1-to-2 Demultiplexer with 3-State Deselected Output # NL7SZ18 The NL7SZ18 is a high-performance non-inverting 1-to-2 demultiplexer operating from a 1.65 to 5.5 V supply. #### **Features** - Designed for 1.65 V to 5.5 V V_{CC} Operation - 2.5 ns t_{PD} at $V_{CC} = 5 \text{ V (Typ)}$ - Inputs/Outputs Overvoltage Tolerant up to 5.5 V - I_{OFF} Supports Partial Power Down Protection - Sink 32 mA at 5.0 V - Available in SC-88, SC-74 and UDFN6 Packages - Chip Complexity < 100 FETs - These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Pinout (Top View) ### ON Semiconductor® ### www.onsemi.com UDFN6, 1.2x1.0, 0.4P CASE 517AA-01 X, XXX = Specific Device Code M = Date Code* W = Work Week Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. #### **ORDERING INFORMATION** See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet. ### **PIN ASSIGNMENT** | Pin | Function | |-----|-----------------| | 1 | S | | 2 | GND | | 3 | A | | 4 | Y ₁ | | 5 | V _{CC} | | 6 | Y ₀ | ### **FUNCTION TABLE** | | Output | | | |---|--------|----------------|----------------| | S | Α | Y ₀ | Υ ₁ | | L | L | L | Z | | L | Н | Н | Z | | Н | L | Z | L | | Н | Н | Z | Н | ### **MAXIMUM RATINGS** | Symbol | Characteris | stics | Value | Unit | |-------------------------------------|---|---|---|------| | V _{CC} | DC Supply Voltage | | -0.5 to +6.5 | V | | V _{IN} | DC Input Voltage | | -0.5 to +6.5 | V | | V _{OUT} | DC Output Voltage | Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V) | -0.5 to V _{CC} + 0.5
-0.5 to +6.5
-0.5 to +6.5 | V | | I _{IK} | DC Input Diode Current | V _{IN} < GND | -50 | mA | | I _{OK} | DC Output Diode Current | V _{OUT} < GND | -50 | mA | | l _{out} | DC Output Source/Sink Current | | ±50 | mA | | I _{CC} or I _{GND} | DC Supply Current per Supply Pin or Groun | ±100 | mA | | | T _{STG} | Storage Temperature Range | | -65 to +150 | °C | | TL | Lead Temperature, 1 mm from Case for 10 | secs | 260 | °C | | TJ | Junction Temperature Under Bias | | +150 | °C | | $\theta_{\sf JA}$ | Thermal Resistance (Note 2) | SC-88
SC-74
UDFN6 | 659
555
382 | °C/W | | P _D | Power Dissipation in Still Air | SC-88
SC-74
UDFN6 | 190
225
327 | mW | | MSL | Moisture Sensitivity | | Level 1 | - | | F _R | Flammability Rating | Oxygen Index: 28 to 34 | UL 94 V-0 @ 0.125 in | - | | V _{ESD} | ESD Withstand Voltage (Note 3) | Human Body Model
Charged Device Model | 2000
1000 | V | | I _{Latchup} | Latchup Performance (Note 4) | | ± 100 | mA | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. - 1. Applicable to devices with outputs that may be tri-stated. - Applicable to devices with outputs that may be the stated. Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow. HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A. - 4. Tested to EIA/JESD78 Class II. ### RECOMMENDED OPERATING CONDITIONS | Symbol | Chara | Min | Max | Unit | | |---------------------------------|-----------------------------|---|-------------|-------------------------------|----| | V _{CC} | Positive DC Supply Voltage | | 1.65 | 5.5 | V | | V _{IN} | DC Input Voltage | | 0 | 5.5 | V | | V _{OUT} | DC Output Voltage | Active–Mode (High or Low State) Tri–State Mode (Note 1) Power–Down Mode ($V_{CC} = 0 \text{ V}$) | 0
0
0 | V _{CC}
5.5
5.5 | | | T _A | Operating Temperature Range | | -55 | +125 | °C | | t _r , t _f | Input Rise and Fall Time | V_{CC} = 1.65 V to 1.95 V V_{CC} = 2.3 V to 2.7 V V_{CC} = 3.0 V to 3.6 V V_{CC} = 4.5 V to 5.5 V | 0
0
0 | 20
20
10
5 | ns | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. ### DC ELECTRICAL CHARACTERISTICS | | | | V _{CC} | T, | ₄ = 25°(| 2 | -55°C ≤ T _A ≤ 125°C | | | |------------------|-----------------------------------|--|---|---|---|---|---|---|-------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Units | | V _{IH} | High-Level Input | | 1.65 to 1.95 | 0.65 V _{CC} | - | _ | 0.65 V _{CC} | _ | V | | | Voltage | | 2.3 to 5.5 | 0.70 V _{CC} | _ | - | 0.70 V _{CC} | - | | | V _{IL} | Low-Level Input | | 1.65 to 1.95 | - | _ | 0.35 V _{CC} | - | 0.35 V _{CC} | V | | | Voltage | | 2.3 to 5.5 | - | - | 0.30 V _{CC} | - | 0.30 V _{CC} | | | V _{OH} | High-Level Output
Voltage | $\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = -100 \ \mu\text{A} \\ I_{OH} = -4 \ \text{mA} \\ I_{OH} = -8 \ \text{mA} \\ I_{OH} = -16 \ \text{mA} \\ I_{OH} = -24 \ \text{mA} \\ I_{OH} = -32 \ \text{mA} \end{array}$ | 1.65 to 5.5
1.65
2.3
3
3
4.5 | V _{CC} - 0.1
1.29
1.9
2.4
2.3
3.8 | V _{CC}
1.52
2.1
2.7
2.5
4 | -
-
-
- | V _{CC} - 0.1
1.29
1.9
2.4
2.3
3.8 | -
-
-
-
- | V | | V _{OL} | Low-Level Output
Voltage | $\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = 100 \mu\text{A} \\ I_{OH} = 3 \text{ mA} \\ I_{OH} = 8 \text{ mA} \\ I_{OH} = 16 \text{ mA} \\ I_{OH} = 24 \text{ mA} \\ I_{OH} = 32 \text{ mA} \end{array}$ | 1.65 to 5.5
1.65
2.3
3
3
4.5 | -
-
-
- | -
0.08
0.12
0.24
0.26
0.31 | 0.1
0.24
0.3
0.4
0.55
0.55 | -
-
-
- | 0.1
0.24
0.3
0.4
0.55
0.55 | V | | I _{IN} | Input Leakage Current | V _{IN} = 5.5 V or GND | 1.65 to 5.5 | - | _ | ±0.1 | _ | ±1.0 | μΑ | | l _{OZ} | 3-State Output
Leakage Current | V _{OUT} = 0 V to 5.5 V | 1.65 to 5.5 | - | - | ±0.5 | _ | ±5.0 | μΑ | | I _{OFF} | Power Off Leakage
Current | V _{IN} = 5.5 V or
V _{OUT} = 5.5 V | 0 | - | - | 1.0 | _ | 10 | μΑ | | I _{CC} | Quiescent Supply
Current | V _{IN} = V _{CC} or GND | 5.5 | - | - | 1.0 | | 10 | μΑ | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. ### AC ELECTRICAL CHARACTERISTICS ($t_R = t_F = 3.0 \text{ ns}$) | | | | V _{CC} | T _A = 25°C | | -55°C ≤ T | _∆ ≤ 125°C | | | |------------------|------------------------------|---|-----------------|-----------------------|-----|-----------|----------------------|------|-------| | Symbol | Parameter | Condition | (V) | Min | Тур | Max | Min | Max | Units | | t _{PLH} | Propagation Delay, A to Y | $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ | 1.65 to 1.95 | - | 6.3 | 10.1 | _ | 10.5 | ns | | t _{PHL} | (Figures 2 and 3) | R _L = 1 MΩ, C _L = 15 pF | 2.3 to 2.7 | - | 3.6 | 5.7 | = | 6.0 | | | | | $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ | 3.0 to 3.6 | - | 2.7 | 4.0 | _ | 4.3 | | | | | R_L = 500 Ω, C_L = 50 pF | | - | 3.4 | 4.9 | _ | 5.4 | | | | | $R_L = 1 \text{ M}\Omega$, $C_L = 15 \text{ pF}$ | 4.5 to 5.5 | - | 2.0 | 3.1 | - | 3.3 | | | | | R_L = 500 Ω, C_L = 50 pF | | - | 2.5 | 3.9 | _ | 4.2 | | | t _{PZH} | Output Enable Time, | | 1.65 to 1.95 | - | 6.9 | 12 | _ | 12.5 | ns | | t _{PZL} | OE to Y
(Figures 2 and 3) | | 2.3 to 2.7 | _ | 4.2 | 6.8 | = | 7.3 | | | | | | 3.0 to 3.6 | - | 3.2 | 5.0 | _ | 5.5 | | | | | | 4.5 to 5.5 | _ | 2.5 | 4.0 | = | 4.3 | | | t _{PHZ} | Output Disable Time, | | 1.65 to 1.95 | _ | 6.0 | 10 | = | 10.5 | ns | | t _{PLZ} | OE to Y
(Figures 2 and 3) | | 2.3 to 2.7 | _ | 4.0 | 6.8 | = | 7.1 | | | | | | 3.0 to 3.6 | _ | 2.9 | 4.9 | _ | 5.3 | | | | | | 4.5 to 5.5 | | 1.8 | 3.5 | - | 3.7 | | ### $\textbf{CAPACITIVE CHARACTERISTICS} \ (t_R = t_F = 3.0 \ \text{ns})$ | Symbol | Parameter | Condition | Typical | Units | |------------------|---|--|---------|-------| | C _{IN} | Input Capacitance | V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC} | 2.5 | pF | | C _{OUT} | Output Capacitance | $V_{CC} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{CC}$ | 2.5 | pF | | C _{PD} | Power Dissipation Capacitance (Note 10) | 10 MHz, V_{CC} = 3.3 V, V_{IN} = 0 V or V_{CC}
10 MHz, V_{CC} = 5.5 V, V_{IN} = 0 V or V_{CC} | 9
11 | pF | ^{5.} C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: I_{CC(OPR)} = C_{PD} • V_{CC} • f_{in} + I_{CC}. C_{PD} is used to determine the no–load dynamic power consumption; P_D = C_{PD} • V_{CC}² • f_{in} + I_{CC} • V_{CC}. | Test | Switch
Position | C _L , pF | R_L, Ω | R ₁ , Ω | | | |-------------------------------------|---------------------|------------------------------|---------------|--------------------|--|--| | t _{PLH} / t _{PHL} | Open | See AC Characteristics Table | | | | | | t _{PLZ} / t _{PZL} | 2 x V _{CC} | - | - | - | | | | | | See AC Characteristics Table | | | | | | t _{PHZ} / t _{PZH} | GND | - | _ | - | | | | | | See AC Characteristics Table | | | | | X = Don't Care C_L includes probe and jig capacitance R_T is Z_{OUT} of pulse generator (typically 50 $\Omega)$ f = 1 MHz Figure 2. Test Circuit Figure 3. Switching Waveforms | | | V _m | | | |---------------------|---------------------|--|---|--------------------| | V _{CC} , V | V _{mi} , V | t _{PLH} , t _{PHL} | t_{PZL} , t_{PLZ} , t_{PZH} , t_{PHZ} | V _Y , V | | 1.65 to 1.95 | V _{CC} /2 | (V _{OH} – V _{OL})/2 | V _{CC} /2 | 0.15 | | 2.3 to 2.7 | V _{CC} /2 | (V _{OH} – V _{OL})/2 | V _{CC} /2 | 0.15 | | 3.0 to 3.6 | V _{CC} /2 | (V _{OH} – V _{OL})/2 | V _{CC} /2 | 0.3 | | 4.5 to 5.5 | V _{CC} /2 | (V _{OH} – V _{OL})/2 | V _{CC} /2 | 0.3 | ### **DEVICE ORDERING INFORMATION** | Device | Packages | Specific Device Code | Pin 1 Orientation
(See below) | Shipping [†] | |---------------|-------------------------|----------------------|----------------------------------|-----------------------| | NL7SZ18DFT2G | SC-88 | LD | Q4 | 3000 / Tape & Reel | | NL7SZ18DBVT1G | SC-74 | AJ | Q4 | 3000 / Tape & Reel | | NL7SZ18MUR2G | UDFN6, 1.2 x 1.0 x 0.5P | Т | Q2 | 3000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. # Pin 1 Orientation in Tape and Reel ### **Direction of Feed** ### PACKAGE DIMENSIONS ### SC-88/SC70-6/SOT-363 CASE 419B - 02 **ISSUE Y** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. 4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. 5. DATUMS A AND B ARE DETERMINED AT DATUM H. 6. DIMENSIONS D AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION D AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT. RADIUS OF THE FOOT. | | MIL | LIMETE | ERS | INCHES | | | |-----|------|---------|--------------------|--------|----------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | | | - 1 .10 | | | 0.043 | | A1 | 0.00 | | 0.10 | 0.000 | | 0.004 | | A2 | 0.70 | 0.90 | 1.00 | 0.027 | 0.035 | 0.039 | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | С | 0.08 | 0.15 | 0.22 | 0.003 | 0.006 | 0.009 | | D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 | | Е | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 | | E1 | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 | | е | | 0.65 BS | С | 0 | .026 BS | С | | L | 0.26 | 0.36 | 0.46 | 0.010 | 0.014 | 0.018 | | L2 | | 0.15 BS | C | | 0.006 BS | SC | | aaa | 0.15 | | | | 0.006 | | | bbb | 0.30 | | | 0.012 | | | | ccc | 0.10 | | | 0.004 | | | | ddd | | 0.10 | | | 0.004 | | ### **RECOMMENDED SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb - Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ### **PACKAGE DIMENSIONS** SC-74 CASE 318F-05 **ISSUE N** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. 4. 318F-01, -02, -03, -04 OBSOLETE. NEW STANDARD 318F-05. | | MILLIMETERS | | | INCHES | | | |-----|-------------|------|-------|--------|-------|---------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | 0.90 | 1.00 | 1.10 | 0.035 | 0.039 | 0.043 | | A1 | 0.01 | 0.06 | 0.10 | 0.001 | 0.002 | 0.004 | | b | 0.25 | 0.37 | 0.50 | 0.010 | 0.015 | 0.020 | | С | 0.10 | 0.18 | 0.26 | 0.004 | 0.007 | 0.010 | | D | 2.90 | 3.00 | 3.10 | 0.114 | 0.118 | 0.122 | | E | 1.30 | 1.50 | 1.70 | 0.051 | 0.059 | 0.067 | | е | 0.985 | 0.95 | 11.05 | 0.084 | 0.037 | 0.10241 | | L | 0.20 | 0.40 | 0.60 | 0.008 | 0.016 | 0.024 | | HE | 2.50 | 2.75 | 3.00 | 0.099 | 0.108 | 0.118 | | θ | | _ | | | _ | | ### **SOLDERING FOOTPRINT*** ^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. #### PACKAGE DIMENSIONS ### UDFN6, 1.2x1.0, 0.4P CASE 517AA-01 ISSUE D *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. ### **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Phone: 421 33 790 2910 Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative