2-in-1 PFC and Inverter Intelligent Power Module (IPM), 600 V, 30 A

The STK5MFU3C1A-E is a fully-integrated PFC and inverter power stage consisting of a high-voltage driver, six motor drive IGBT's, one PFC IGBT, one PFC rectifier and a thermistor, suitable for driving permanent magnet synchronous (PMSM) motors, brushless-DC (BLDC) motors and AC asynchronous motors.

The IGBT's are configured in a 3-phase bridge with common emitter connections for the lower legs.

An internal comparator and reference connected to the over-current protection circuit allows the designer to set individual over-current protection levels for the PFC and the inverter stages. Additionally, the power stage has a full range of protection functions including crossconduction protection, external shutdown and under-voltage lockout functions.

Features

- Simple thermal design with PFC and inverter stage in one package.
- PFC operating frequency up to 40 kHz
- Cross-conduction protection
- Adjustable over-current protection level
- Integrated bootstrap diodes and resistors

Certification

• UL1557 (File Number : E339285)

Typical Applications

- Heat Pumps
- Home Appliances
- Industrial Fans
- Industrial Pumps

Figure 1. Functional Diagram

ON Semiconductor®

www.onsemi.com

PACKAGE PICTURE

SIP28 78x31.1

- A = Year
- B = Month
- C = Production Site
- DD = Factory Lot Code
- Device marking is on package top side

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
STK5MFU3C1A-E	SIP28 78x31.1 (Pb-Free)	280 / Box

Figure 2. Application Schematic

Figure 3. Simplified Block Diagram

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	PFCL	PFC Inductor Connection to IGBT and Rectifier node
3	VBW	High Side Floating Supply voltage for W phase
4	W	V phase output. Internally connected to W phase high side driver ground
6	VBV	High Side Floating Supply voltage for V phase
7	V	V phase output. Internally connected to V phase high side driver ground
9	VBU	High Side Floating Supply voltage for U phase
10	U	U phase output. Internally connected to U phase high side driver ground
12	VP1	Positive PFC Output Voltage
13	VP2	Positive Inverter Output Voltage
15	HVGND	Negative PFC Output Voltage
16	N	Low Side Emitter Connection
17	HINU	Logic Input High Side Gate Driver - Phase U
18	HINV	Logic Input High Side Gate Driver - Phase V
19	HINW	Logic Input High Side Gate Driver - Phase W
20	LINU	Logic Input Low Side Gate Driver - Phase U
21	LINV	Logic Input Low Side Gate Driver - Phase V
22	LINW	Logic Input Low Side Gate Driver – Phase W
23	PFCIN	Logic Input PFC Gate Driver
24	FAULT / TH	FAULT output and thermistor output
25	PTRIP	Current protection pin for PFC
26	ITRIP	Current protection pin for inverter
27	VDD	+15 V Main Supply
28	GND	Negative Main Supply

Note : Pins 2, 5, 8, 11 and 14 are not present

ABSOLUTE MAXIMUM RATINGS at Tc = 25°C (Notes 1, 2)

Rating		Symbol	Conditions	Value	Unit
PFC Sec	ction				
	Collector-emitter voltage	V _{CE}	PFCL to HVGND	600	V
Repetitive peak collector current		ICP	Duty cycle 10%, pulse width 1ms	150	Α
PFC IGBT	Collector ourrent	10		53	Α
	Collector current	IC	Tc = 100°C	26	Α
	Maximum power dissipation	PC		96	W
	Diode reverse voltage	VRM	VP1 to PFCL	600	V
	Repetitive peak forward current	IFP1	Duty cycle 10%, pulse width 1ms	90	Α
PFC Diode	Diada famuand aumant			30	Α
2.000	Diode forward current	IF1	Tc = 100°C	18	Α
	Maximum power dissipation	PD1		65	W
Anti-	Repetitive peak forward current	IFP2	Duty cycle 10%, pulse width 1ms	11	Α
parallel	Diode forward current	IF2		3	Α
Diode	Maximum power dissipation	PD2		5	W
Maximur	m AC input voltage	VAC	Single-phase Full-rectified	264	V
Maximum output voltage		Vo	In the Application Circuit	450	V
Input AC	C current (steady state)	lin	(VAC = 200 V)	33	Arms
Inverter	Section			•	
Supply voltage		VCC VP2 to N surge < 500 V (Note 3)		450	V
Collector	r-emitter voltage	V _{CE} max	VP2 to U, V, W or U, V, W to N	600	V
			VP2, U, V, W, N terminal current	±30	Α
Output c	current	lo	VP2, U, V, W, N terminal current at Tc = 100°C	±15	Α
Output p	beak current	Іор	VP, U, V, W, N terminal current, pulse width 1 ms	±60	A
Maximur	m power dissipation	Pd	IGBT per 1 channel	65	W
Gate dri	iver section				
Gate driv	ver supply voltage	V _{BS}	VBU to U, VBV to V, VBW to W, VDD to GND (Note 4)	-0.3 to +20.0	V
Input sig	inal voltage	VIN	HINU, HÌNV, HÍNW, LINU, LINV, LINW, PFCIN	-0.3 to V _{DD}	V
FAULT t	terminal voltage	VFAULT	FAULT terminal	-0.3 to V _{DD}	V
ITRIP te	rminal voltage	VITRIP	ITRIP terminal	-0.3 to +10.0	V
PFCTRI	P terminal voltage	VPTRIP	PTRIP terminal	-1.5 to 2.0	V
Intellige	ent Power Module				
Junction	temperature	Tj	IGBT, FRD, Gate driver IC	150	°C
Storage	temperature	Tstg		-40 to +125	°C
Operatin	ng case temperature	Тс	IPM case temperature	-20 to +100	°C
Tightenii	ng torque	MT	Case mounting screws	1.17	Nm
		+	50.0 1 1 1	ł	t

(Note 5) Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device 1. functionality should not be assumed, damage may occur and reliability may be affected. Refer to ELECTRICAL CHARACTERISTICS, RECOMMENDED OPERATING RANGES and/or APPLICATION INFORMATION for

50 Hz sine wave AC 1 minute

2000

Vrms

2. Safe Operating parameters.

3. This surge voltage developed by the switching operation due to the wiring inductance between VP2 and N terminal.

Vis

4. V_{BS} = VBU to U, VBV to V, VBW to W

5. Test conditions : AC 2500 V, 1 second

Isolation voltage

RECOMMENDED OPERATING RANGES (Note 6)

Rating	Symbol	Conditions	Min	Тур	Max	Unit
Supply voltage	V _{CC}	VP1 to HVGND, VP2 to N	0	280	400	V
Cata driver europhy voltage	VBS	VBU to U, VBV to V, VBW to W	12.5	15	17.5	V
Gate driver supply voltage	V _{DD}	V _{DD} to GND	13.5	15	16.5	V
ON-state input voltage	VIN(ON)	HINU, HINV, HINW, LINU, LINV, LINW,	2.5	-	5.0	V
OFF-state input voltage	VIN(OFF)	PFCIN	0	-	0.3	V
PWM frequency(PFC)	fPWMp		1	-	40	kHz
PWM frequency(Inverter)	fPWMi		1	-	20	kHz
Dead time	DT	Turn-off to Turn-on (external)	1.5	-	-	μs
Allowable input pulse width	PWIN	ON and OFF	1	-	-	μs
Tightening torque		'M4' type screw	0.79	-	1.17	Nm

 Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

ELECTRICAL CHARACTERISTICS (Note 7)

at Tc = 25°C, V_{BIAS} (V_{BS}, V_{DD}) = 15 V unless otherwise noted.

Parameter	Test Conditions	Symbol	Min	Тур	Мах	Unit
PFC Section	·			•		•
Collector-emitter cut-off current $V_{CE} = 600 V$		ICE	-	-	0.2	mA
Reverse leakage current (PFC Diode)	VR = 600 V	IR	-	-	0.1	mA
	IC = 40 A, Tj = 25°C	Vo=(oot)	-	1.6	2.2	V
Collector-emitter saturation voltage	IC = 20 A, Tj = 100°C	V _{CE} (sat)	-	1.3	-	V
	IF = 40 A, Tj = 25°C		-	2.4	3.4	V
Diode forward voltage (PFC Diode)	IF = 20 A, Tj = 100°C	VF1	-	1.5	-	
Diode forward voltage (Anti-parallel Diode)	IF = 5 A, Tj = 25°C	VF2	-	1.5	2.4	V
	IGBT	θj-c(T)	-	-	1.3	°C/W
Junction to case thermal resistance	PFC Diode	θj-c(D)	-	-	1.9	°C/W
Switching characteristics				•		
		tON	0.2	0.4	0.6	μs
Switching time	IC = 40 A, VP = 300 V, Tj = 25°C	tOFF	0.2	0.5	0.7	μs
Diode reverse recovery time		trr	-	30	-	ns
Inverter section				•		
Collector-emitter leakage current	V _{CE} = 600 V	ICE	-	-	0.1	mA
Bootstrap diode reverse current	VR(DB) = 600 V	IR(BD)	-	-	0.1	mA
	IC = 30 A, Tj = 25°C	V _{CE} (SAT)	-	1.8	2.5	V
Collector to emitter saturation voltage	IC = 15 A, Tj = 100°C	VCE(SAT)	-	1.5	-	V
Diada famuand valtana	IF = 30 A, Tj = 25°C	VF	-	2.0	2.7	V
Diode forward voltage	IF = 15 A, Tj = 100°C		-	1.6	-	V
	IGBT	θj-c(T)	-	-	1.9	°C/W
Junction to case thermal resistance	FRD	θj-c(D)	-	-	2.9	°C/W
Switching time	$ C = 30 \text{ A } _{C = 200 \text{ V}}$ $T_{i} = 2500 \text{ C}$	t _{on}	0.3	0.6	1.0	μs
Switching time	IC = 30 A, V _{CC} = 300 V, Tj = 25°C	t _{OFF}	0.5	1.1	1.5	μs
Reverse bias safe operating area	IC = 60 A, V _{CE} = 450 V	RBSOA	Full Square		e	
Short circuit safe operating area	V _{CE} = 400 V, Tj = 100°C	SCSOA	4	-	-	μs
Allowable offset voltage slew rate	U, V, W to N	dv/dt	-50	-	50	V/ns
		1		1	1	

 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

ELECTRICAL CHARACTERISTICS (Note 8)

at Tc = 25°C

Parameter	Test Conditions Symb		Min	Тур	Мах	Unit
Driver Section						
	V _{BS} = 15 V (Note 4), per driver	ID	-	0.08	0.4	mA
Gate driver consumption current	V _{DD} = 15V, total	ID	-	0.85	2.4	mA
High level Input voltage	HINU, HINV, HINW, LINU, LINV,	VIN H	2.5	-	-	V
Low level Input voltage	LINW, PFCIN to GND	VIN L	-	-	0.8	V
Logic 1 input current	VIN = +3.3 V	I _{IN+}	-	100	143	μA
Logic 0 input current	VIN = 0 V	I _{IN-}	-	-	2	μA
Bootstrap diode forward voltage	IF = 0.1 A	VF(DB)	-	0.8	-	V
	Resistor value for common boot charge line	RBC	-	22	-	Ω
Bootstrap circuit resistance	Resister values for separate boot charge lines	RBS	-	33	-	Ω
FAULT terminal sink current	FAULT : ON / VFAULT = 0.1 V	loSD	-	2	-	mA
FAULT clearance delay time		FLTCLR	1.0	1.85	2.7	ms
ITRIP threshold voltage	ITRIP to GND	VITRIP	0.44	0.49	0.54	V
PTRIP threshold voltage	PTRIP to GND	VPTRIP	-0.37	-0.31	-0.25	V
V _{DD} and V _{BS} supply undervoltage positive going input threshold		V _{CCUV+} V _{BSUV+}	10.5	11.1	11.7	V
V _{DD} and V _{BS} supply undervoltage negative going input threshold		V _{CCUV-} V _{BSUV-}	10.3	10.9	11.5	V
V_{DD} and V_{BS} supply undervoltage lockout hysteresis		V _{CCUVH} V _{BSUVH}	0.14	0.2	-	V

 Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS PFC SECTION

Figure 4. V_{CE} versus I_C for different temperatures (V_{DD} = 15 V)

Figure 6. E_{ON} versus I_C for different temperatures

Figure 8. Thermal Impedance Plot

Figure 9. Turn-on waveform Tj = 100°C, V_{CC}= 300 V

Figure 5. V_F versus I_F for different temperatures

Figure 7. E_{OFF} versus I_C for different temperatures

TYPICAL CHARACTERISTICS INV SECTION

Figure 11. V_{CE} versus I_C for different temperatures (V_{DD} = 15 V)

Figure 13. E_{ON} versus I_C for different temperatures

Figure 15. Thermal Impedance Plot

Figure 17. Turn-on waveform Tj = 100°C, V_{CC} = 300 V

Figure 12. V_F versus I_F for different temperatures

Figure 14. EOFF versus Ic for different temperatures

Figure 18. Turn-off waveform Tj = 100°C, V_{CC} = 300 V

APPLICATIONS INFORMATION

Input / Output Timing Chart

Figure 18. Input / Output Timing Chart

Notes

- 9. This section of the timing diagram shows the effect of cross-conduction prevention.
- This section of the timing diagram shows that when the voltage on V_{DD} decreases sufficiently all gate output signals will go low, switching off all six IGBTs. When the voltage on V_{DD} rises sufficiently, normal operation will resume.
- This section shows that when the bootstrap voltage on VBU (VBV, VBW) drops, the corresponding high side output U (V, W) is switched off. When the voltage on VBU (VBV, VBW) rises sufficiently, normal operation will resume.
 This section shows that when the voltage on ITRIP exceeds the threshold, all IGBT's are turned off. Normal operation resumes
- 12. This section shows that when the voltage on ITRIP exceeds the threshold, all IGBT's are turned off. Normal operation resumes later after the over-current condition is removed. Similarly, when the voltage on PTRIP exceeds the threshold, all IGBT's are turned off. Normal operation resumes later after the over-current condition is removed.

Input / Output Logic Table

INPUT	INPUT			OUTPUT			
HIN	LIN	ITRIP	PTRIP	High side IGBT	Low side IGBT	U,V,W	FAULT
н	L	L	L	ON	OFF	VP	OFF
L	Н	L	L	OFF	ON	N	OFF
L	L	L	L	OFF	OFF	High Impedance	OFF
н	н	L	L	OFF	OFF	High Impedance	OFF
х	х	н	х	OFF	OFF	High Impedance	ON
х	х	х	Н	OFF	OFF	High Impedance	ON

Thermistor characteristics

Parameter	Symbol Condition		Min	Тур	Max	Unit
Resistance	R ₂₅	Tth = 25°C	99	100	101	kΩ
	R ₁₀₀	Tth = 100°C	5.18	5.38	5.60	kΩ
B-Constant (25 to 50°C)	В		4208	4250	4293	к
Temperature Range			-40		+125	°C

Figure 19. Thermistor Resistance versus Thermistor Temperature

Figure 20. Thermistor Voltage versus Thermistor Temperature Conditions: RTH = 39 k Ω , pull-up voltage 5.0 V (see Figure 2)

Signal inputs

Each signal input has a pull-down resistor. An additional pull-down resistor of between 2.2 k Ω and 3.3 k Ω is recommended on each input to improve noise immunity.

FAULT/ TH pin

The FAULT pin is connected to an open-drain FAULT output requiring a pull-up resistor. If the pull-up voltage is 5 V, use a pull-up resistor with a value of 6.8 k Ω or higher. If the pull-up voltage is 15 V, use a pull-up resistor with a value of 20 k Ω or higher. The FAULT output is triggered if there is a V_{DD} undervoltage or an overcurrent condition on either the PFC or inverter stages.

The FAULT/ TH pin is also connected to a grounded thermistor. Thermal characteristics are shown in this datasheet for a pull up value of 39 k Ω .

Undervoltage protection

If VDD goes below the VDD supply undervoltage lockout falling threshold, the FAULT output is switched on. The FAULT output stays on until VDD rises above the VDD supply undervoltage lockout rising threshold. The hysteresis is approximately 200 mV.

Overcurrent protection

An over-current condition is detected if the voltage on the ITRIP/PTRIP pin is larger than the reference voltage. There is a blanking time of typically 350 ns to improve noise immunity. After a shutdown propagation delay of typically 0.6 μ s, the FAULT output is switched on.

The over-current protection threshold should be set to be equal or lower to 2 times the module rated current (IO).

An additional fuse is recommended to protect against system level or abnormal over-current fault conditions.

Capacitors on High Voltage and $V_{\mbox{DD}}$ supplies

Both the high voltage and V_{DD} supplies require an electrolytic capacitor and an additional high frequency capacitor. The recommended value of the high frequency capacitor is between 100 nF and 10 μ F.

Minimum input pulse width

When input pulse width is less than $1\mu s$, an output may not react to the pulse. (Both ON signal and OFF signal)

Calculation of bootstrap capacitor value

The bootstrap capacitor value CB is calculated using the following approach. The following parameters influence the choice of bootstrap capacitor :

- VBS: Bootstrap power supply. 15 V is recommended.
- QG: Total gate charge of IGBT at VBS = 15 V. 266 nC
- UVLO: Falling threshold for UVLO. Specified as 12 V.
- IDMAX: High side drive power dissipation. Specified as 0.4 mA
- TONMAX: Maximum ON pulse width of high side IGBT.

Capacitance calculation formula:

$$CB = (QG + IDMAX * TONMAX) / (VBS - UVLO)$$

CB is recommended to be approximately 3 times the value calculated above. The recommended value of CB is in the range of 1 to 47 μ F, however, the value needs to be verified prior to production. When not using the bootstrap circuit, each high side driver power supply requires an external independent power supply. If the capacitors selected are 47 μ F or more, a series resistor of 20 Ω should be added in series with the three capacitors to limit the current. The resistors should be inserted between VBU and U, VBV and V and VBW and W.

Figure 21. Bootstrap capacitance versus Tonmax

Mounting Instructions

Item	Recommended Condition
Pitch	70.0 ±0.1 mm (Please refer to Package Outline Diagram)
Screw	diameter : M4 Bind machine screw, Truss machine screw, Pan machine screw
Washer	Plane washer The size is D : 9 mm, d : 4.3 mm and t : 0.8 mm JIS B 1256
Heat sink	Material: Aluminum or Copper Warpage (the surface that contacts IPM) : -50 to 100 μm Screw holes must be countersunk. No contamination on the heat sink surface that contacts IPM.
Torque	Temporary tightening : 20 to 30 % of final tightening on first screw Temporary tightening : 20 to 30 % of final tightening on second screw Final tightening : 0.79 to 1.17 Nm on first screw Final tightening : 0.79 to 1.17 Nm on second screw
Grease	Silicone grease. Thickness : 100 to 200 μm Uniformly apply silicone grease to whole back. Thermal foils are only recommended after careful evaluation. Thickness, stiffness and compressibility parameters have a strong influence on performance.

Figure 22. Module Mounting details: components; washer drawing; need for even spreading of thermal grease

TEST CIRCUITS

■ I_{CE}, IR(DB)

	U+	V+	W+	U-	V-	W-	PFC IGBT
А	13	13	13	10	7	4	1
В	10	7	4	16	16	16	15

U+,V+,W+ : High side phase U-,V-,W- : Low side phase

	U(DB)	V(DB)	W(DB)	PFC Diode
А	9	6	3	12
В	28	28	28	1

Figure 23. Test Circuit for ICE

■ V_{CE}(sat) (Test by pulse)

	U+	V+	W+	U-	V-	W-	PFC IGBT
А	13	13	13	10	7	4	1
В	10	7	4	16	16	16	15
С	17	18	19	20	21	22	23

Figure 24. Test circuit for $V_{CE(SAT)}$

■ V_F (Test by pulse)

	U+	V+	W+	U-	V-	W-
А	13	13	13	10	7	4
В	10	7	4	16	16	16

	U(DB)	V(DB)	W(DB)	PFC Diode	Anti-parallel Diode
А	9	6	3	12	1
В	28	28	28	1	15

∎ ID

	VBS U+	VBS V+	VBS W+	V _{DD}
А	9	6	3	27
В	10	7	4	28

Figure 25. Test circuit for V_{F}

Figure 26. Test circuit for ID

■ VITRIP, VPTRIP

	VITRIP(U-)	VPTRIP
А	10	1
В	16	15
С	20	23
D	26	25

Figure 27. Test circuit for ITRIP.PTRIP

Switching time (The circuit is a representative example of the lower side U phase.)

	U+	V+	W+	U-	V-	W-	PFC IGBT
А	13	13	13	13	13	13	12
В	16	16	16	16	16	16	15
С	10	7	4	13	13	13	12
D	16	16	16	10	7	4	1
E	17	18	19	20	21	22	23

Figure 28. Test circuit for switching time

Package Dimensions

unit : mm

SIP28 78x31.1 CASE 127DG **ISSUE A**

NOTES:

- DIMENSIONING AND TOLERANCING PER. 1. ASME Y14, 5M, 2009,
- CONTROLLING DIMENSION: MILLIMETERS 2.
- DIMENSIONS & AND & APPLY TO THE PLATED LEAD З. AND ARE MEASURED BETWEEN 1.00 AND 2.00 FROM THE LEAD TIP.
- PACKAGE IS MISSING PINS: 2, 5, 8, 11, AND 14. 4.
- BASE MUST BE FLAT WITHIN 0. 15 (CONVEX).

END VIEW

	MILLIMETERS			
DIM	MIN.	NOM.	MAX.	
А	5.50	6.00	6.50	
A 1	3.00	3.50	4.00	
A 2		6.70 REF	r	
b	0.50	0.60	0.80	
с	0.40	0.50	0.70	
D	77.50	78.00	78.50	
D 1	69.50	70.00	70.50	
D 2	57.50	58.00	58.50	
D 3	1.50	2.00	2.50	
Е	30.60	31.10	31.60	
E 1	15.50	16.00	16.50	
Е2	0.00	0.50	1.00	
е	2.00 BSC			
F	4.10	4.60	5.10	
L	18.50	19.00	19.50	
L1	4.50	5.00	5.50	

ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for unauthorized application, Buyer shall implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.