8.5 RS-232: without handshake

Figure 7 RS-232 interface wiring: without handshake

For wiring without handshake, insert a bridge between terminal points 22 (DTR) and 13 (CTS).

9 Local diagnostic and status indicators

-						-
	ΠD			02		
		000	001	002	003	
	OU			012		
	E 1			022		
	E2	030	<mark>0</mark> 31	<mark>0</mark> 32	033	

Figure 8 Local diagnostic and status indicators

Connector 1						
Designation	Color	Meaning	State	Description		
D	Red/	Diagnostics of local bus communication				
	yellow/ green	Run	Green ON	The device is ready for operation, communication within the station is OK. All data is valid. An error has not occurred.		
		Active	Green flashing	The device is ready for operation, communication within the station is OK. The data is not valid. No valid data provided by the controller/ higher-level network. There is no error on the module.		
		Device application not active	Flashing green/ yellow	The device is ready for operation, communication within the station is OK. Output data cannot be outputted and/or input data cannot be read. There is a fault on the periphery side of the module		
		Ready	Yellow ON	The device is ready for operation but did not detect a valid cycle after power-up.		
		Connected	Yellow flashing	The device is not (yet) part of the active configuration.		
		Reset	Red ON	The device is ready for operation but has lost the connection to the bus head.		
		Not connected	Flashing red	The device is ready for operation but there is no connection to the previously existing device.		
		Power down	OFF	Device is in (power) reset.		
UI	Green	I/O voltage	ON	I/O supply voltage is present (generated from U _{Bus}).		
			OFF	I/O supply voltage is not present.		
E1	Red	Peripheral fault	ON	I/O error present.		
			OFF	No I/O error.		
E2	Red	Channel error	ON	Channel error present.		
			OFF	Channel error not present.		

Channel errors are errors that can be associated with a channel. Periphery errors are errors that affect the entire module.

Connec	Connector 2: RS-485/422					
Designa	ition	Color	State	Description		
00	TxD	Yellow	ON	Module is transmitting data to the connected device		
			OFF	Module is not transmitting data		
10	-	-	-	Not used		
20	-	-	-	Not used		
30 RS-485		Yellow	ON	Module is parameterized for RS-485		
			OFF	Module is not parameterized for RS-485		
01	RxD	RxD Yellow		Module is receiving data from the connected device		
			OFF	Module is not receiving data		
11	-	-	-	Not used		
21	-	-	-	Not used		
31	31 RS-422 Yellow		ON	Module is parameterized for RS-422		
			OFF	Module is not parameterized for RS-422		

Connector 3: RS-232					
Designa	ation	Color	State	Description	
02	RxD	Yellow	ON	Module is receiving data from the connected device	
			OFF	Module is not receiving data	
12	RTS	Yellow		Request to send	
			ON	Handshake signal is set by the module	
			OFF	Handshake signal is not set	
22	DTR Yellow			Data terminal ready	
			ON	Handshake signal is set by the module	
			OFF	Handshake signal is not set	
32 DCD		Yellow		Data carrier detect	
			ON	Handshake signal is set by partner	
			OFF	Handshake signal is not set	
03	TxD	Yellow	ON	Module is transmitting data to the connected device	
			OFF	Module is not transmitting data	
13	CTS	Yellow		Clear to send	
			ON	Handshake signal is set by partner	
			OFF	Handshake signal is not set	
23	DSR	Yellow	ON	Data set ready	
			ON	Handshake signal is set by partner	
			OFF	Handshake signal is not set	
33	RS-232	Yellow	ON	Module is parameterized for RS-232	
			OFF	Module is not parameterized for RS-232	

10 Serial interfaces

10.1 RS-232

The RS-232 interface on the terminal represents some form of DTE (data termination equipment).

This means that connector 2 terminal point 2.1 (TxD) is always used to transmit and connector 2 terminal point 1.1 (RxD) is always used to receive.

According to the standard, some form of DCE (data communication equipment) should be connected to the RS-232 interface as a peer. DTE can also be connected.

Measuring the voltage between the connection points for the TxD and GND signals in idle state will determine whether the device to be connected to the RS-232 interface is a form of DTE or DCE. If the voltage measures approximately -5 V, the device is a form of DTE. If the voltage is approximately 0 V, the device is a form of DCE.

Example: when using a 25-pos. standard connector the voltage between pin 2 (TxD) and pin 7 (GND) must be measured.

In order to obtain the correct results, perform the measurement on the open cable end, i.e., if the modules are not connected together.

RS-232 module handshake signals

Any device with an RS-232 interface can be connected to the RS-232 interface on the module.

Both the module and the device connected to the RS-232 interface can act as a transmitter and a receiver for data exchange.

To avoid errors during data exchange, e.g., a buffer overrun, the handshake is used as a procedure for the mutual signaling of clear to receive and clear to send.

The module supports the RTS, CTS, DTR, DSR, and DCD handshake signals. Each uses one wire of the connecting cable.

The connecting signals are described from the point of view of the module, i.e., from the point of view of the DTE.

10.2 RS-485 (2-wire)

In RS-485 mode, you can create a network with several devices using an existing network consisting of two signal cables.

Use a twisted pair, common shielded data cable to connect the devices. Fit a termination resistor to the data cable at both end points of the RS-485 network. For this, you can use the integrated termination resistor in the module via connections R+ and R-.

If you use the integrated termination resistor, the data cable will also be polarized in order to generate a defined cable idle level.

This operating mode only supports half duplex transmission. Make sure that data is not sent simultaneously by several devices.

10.3 RS-422

In RS-422 mode, you can create a network with several devices using an existing network consisting of four signal cables.

The cable pairs create a data forward path and a data return path.

Specify a master for a structure with more than two devices. This master can send telegrams to all the other devices (slaves) and receive from them.

The slaves can send telegrams between each other.

Use a twisted pair, common shielded data cable to connect the devices. Fit the receive signals of the network with termination resistors at the relevant end point. Use the integrated termination resistor when connecting to the module.

This operating mode supports full duplex transmission.

11 Mass storage and transmission

The module stores the received serial data in an intermediate buffer until it is requested from the serial interface by the bus controller board or the device. Serial data traffic can be managed using various protocols. The protocol used depends on the type of protocol supported by the peer.

11.1 Supported protocols

Protocol	Receive memory	Transmit memory	Special features when receiving
Transparent	4096 bytes	1023 bytes	
End-to-end	3 buffers each with 340 bytes (PD) or 245 bytes (PDI)	1023 bytes (including end characters)	Two end characters are filtered out
XON/XOFF	4096 bytes	1023 bytes	Software handshake
Modbus/RTU	3 buffers each with 340 bytes (PD) or 245 bytes (PDI)	3 buffers each with 340 bytes (PD) or 245 bytes (PDI)	

PD Data exchange via process data

PDI Data exchange via PDI

11.2 Transparent protocol

If the transparent protocol is used, serial data is transmitted in the same format it is received from the serial interface or from the bus side.

The transmit FIFO (first-in, first-out memory) can store 1023 bytes (1 kbyte) and the receive FIFO can store 4096 bytes (4 kbytes). If the module receives another character after the 4095th character, the error pattern is stored in the receive FIFO. All other subsequent characters are ignored.

This protocol supports a CTS hardware handshake.

If the available space in the receive memory is less than 15 bytes, DTR is set to logic 0. As soon as more memory space becomes available again, DTR is set to logic 1.

11.3 End-to-end protocol

The serial data is conditioned for the end-to-end protocol.

If serial data is sent from the bus side, two additional characters, the first and second delimiters, are attached for transmission to the serial interface.

A block of serial data sent from the serial interface is only valid if the module has received the first and second delimiters. It is only then that the data can be read via the bus side. The delimiters are not forwarded to the higher-level bus with the user data, they are filtered out.

Unlike in the transparent protocol, the receive memory is not organized as a FIFO but as a buffer.

Three buffers are available.

The size of the buffer depends on the parameterized data way:

Data exchange via process data	340 bytes per buffer
Data exchange via PDI	245 bytes per buffer

If the maximum buffer size is exceeded without the two delimiters being detected, the previous characters will be ignored and the buffer will be written again.

The transmit FIFO can store 1023 bytes (1 kbyte). The delimiters are attached to, and stored with, the data to be sent.

8533_en_04

11.4 XON/XOFF protocol

This protocol operates in the same way as the transparent protocol, but uses a software handshake.

Data transmission with this protocol is controlled by the XON and XOFF characters. XON is preset to 11_{hex} and XOFF to 13_{hex} .

If the module receives an XOFF, no more serial data will be sent until an XON is received.

The module itself will transmit an XOFF if the available space in the receive memory is less than 15 bytes. As soon as more memory becomes available, the module will transmit a single XON.

Transmission does not depend on the CTS input.

Serial data is not filtered when it is transmitted. Any characters with the code defined for XON or XOFF are therefore transmitted and may trigger undesirable events at the receiver. When serial data is received, the XON and XOFF characters are filtered and are not available to the higher-lever system as data. Any characters with the XON or XOFF code are lost. Ensure that characters with these codes do not appear in the regular data stream.

11.5 Modbus/RTU (master support)

Telegram structure

Address	Function	Data	CRC
1 byte	1 byte	0 244 bytes	2 bytes
	Data		Automatic generation and check

In the Modbus environment, two time values play an important role: 1.5 characters, also referred to as t1.5 and 3.5 characters, also referred to as t3.5. The times for baud rates above 19,200 baud are set to t1.5 = 1.0 ms and t3.5 = 2.0 ms.

If a break between two characters is greater than t1.5 and less than t3.5, this is identified as a transmission error. The message is considered incomplete and is indicated with a receive error.

If the break after a character is greater than t3.5, this is identified as the telegram end.

Three transmit and three receive buffers are available.

The size of the buffer depends on the parameterized data way:

Data exchange via process data	340 bytes per buffer
Data exchange via PDI	245 bytes per buffer

Modbus/RTU mode offers Modbus/RTU master support. However, the module does not have programmable logic. Modbus/RTU slave support is not implemented.

Data transfer sequence

The two checksum bytes are automatically generated and sent for the user data supplied via the bus (via process data or PDI). Once sent this has been sent, a response is expected.

If the response is not received within 2.5 seconds, a transmit error is generated by setting error bit Tx in the status word.

If the response is received in time, the checksum is checked. If the checksum is invalid, time t1.5 has elapsed on receipt or a parity error has occurred, a receive error is then generated by setting error bit Rx in the status word.

On error-free receipt, the "Rx buffer not empty" bit is set in the status word.

The checksum bytes are not included when reading the receive data.

12 Process data

The module is parameterized via the PDI channel, data exchange with the higher-level controller depends on the parameter data way and is either via process data or via PDI.

The module has ten words of process data. These are made up of 3 bytes of control data and a maximum of 17 bytes of user data.

Assignment of the ten process data words

Word	(0	1			2	 ę	9
Byte in the Motorola format	0	1	2	3	4	5	 18	19
Byte in the Intel format	1	0	3	2	5	4	 19	18
OUT	K/P	S	L	D	D	D	 D	D
IN	K/P	S	L	D	D	D	 D	D

K/P Command/parameter

- S Control bits (OUT) or status bits (IN)
- L Length: Number of characters to be written (OUT) or to be read (IN)
- D Data

The byte representation in the Motorola format, also called Big Endian (high order byte at starting address) corresponds to the INTERBUS standard representation. All byte representations in the data sheet have this format.

The byte representation in the Intel format is also called Little Endian (low order byte at starting address).

The command is used to determine the function. The actually transmitted data depends on the command.

13 Process data word 0

13.1 Control word

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	C	omman	id		OUT pa	rameter					Contr	ol bits			

Control bits

7	6	5	4	3	2	1	0
DTR	0	0	0	0	Reset	Reset receive	0
					transmit error	error	

DTR (if DTR control enabled)						
Code (bin) Meaning Protocol						
0	0 DTR = logic 0 All					
1	DTR = logic 1					

The DTR signal can only be controlled via the bit if you have parameterized interface type RS-232 and DTR control via process data in the parameter table.

Reset transmit error						
Code (bin)	Protocol					
0	No action	Modbus/RTU				
1	Reset transmit error					

Reset receive error						
Code (bin)	Meaning	Protocol				
0	No action	Modbus/RTU				
1	Reset receive error					

Commands

Code (bin)	Code (hex)	Command
000	0	Read number of characters received (in the transparent and XON/XOFF protocol) and fill level of the receive buffer
001	1	Transmit characters
010	2	Store characters temporarily
011	3	OUT parameter = 0 _{hex} : Read characters
		OUT parameter = C _{hex} : Read firmware version
		OUT parameter = E _{hex} : Read counters
100	4	Reserved
101	5	Toggling command 1: Transmit characters
110	6	Toggling command 2: Store characters temporarily
111	7	Toggling command 3: Read characters

Command toggling

Command toggling is used to execute a command on a terminal again. In this way, a second command code is available for the same function.

This applies for the following commands:

- Transmit characters
- Store characters temporarily
- Read characters
- Read counters

Here, bit 14 is used for toggling. If, for example, you wish to transmit character strings in sequence, use command code 001_{bin} for the first transmission and then use 101_{bin} and 001_{bin} alternately.

13.2 Status word

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
St	C	omman	d		IN para	ameter					Statu	is bits			

St Error bit

Reasons for an error bit set:

- Invalid parameter for the specified command

- Failure of the I/O voltage

Status bits

7	6	5	4	3	2	1	0
DSR	Transmit buffer not empty	Transmit buffer full	Receive buffer full	DCD	Transmit error	Receive error	Receive buffer not empty

	DSR	
Code (bin)	Meaning	Protocol
0	DSR = logic 0	All
1	DSR = logic 1	

The DSR signal state is displayed, if you have parameterized interface type RS-232.

Transmit buffer not empty						
Code (bin)	Meaning	Protocol				
0	Empty	All				
1	Not empty, transmission					
	in progress					

Transmit buffer full						
Code (bin)	Meaning	Protocol				
0	Not full	All				
1	Full					

Protocol	Meaning: transmit buffer full
Modbus/RTU	No more buffer space
Other	Space remaining in the transmit buffer ≤ 30 characters

Receive buffer full							
Code (bin)	Code (bin) Meaning						
0	Not full	All					
1	Full						

Protocol	Meaning: receive buffer full
Transparent	Space remaining \leq 15 characters
XON/XOFF	Space remaining ≤ 15 characters
Modbus/RTU	No more buffer space
End-to-end	No more buffer space

DCD						
Code (bin)	Protocol					
0	DCD = logic 0	All				
1	DCD = logic 1					

The DCD signal state is displayed, if you have parameterized interface type RS-232.

Transmit error Code (bin) Meaning Protocol							
Code (bin)	Protocol						
0	No error	Modbus/RTU					
1	Transmit error; 2.5 s						
	timeout has elapsed with						
	no response received						

Receive error							
Code (bin)	Meaning	Protocol					
0	No error	Modbus/RTU					
1	Receive error; telegram received with invalid checksum						

Receive buffer not empty							
Code (bin)	Code (bin) Meaning						
0	Empty	All					
1	Not empty, characters to be read are available						

14 Commands

14.1 "Read number of characters received and fill level of the receive buffer" command

For the transparent and XON/XOFF protocol, the command result is the number of characters that have been received but not yet read.

The number is a 16-bit value and is mapped to word 1.

This command can be used to first reach a minimum number of characters before transmitting the "Read characters" command.

For all protocols, the fill level of the receive buffer is specified in byte 4 as the command result.

Process data assignment for the "Read number of characters received and fill level of the receive buffer" command

Word	(0	1		2		1 2		9	
Byte	0	1	2	3	4	5		18	19	
OUT	00 _{hex}	XX	XX	XX	XX	XX		ХХ	ХХ	
IN	00 _{hex}	Status bits	Number of characters received		Fill level	хх		XX	ХХ	

Fill level							
Byte 4	Protocol						
	Transparent, XON/XOFF End-to-end, Modbus/RTU						
	Number of kbytes free	Number of buffers free					
00 _{hex}	4	3					
01 _{hex}	< 3	2					
02 _{hex}	<2	1					
03 _{hex}	< 1	0					

14.2 "Transmit characters" command

The transmit data located in the process data is stored in the transmit memory. From there the data is transmitted directly via the interface.

A maximum of 17 characters can be transmitted.

Specify the number of characters to be transmitted in the third byte.

If there are characters in the intermediate buffer, these are transmitted first via the selected RS interface.

After the command has been executed successfully, the intermediate buffer is cleared.

Process data assignment for the "Transmit characters" command with 17 characters (C1 - C17)

Word	0				2	2	 ę	9
Byte	0	1	2	3	4	5	 18	19
OUT	10 _{hex}	XX	17 _{dez}	Z1	C2	C3	 C16	C17
IN	10 _{hex}	Status bits	XX	XX	XX	XX	 XX	XX

Reasons for an error bit set:

- Byte 2 (number of characters to be transmitted)
 = 0 or > maximum user data length (17 characters)
- Interface type "Deactivated"
- Data way: data exchange via PDI

14.3 "Store characters temporarily" command

If more than 17 characters are to be transmitted, the transmit data located in the process data is stored in an intermediate buffer which can store up to 340 characters. No characters are transmitted. The "Transmit characters" command is used to transmit temporarily stored data. In this way, blocks of up to 340 characters can be transmitted without a break. They are divided over 20 telegrams with 17 characters each, for example.

Process data assignment for the "Store characters temporarily" command with 17 characters (Z1 - Z17)

Word	0		-	1	2	2	 ę	9
Byte	0	1	2	3	4	5	 18	19
OUT	20 _{hex}	XX	17 _{dez}	Z1	C2	C3	 C16	C17
IN	20 _{hex}	Status bits	XX	XX	XX	XX	 XX	ХХ

Reasons for an error bit set:

- Byte 2 (number of characters to be transmitted)
 = 0 or > maximum user data length (17 characters)
- Not enough space in the intermediate buffer

14.4 "Read characters" command

A maximum of 17 characters can be read.

For block-oriented protocols (end-to-end, Modbus/RTU), the received telegram may be longer than the user data length. In order to indicate that there is more data to be retrieved from the telegram after reading, bit 7 is set in the third receive byte (byte 2).

Process data assignment for the "Read characters" command with 17 characters (C1 - C17)

Word		0		1		2	 ę	9
Byte	0	1	2	3	4	5	 18	19
OUT	30 _{hex}	XX	XX	ХХ	XX	XX	 ХХ	XX
IN	30 _{hex}	Status bits	11 _{hex}	Z1	C2	C3	 C16	C17

Bit 7 in the third input byte (byte 2)

Byte 2, bit 7	Effect	Protocol
0	The characters read are the last ones in the block received.	e.g., end-to- end
1	There are still more characters to be read from the block received.	e.g., end-to- end

Reasons for an error bit set:

- Interface type "Deactivated"
- Data way: data exchange via PDI

14.5 "Read counters" command

This command can be used to read several counters. The counters are used for interface diagnostics.

Process data assignment for the "Read characters" command

Word		0		1	2	2	;	3		4	ļ	5	6	6
Byte	0	1	2	3	4	5	6	7	8	9	10	11	12	13
OUT	3E _{hex}	00 _{hex}	ХХ	ХХ	ХХ	ХХ	ХХ	хх	хх	хх	хх	хх	xx	хх
IN	3E _{hex}	Status bits		r of valid s received	Number of invalid characters received (parity, overrun or framing errors)		chara	ber of acters mitted			Rese	erved		

15 Parameter, diagnostics and information (PDI)

Parameter and diagnostic data as well as other information is transmitted as objects via the PDI channel of the Axioline F station.

The standard and application objects stored in the module are described in the following section.

The following applies to all tables below:

Please refer to the UM EN AXL F SYS INST for an explanation of the object codes and data types.

Abbreviation	Meaning
R	Read
W	Write

i

Every visible string is terminated with a zero terminator (00_{hex}) . The length of a visible string element is therefore one byte larger than the amount of user data.

i

For detailed information on PDI objects, please refer to the UM EN AXL F SYS INST user manual.

16 Standard objects

16.1 Objects for identification (device rating plate)

Index (hex)	Object name	Rights	Meaning	Contents
Manufacture	er			•
0001	VendorName	R	Vendor name	Phoenix Contact
0002	VendorID	R	Vendor ID	00A045
0003	VendorText	R	Vendor text	Components and systems for industrial automation
0012	VendorURL	R	Vendor URL	www.phoenixcontact.com
Module - ge	neral		·	
0004	DeviceFamily	R	Device family	I/O function module
0006	ProductFamily	R	Product family	AXL F
000E	CommProfile	R	Communication profile	633
000F	DeviceProfile	R	Device profile	0010
0011	ProfileVersion	R	Profile version	2011-12-07; Basis - Profil V2.0
0017	Language	R	Language	en-us; English
003A	VersionCount	R	Version counter	e. g., 0007 0001 0001 0001 _{hex}
Module - sp	ecial		·	
0005	Capabilities	R	Capabilities	Energ_0
0007	ProductName	R	Product name	AXL F RS UNI 1H
8000	SerialNo	R	Serial number	e. g., 1234512345
0009	ProductText	R	Product text	1 communication channel
000A	OrderNumber	R	Order No.	2688666
000B	HardwareVersion	R	Hardware version	e. g., 2011-02-04; 00
000C	FirmwareVersion	R	Firmware version	e. g., 2010-06-21; V1.10
000D	PChVersion	R	PDI version	2010-01-08; V1.00
0037	DeviceType	R	Device type	00 00 08 14 00 00 00 C0 _{hex}
Use of the d	evice		·	
0014	Location	R/W	Location	Can be filled out by the user.
0015	EquipmentIdent	R/W	Equipment identifier	Can be filled out by the user.
0016	ApplDeviceAddr	R/W	Application device address	Can be filled out by the user.

16.2 Miscellaneous standard objects

Index (hex)	Object name	Rights	Meaning/contents				
Object descriptions							
0038	ObjDescrReq	R/W	Object description request	See UM EN AXL F SYS INST			
0039	ObjDescr	R	Object description	See UM EN AXL F SYS INST			
Diagnostics	objects						
0018	DiagState	R	Diagnostic state	See below			
0019	ResetDiag	W	Reset diagnostic mesages	See below			
Objects for	process data manag	jement	•	•			
0025	PDIN	R	Input process data	See below			
0026	PDOUT	R	Output process data	See below			
003B	PDIN_Descr	R	Description of the IN process data	See UM EN AXL F SYS INST			
003C	PDOUT_Descr	R	Description of the output process data	See UM EN AXL F SYS INST			

16.3 Diagnostics objects

16.3.1 Diagnostics state (0018_{hex}: DiagState)

This object is used for a structured message of an error.

0018 _{hex} : Diagnostics state (read)							
Subindex	Data type	Length in bytes	Meaning	Contents			
0	Record	21	Diagnostic state	Complete	e diagnostics information		
1	Unsigned 16	2	Error number	0 6553	5 _{dec}		
2	Unsigned 8	1	Priority	00 _{hex}	No error		
				01 _{hex}	Error		
				02 _{hex}	Warning		
				81 _{hex}	Error removed		
				82 _{hex}	Warning eliminated		
3	Unsigned 8	1	Channel/group/module	00 _{hex}	No error		
				01 _{hex}	Channel 1		
				FF _{hex}	entire device		
4	Unsigned 16	2	Error code	See table below			
5	Unsigned 8	1	More follows	00 _{hex}			
6	Visible String	14	Text	See table below			

The message with priority 81_{hex} or 82_{hex} is a one-off, internal message to the bus coupler. The bus coupler transfers this error message to the error mechanisms of the higher-level system.

Error and status of the local diagnostics and status indicators

Subindex	2	3	4		6						
Error	Priority	Channel /group/ module	Error code		/group/		Text	LED			
	hex	hex	hex	dec		D	UI	E1	E2		
No error	00	00	0000	0	Status OK	green ON	ON	OFF	OFF		
Receive buffer full	02	01	7610	30224	Rx-Buf full	green ON	ON	OFF	ON		
Transmit buffer full	02	01	7611	30225	Tx-Buf full	green ON	ON	OFF	ON		
Faulty supply voltage	01	FF	5160	20832	Supply fail	flashing green/ yellow	OFF	ON	ON		
Device error	01	FF	6301	25345	CS FLASH	flashing green/ yellow	ON	OFF	ON		

After all errors have been eliminated, it is automatically reset.

16.3.2 Reset diagnostic mesages (0019_{hex}: ResetDiag)

You can delete the diagnostics memory and acknowledge the diagnostic messages with this object.

0019 _{hex} : Reset diagnostic mesages (read, write)						
Subindex	Data type	Length in bytes	Contents			
			Code (hex)	Meaning		
0	Unsigned 8	1	00	Permit all diagnostic messages		
			02	Delete and acknowledge all diagnostic messages that are not pending		
			06	Delete and acknowledge all diagnostic messages, reset the error counter, and do not permit new diagnostic messages		
			Other	Reserved		

16.4 Objects for process data management

16.4.1 IN process data (0025_{hex}: PDIN)

You can read the IN process data of the module with this object.

The structure corresponds to the representation in the "Process data" section.

0025 _{hex} : IN process data (read)						
Subindex	Data type	Length in bytes	Meaning/contents			
0	Octet string	20	Input process data			

16.4.2 OUT process data (0026_{hex}: PDOUT)

You can read the OUT process data of the module with this object.

The structure corresponds to the representation in the "Process data" section.

0026 _{hex} : OUT process data (read)						
Subindex	Data type	Length in bytes	Meaning/contents			
0	Octet string	20	Output process data			

17 Application objects

Index (hex)	Object name	Rights	Contents
0080	ParaTable	R/W	Parameter table
0081	SerialData	R/W	Serial data
0095	EventCounter	R	Event counter

17.1 Parameter table (0080_{hex}: ParaTable)

Parameterize the module using this object.

In the case of valid parameters, the parameterization is stored in the module permanently.

After resetting, the module works with the last permanently stored data. Upon delivery, the module works with the default data (default settings).

0080 _{hex} : Parameter table (read, write)						
Subindex	Length in bytes					
0	Octet string	16				

Byte	Meaning	Default value
0	Type, protocol	30 _{hex}
1	Baud rate, data width	72 _{hex}
2	1st delimiter	0D _{hex}
3	2nd delimiter	0A _{hex}
4	Error pattern	24 _{hex}
5 7	Uni1 Uni3	00 00 00 _{hex}
8	Reserved	00 _{hex}
9	Data way	00 _{hex}
10	Tv	00 _{hex}
11	Tn	00 _{hex}
12 15	Reserved	00 00 00 00 _{hex}

Element value range

	•
Į	

The options in bold are default settings.

Byte 0 (T/P: interface type/protocol)

7	6	5	4	3	2	1	0
res.	DTR		face pe		Prot	ocol	

DTR: DTR control				
Code (bin) Meaning				
0 Automatic				
1	Can be controlled via process data			

DTR control is only significant for interface type RS-232.

For automatic control, the following applies in the transparent protocol and in the XON/XOFF protocol:

- DTR = logic 0 There are a maximum of 15 characters free in the receive buffer.
- DTR = logic 1 There are more than 15 characters free in the receive buffer.

For control via process data, the DTR signal can be controlled directly with bit 7 (DTR).

Interface type							
Code (bin) Meaning							
00	RS-232						
01	RS-485						
10	RS-422						
11	Deactivated						

Select an RS-xxx interface type. With the "Deactivated" default setting, no data is transmitted or received. When using the default setting, an error message is generated and the error bit is set.

Protocol						
Code (hex) Meaning						
0	Transparent					
1	End-to-end					
2	XON/XOFF					
3	Modbus/RTU					
Other	Reserved					

Byte 1 (baud rate/data width)

Baud rate					
Code (hex)	Wert (baud)				
0	110				
1	300				
2	600				
3	1200				
4	1800				
5	2400				
6	4800				
7	9600				
8	15625				
9	19200				
A	38400				
В	57600				
С	115200				
D	230400				
E	250000				
F	Direct (Uni1 3)				

1

The specified baud rates of 110 baud to 250000 baud are adequate for most applications. However, you can freely choose the baud rate by direct programming. For this, use the $0F_{hex}$ baud rate code.

Data width						
Code		Meaning				
(hex)	Data bits	Parity	Stop bits			
0	7	Even	1			
1	7	Odd	1			
2	8	Even	1			
3	8	Odd	1			
4	8	Without	1			
5	7	Without	1			
6	7	Even	2			
7	7	Odd	2			
8	8	Even	2			
9	8	Odd	2			
А	8	Without	2			
В	7	Without	2			
С	8	Constantly at 0	1			
D	8	Constantly at 1	1			
E	6	without	1			
F	Directly (Uni1)					

The specified combinations of data width, parity and stop bits are adequate for most applications. However, you can freely choose the combination by direct programming. For this, use the $0F_{hex}$ data width code.

Byte 2 and 3 (1st del, 2nd del: 1st and 2nd delimiters)

The 1st delimiter and 2nd delimiter contain the end characters for the end-to-end and dual buffer protocols.

When selecting the end-to-end protocol, the two delimiters can be adjusted.

Default settings:

i

Delimiter	Default value	ASCII character
1st del	0D _{hex}	CR = carriage return
2nd del	0A _{hex}	LF = line feed

Byte 4 (ErrP: error pattern)

The error pattern contains the character that is written to the FIFO if a character was received with errors (e.g., in the event of a parity error).

The error pattern is used for the following protocols:

- Transparent
- End-to-end
- XON/XOFF

Error pattern							
Code (hex) Meaning							
24	\$						
XX	Any character						
00	If a character is received with an error, no error pattern is stored.						
FF	The invalid character is stored instead of the error pattern.						

Byte 5 ... 7 (Uni1 ... Uni3: universal byte 1 ... 3)

These bytes can be used as universal bytes for direct specification of the baud rate or the data width.

Byte 5						Byte 6			Byte 7				
7	6	5	4	3	2	1	0	7		0	7		0
	D	ata	wid	th		Baud rate							

Direct specification of the data width

If the provided combinations of data width, parity and stop bits are inadequate, they can be directly specified. Use the Uni1 byte. Bit 1 and bit 0 are reserved.

7	6	5	4	3 2		1	0
Pa	rity	Enable	Stop	Data bits		res.	res.
		parity	bits				

Parity		
Code (bin) Meaning		
00	Odd	
01	Even	
10	Constantly at 1	
11	Constantly at 0	

Enable parity	
Code (bin)	Meaning
0	Disable
1	Enable

Stop bits	
Code (bin)	Meaning
0	1 stop bit
1	2 stop bits

Data bits	
Code (bin)	Meaning
00	5 bits
01	6 bits
10	7 bits
11	8 bits

Direct specification of baud rate

If the provided baud rates do not correspond to the desired baud rate, the baud rate can be directly specified. For this, write the desired baud rate on the Uni1 to Uni3 fields in the form of a numeric value. Transfer is right-aligned. However, only the 2 lower bits of Uni1 are permitted.

The maximum value is 18 bits. The maximum value = $3FFFF_{hex}$ which corresponds to 262143 baud.

Example for direct specification of the baud rate:

- Baud rate: 100000 baud
- 100000_{dez} = 01 86 A0_{hex}

Byte	Meaning Assignment	
0	Type, protocol	xx _{hex}
1	Baud rate, data width	Fx _{hex}
2	1st delimiter	00 _{hex}
3	2nd delimiter	00 _{hex}
4	Error pattern	xx _{hex}
5 7	Uni1 Uni3	01 86 A0 _{hex}
8	Reserved	00 _{hex}
9	Data way	00 _{hex}
10	Tv	xx _{hex}
11	Tn	xx _{hex}
12 15	Reserved	00 00 00 00 _{hex}

Byte 9 (data way)

Here you can control the path used to exchange data with the selected interface.

Data way	
Code (hex)	Meaning
00 _{hex}	Data exchange via process data
01 _{hex}	Data exchange via PDI

Data exchange via process data	340 bytes per buffer
	A maximum of 17 characters can be transmitted together using the "Transmit characters" command. If you want to transmit more characters, use the "Store characters temporarily" command.
Data exchange via PDI	245 bytes per buffer

Byte 10 and 11 (Tv, Tn: lead time, lag time)

These two times are used for the RS-232 protocol

Tv	Lead time
Tn	Lag time

The times are specified with a resolution of 1 ms. This allows for waiting times of 1 ms \dots 255 ms.

When transmitting data via RS-232 the RTS signal is set. If Tv does not equal 0, transmission only starts after this time has elapsed. After all the data is sent and Tn does not equal 0, the RTS signal is only set to LOW after this time has elapsed.

17.2 Serial data (0081_{hex}: SerialData)

If you have parameterized data exchange via PDI in the "Data way" parameter in the parameter table, this object can be used to read and write the serial data.

0081 _{hex} : SerialD	ata (read, write)		
Subindex	Data type	Length in bytes	Contents
0	Var	0 245	Serial data

On write access, the user data of this service is transmitted directly via the interface.

On read access, the user data corresponds to the received characters.

The maximum user data length is 245 bytes.

In the case of the Modbus/RTU protocol, on write access after transmitting the user data, two bytes are appended for a checksum determined by the module.

On read access, the checksum is no longer present when the user data is received.

Error	Error class (hex)	Error code (hex)	Additional Code (hex)
"Data way" parameter = 00 _{hex} (data exchange via process data)	8	0	0022
"Interface" parameter = 3 _{hex} (deactivated)	8	0	0122
On write access, there is not enough space in the transmit memory	8	0	0222
On read/write access, the previous read/write access has not yet been completed	8	0	0322
On write access, the length is equal to 0 or greater than 245	6	5	0000

17.3 Event counter (0095_{hex}: EventCounter)

You can read multiple counters which are used for interface diagnostics with this object.

0095 _{hex} : EventCounter (read)		
Subindex	bindex Data type Length in	
		bytes
0	Octet string	12

Word	Meaning
1	Number of valid characters received
2	Number of invalid characters received (parity, overrun or framing errors)
3	Number of characters transmitted
4 6	Reserved

18 Device descriptions

The device is described in the device description files. The device descriptions for controllers from Phoenix Contact are included in PC Worx and the corresponding service packs.

The device description files for other systems are available for download at phoenixcontact.net/products in the download area of the bus coupler used.