Dual Bias Resistor Transistors

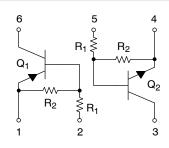
NPN and PNP Silicon Surface Mount **Transistors with Monolithic Bias Resistor Network**

The Bias Resistor Transistor (BRT) contains a single transistor with a monolithic bias network consisting of two resistors; a series base resistor and a base-emitter resistor. These digital transistors are designed to replace a single device and its external resistor bias network. The BRT eliminates these individual components by integrating them into a single device. In the NSB4904DW1T1G and NSB4904DW1T2G, two complementary BRT devices are housed in the SC-88/SOT-363 package which is ideal for low power surface mount applications where board space is at a premium.

Features

- Simplifies Circuit Design
- Reduces Board Space
- Reduces Component Count
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

MAXIMUM RATINGS ($T_A = 25^{\circ}C$ unless otherwise noted, common for Q₁ and Q₂, - minus sign for Q₁ (PNP) omitted)


Rating	Symbol	Value	Unit
Collector-Base Voltage	V_{CBO}	50	Vdc
Collector-Emitter Voltage	V_{CEO}	50	Vdc
Collector Current	I _C	100	mAdc

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

ON Semiconductor®

http://onsemi.com

SC-88/SOT-363 **CASE 419B** STYLE 1

MARKING DIAGRAM

RC = Device Marking

= Date Code

= Pb-Free Package

(Note: Microdot may be in either location)

ORDERING INFORMATION

See specific ordering information in the ordering information table on page 3 of this data sheet.

1

THERMAL CHARACTERISTICS

Characteristic (One Junction Heated)	Symbol	Max	Unit
Total Device Dissipation	P _D	187 (Note 1)	mW
T _A = 25°C Derate above 25°C		256 (Note 2) 1.5 (Note 1) 2.0 (Note 2)	mW/°C
Thermal Resistance – Junction-to-Ambient	$R_{ hetaJA}$	670 (Note 1) 490 (Note 2)	°C/W
Characteristic (Both Junctions Heated)	Symbol	Max	Unit
Total Device Dissipation $T_A = 25^{\circ}C$	P _D	250 (Note 1) 385 (Note 2)	mW
Derate above 25°C		2.0 (Note 1) 3.0 (Note 2)	mW/°C
Thermal Resistance – Junction-to-Ambient	$R_{ hetaJA}$	493 (Note 1) 325 (Note 2)	°C/W
Thermal Resistance – Junction-to-Lead	$R_{ hetaJL}$	188 (Note 1) 208 (Note 2)	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

FR-4 @ Minimum Pad.
 FR-4 @ 1.0 x 1.0 inch Pad.

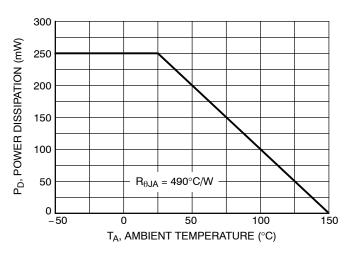
ELECTRICAL CHARACTERISTICS

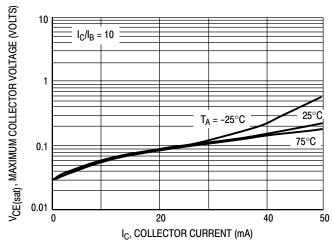
(T_A = 25°C unless otherwise noted, common for Q₁ and Q₂, – minus sign for Q₁ (PNP) omitted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	-				•
Collector-Base Cutoff Current (V _{CB} = 50 V, I _E = 0)	I _{CBO}	_	-	100	nA
Collector-Emitter Cutoff Current (V _{CE} = 50 V, I _B = 0)	I _{CEO}	_	-	500	nA
Emitter-Base Cutoff Current ($V_{EB} = 6.0 \text{ V}, I_{C} = 0$)	I _{EBO}	_	-	0.1	mA
Collector-Base Breakdown Voltage (I _C = 10 μA, I _E = 0)	V _{(BR)CBO}	50	-	-	V
Collector-Emitter Breakdown Voltage (Note 4) (I _C = 2.0 mA, I _B = 0)	V _{(BR)CEO}	50	-	-	V
ON CHARACTERISTICS (Note 4)					
DC Current Gain (V _{CE} = 10 V, I _C = 5.0 mA)	h _{FE}	80	140	-	
Collector-Emitter Saturation Voltage (I _C = 10 mA, I _B = 0.3 mA)	V _{CE(sat)}	_	-	0.25	V
Output Voltage (on) (V _{CC} = 5.0 V, V _B = 3.5 V, R _L = 1.0 k Ω)	V _{OL}	_	-	0.2	V
Output Voltage (off) (V _{CC} = 5.0 V, V _B = 0.5 V, R _L = 1.0 k Ω)	V _{OH}	4.9	-	-	V
Input Resistor	R1	32.9	47	61.1	kΩ
Resistor Ratio	R1/R2	0.8	1.0	1.2	

^{3.} New resistor combinations. Updated curves to follow in subsequent data sheets.

^{4.} Pulse Test: Pulse Width $\leq 300 \, \mu s$, Duty Cycle $\leq 2.0\%$.

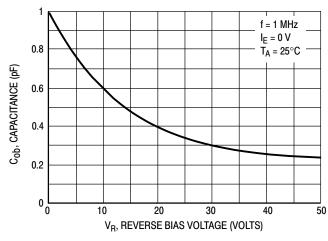



Figure 1. Derating Curve

ORDERING INFORMATION AND RESISTOR VALUES

Device	R1 (K)	R2 (K)	Package	Shipping [†]
NSB4904DW1T1G	47	47	SOT-363 (Pb-Free)	3000/Tape & Reel
NSB4904DW1T2G	47	47	SOT-363 (Pb-Free)	3000/Tape & Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.


TYPICAL ELECTRICAL CHARACTERISTICS - NSB4904DW1T1G, NSB4904DW1T2G NPN TRANSISTOR

1000 V_{CE} = 10 V : T_A = 75°C - 25°C - 25°C - 25°C | 100 |

Figure 2. $V_{CE(sat)}$ versus I_C

Figure 3. DC Current Gain

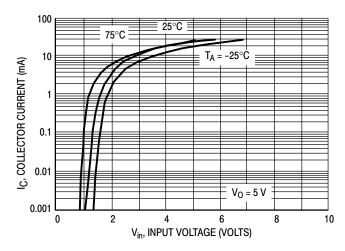


Figure 4. Output Capacitance

Figure 5. Output Current versus Input Voltage

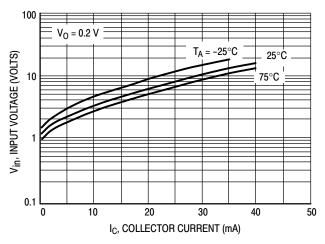


Figure 6. Input Voltage versus Output Current

TYPICAL ELECTRICAL CHARACTERISTICS - NSB4904DW1T1G, NSB4904DW1T2G PNP TRANSISTOR

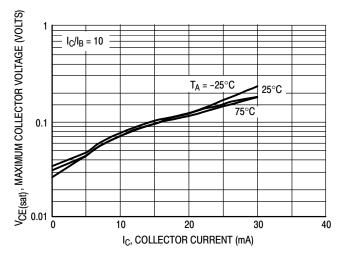


Figure 7. $V_{CE(sat)}$ versus I_C

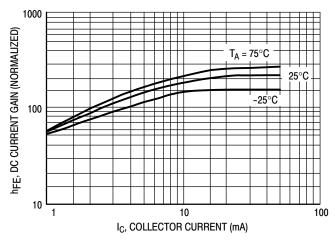


Figure 8. DC Current Gain

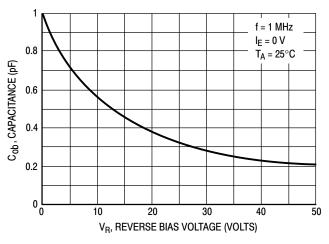


Figure 9. Output Capacitance

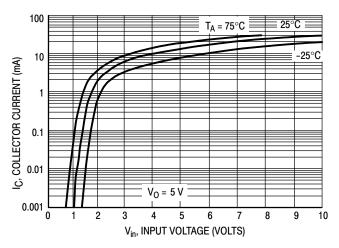


Figure 10. Output Current versus Input Voltage

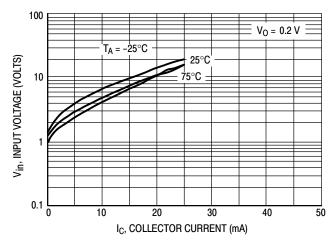
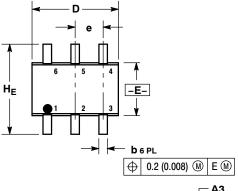
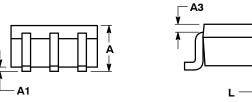




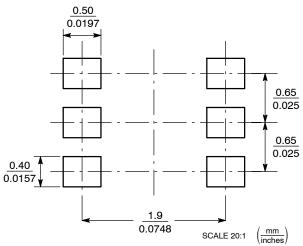
Figure 11. Input Voltage versus Output Current

PACKAGE DIMENSIONS

SC-88/SOT-363/SC70-6 CASE 419B-02 **ISSUE W**

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.
- 3. 419B-01 OBSOLETE, NEW STANDARD 419B-02.


	MILLIMETERS			INCHES			
DIM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.80	0.95	1.10	0.031	0.037	0.043	
A1	0.00	0.05	0.10	0.000	0.002	0.004	
А3		0.20 REF			0.008 REF		
b	0.10	0.21	0.30	0.004	0.008	0.012	
C	0.10	0.14	0.25	0.004	0.005	0.010	
D	1.80	2.00	2.20	0.070	0.078	0.086	
Е	1.15	1.25	1.35	0.045	0.049	0.053	
е	0.65 BSC			0	.026 BS	С	
L	0.10	0.20	0.30	0.004	0.008	0.012	
Η _Ε	2.00	2.10	2.20	0.078	0.082	0.086	

STYLE 1:

- PIN 1. EMITTER 2
 - 2. BASE 2 3. COLLECTOR 1
 - 4. EMITTER 1 5. BASE 1

 - 6. COLLECTOR 2

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative