MOSFET - Single, P-Channel, Small Signal, SOT-883 (XDFN3), 1.0 x 0.6 x 0.4 mm -20 V, -281 mA #### **Features** - Single P-Channel MOSFET - Ultra Low Profile SOT–883 (XDFN3) 1.0 x 0.6 x 0.4 mm for Extremely Thin Environments Such as Portable Electronics - Low R_{DS(on)} Solution in the Ultra Small 1.0 x 0.6 mm Package - 1.5 V Gate Drive - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant ## **Applications** - High Side Switch - High Speed Interfacing - Optimized for Power Management in Ultra Portable Solutions ## MAXIMUM RATINGS (T_J = 25°C unless otherwise stated) | Parameter | | | Symbol | Value | Unit | | |---|--|-----------------------|-----------------------------------|---------------|------|--| | Drain-to-Source Voltage | | | V_{DSS} | -20 | V | | | Gate-to-Source Voltage | | | V_{GS} | ±8 | V | | | Continuous Drain | on the same of | | I _D | -281 | mA | | | Current (Note 1) | State | T _A = 85°C | | -202 | | | | | t ≤ 5 s | T _A = 25°C | | -332 | | | | Power Dissipation (Note 1) | Steady
State | T _A = 25°C | P _D | 155 | mW | | | | t ≤ 5 s | | | 218 | | | | Pulsed Drain
Current | t _p = 10 μs | | I _{DM} | -842 | mA | | | Operating Junction and Storage
Temperature | | | T _J , T _{STG} | –55 to
150 | °C | | | Source Current (Body Diode) (Note 2) | | | I _S | -130 | mA | | | Lead Temperature for Soldering Purposes (1/8" from case for 10 s) | | | TL | 260 | °C | | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. - Surface-mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu. - 2. Pulse Test: pulse width \leq 300 μ s, duty cycle \leq 2% ## ON Semiconductor® #### http://onsemi.com | V _{(BR)DSS} | R _{DS(on)} MAX | I _D Max | |----------------------|-------------------------|--------------------| | | 1.3 Ω @ -4.5 V | | | | 2.0 Ω @ -2.5 V | –281 mA | | –20 V | 3.4 Ω @ -1.8 V | -201 IIIA | | | 4.5 Ω @ -1.5 V | | #### **P-CHANNEL MOSFET** #### MARKING DIAGRAM SOT-883 (XDFN3) CASE 506CB 65 = Specific Device Code M = Date Code #### ORDERING INFORMATION | Device | Package | Shipping [†] | |---------------|----------------------|-----------------------| | NTNS3A65PZT5G | SOT-883
(Pb-Free) | 8000 / Tape &
Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D. ## THERMAL RESISTANCE RATINGS | Parameter | Symbol | Max | Unit | |---|-----------------|-----|------| | Junction-to-Ambient - Steady State (Note 3) | $R_{\theta JA}$ | 804 | °C/W | | Junction-to-Ambient - t ≤ 5 s (Note 3) | $R_{\theta JA}$ | 574 | C/VV | ^{3.} Surface–mounted on FR4 board using the minimum recommended pad size, or 2 mm², 1 oz Cu. ## **ELECTRICAL CHARACTERISTICS** ($T_J = 25^{\circ}C$ unless otherwise stated) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|-------------------------------------|--|-----------------------|------|------|------|-------| | OFF CHARACTERISTICS | • | | | | | | | | Drain-to-Source Breakdown Voltage | V _{(BR)DSS} | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | | -20 | | | V | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V _{(BR)DSS} / | I _D = -250 μA, ref to 25°C | | | 11 | | mV/°C | | Zero Gate Voltage Drain Current | I _{DSS} | $V_{GS} = 0 \text{ V},$
$V_{DS} = -20 \text{ V}$ | T _J = 25°C | | | -1 | μΑ | | Gate-to-Source Leakage Current | I _{GSS} | V _{DS} = 0 V, V _{GS} = ± | 5 V | | | ±10 | μΑ | | ON CHARACTERISTICS (Note 4) | | | | | | | | | Gate Threshold Voltage | V _{GS(TH)} | $V_{GS} = V_{DS}, I_D = -250 \mu\text{A}$ | | -0.4 | | -1.0 | V | | Negative Threshold Temperature
Coefficient | V _{GS(TH)} /T _J | | | | 2.2 | | mV/°C | | Drain-to-Source On Resistance | | $V_{GS} = -4.5 \text{ V}, I_D = -200 \text{ mA}$ | | | 0.9 | 1.3 | Ω | | | | $V_{GS} = -2.5 \text{ V}, I_D = -100 \text{ mA}$ | | | 1.3 | 2.0 | | | | R _{DS(on)} | $V_{GS} = -1.8 \text{ V}, I_D = -50 \text{ mA}$ | | | 1.8 | 3.4 | | | | | V_{GS} = -1.5 V, I_D = -10 mA | | | 2.3 | 4.5 | Ω | | Forward Transconductance | 9FS | $V_{DS} = -5 \text{ V}, I_D = -200 \text{ mA}$ | | | 0.58 | | S | | Source-Drain Diode Voltage | V_{SD} | $V_{GS} = 0 \text{ V}, I_{S} = -100 \text{ mA}$ | | | -0.8 | -1.2 | V | | CHARGES & CAPACITANCES | | | | | | | | | Input Capacitance | C _{ISS} | | | | 44 | | | | Output Capacitance | C _{OSS} | $V_{GS} = 0 \text{ V, freq} = 1 \text{ MHz, } V_{DS} = -10 \text{ V}$ | | | 6.7 | | pF | | Reverse Transfer Capacitance | C _{RSS} | | | | 5.5 | | | | Total Gate Charge | Q _{G(TOT)} | $V_{GS} = -4.5 \text{ V}, V_{DS} = -10 \text{ V};$ $I_{D} = -200 \text{ mA}$ | | | 1.1 | | | | Threshold Gate Charge | Q _{G(TH)} | | | | 0.1 | | nC | | Gate-to-Source Charge | Q_{GS} | | | | 0.2 | | | | Gate-to-Drain Charge | Q_{GD} | | | | 0.2 | | | | SWITCHING CHARACTERISTICS, V _{GS} | = 4.5 V (Note 4 | 1) | | | | | | | Turn-On Delay Time | t _{d(ON)} | V_{GS} = -4.5 V, V_{DD} = -10 V, I_{D} = -200 mA, R_{G} = 2 Ω | | | 18 | | | | Rise Time | t _r | | | | 32 | |] | | Turn-Off Delay Time | t _{d(OFF)} | | | | 178 | | ns | | Fall Time | t _f | | | | 84 | | 1 | ^{4.} Switching characteristics are independent of operating junction temperatures #### **TYPICAL CHARACTERISTICS** Figure 1. On-Region Characteristics Figure 2. Transfer Characteristics Figure 3. On-Resistance vs. Gate Voltage Figure 4. On-Resistance vs. Drain Current and Gate Voltage Figure 5. On–Resistance Variation with Temperature Figure 6. Drain-to-Source Leakage Current vs. Voltage #### **TYPICAL CHARACTERISTICS** -V_{DS}, DRAIN-TO-SOURCE VOLTAGE (V) Figure 12. Maximum Rated Forward Biased **Safe Operating Area** T.J, STARTING JUNCTION TEMPERATURE (°C) Figure 11. Threshold Voltage ## **TYPICAL CHARACTERISTICS** Figure 13. Thermal Response #### PACKAGE DIMENSIONS #### SOT-883 (XDFN3), 1.0x0.6, 0.35P CASE 506CB **ISSUE A** #### NOTES - 1. DIMENSIONING AND TOLERANCING PER - ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. - EXPOSED COPPER ALLOWED AS SHOWN. | | MILLIMETERS | | | | |-----|-------------|-------|--|--| | DIM | MIN | MAX | | | | Α | 0.340 | 0.440 | | | | A1 | 0.000 | 0.030 | | | | b | 0.075 | 0.200 | | | | D | 0.950 | 1.075 | | | | D2 | 0.620 BSC | | | | | е | 0.350 BSC | | | | | E | 0.550 | 0.675 | | | | E2 | 0.425 | 0.550 | | | | L | 0.170 | 0.300 | | | #### **RECOMMENDED SOLDER FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and (III) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all Claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ## **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative