# 4-Bit Transparent Latch / 4-to-16 Line Decoder The MC14514B and MC14515B are two output options of a 4 to 16 line decoder with latched inputs. The MC14514B (output active high option) presents a logical "1" at the selected output, whereas the MC14515B (output active low option) presents a logical "0" at the selected output. The latches are R-S type flip-flops which hold the last input data presented prior to the strobe transition from "1" to "0". These high and low options of a 4-bit latch / 4 to 16 line decoder are constructed with N-channel and P-channel enhancement mode devices in a single monolithic structure. The latches are R-S type flip-flops and data is admitted upon a signal incident at the strobe input, decoded, and presented at the output. These complementary circuits find primary use in decoding applications where low power dissipation and/or high noise immunity is desired. #### **Features** - Supply Voltage Range = 3.0 Vdc to 18 Vdc - Capable of Driving Two Low-power TTL Loads or One Low-power Schottky TTL Load the Rated Temperature Range - These Devices are Pb-Free and are RoHS Compliant - NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable # MAXIMUM RATINGS (Voltages Referenced to VSS) | Parameter | Symbol | Value | Unit | |---------------------------------------------------|------------------------------------|---------------------------------|------| | DC Supply Voltage Range | $V_{DD}$ | -0.5 to +18.0 | ٧ | | Input or Output Voltage Range (DC or Transient) | V <sub>in</sub> , V <sub>out</sub> | -0.5 to V <sub>DD</sub><br>+0.5 | V | | Input or Output Current (DC or Transient) per Pin | I <sub>in</sub> , I <sub>out</sub> | ±10 | mA | | Power Dissipation per Package (Note 1) | P <sub>D</sub> | 500 | mW | | Ambient Temperature Range | T <sub>A</sub> | -55 to +125 | °C | | Storage Temperature Range | T <sub>stg</sub> | -65 to +150 | °C | | Lead Temperature (8-Second Soldering) | TL | 260 | °C | Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. Temperature Derating: Plastic "P and D/DW" Packages: – 7.0 mW/°C From 65°C To 125°C This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $V_{in}$ and $V_{out}$ should be constrained to the range $V_{SS} \leq (V_{in} \text{ or } V_{out}) \leq V_{DD}.$ Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $V_{SS}$ or $V_{DD}$ ). Unused outputs must be left open. # ON Semiconductor® http://onsemi.com SOIC-24 DW SUFFIX CASE 751E #### MARKING DIAGRAM = 14 or 15 A = Assembly Location WL = Wafer Lot YY = Year WW = Work Week G = Pb-Free Package # **PIN ASSIGNMENT** #### ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 2 of this data sheet. # **BLOCK DIAGRAM** # **DECODE TRUTH TABLE** (Strobe = 1)\* | | Data Inputs | | | | Selected Output | |---------|-------------|---|---|---|------------------------------------------------------| | Inhibit | D | С | В | Α | MC14514 = Logic "1"<br>MC14515 = Logic "0" | | 0 | 0 | 0 | 0 | 0 | S0 | | 0 | 0 | 0 | 0 | 1 | S1 | | 0 | 0 | 0 | 1 | 0 | S2 | | 0 | 0 | 0 | 1 | 1 | S3 | | 0 | 0 | 1 | 0 | 0 | S4 | | 0 | 0 | 1 | 0 | 1 | S5 | | 0 | 0 | 1 | 1 | 0 | S6 | | 0 | 0 | 1 | 1 | 1 | S7 | | 0 | 1 | 0 | 0 | 0 | S8 | | 0 | 1 | 0 | 0 | 1 | S9 | | 0 | 1 | 0 | 1 | 0 | S10 | | 0 | 1 | 0 | 1 | 1 | S11 | | 0 | 1 | 1 | 0 | 0 | S12 | | 0 | 1 | 1 | 0 | 1 | S13 | | 0 | 1 | 1 | 1 | 0 | S14 | | 0 | 1 | 1 | 1 | 1 | S15 | | 1 | Х | Х | Х | Х | All Outputs = 0, MC14514<br>All Outputs = 1, MC14515 | # **ORDERING INFORMATION** | Device | Package | Shipping <sup>†</sup> | | | |-----------------|----------------------|-----------------------|--|--| | MC14514BDWR2G | SOIC-24<br>(Pb-Free) | 1000 / Tong 9 Dool | | | | NLV14514BDWR2G* | (Fb-Fiee) | 1000 / Tape & Reel | | | | MC14515BDWR2G | SOIC-24 | 1000 / Tape & Reel | | | | NLV14515BDWR2G* | (Pb-Free) | 1000 / Tape & Neel | | | <sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. X = Don't Care \*Strobe = 0, Data is latched <sup>\*</sup>NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP Capable. # **ELECTRICAL CHARACTERISTICS** (Voltages Referenced to V<sub>SS</sub>) | | | | - 5 | 5°C | | 25°C | | 125 | 5°C | | |----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|------------------------------------|----------------------|----------------------------------|-------------------------------------------|----------------------|------------------------------------|----------------------|------| | Characteristic | Symbol | V <sub>DD</sub><br>Vdc | Min | Max | Min | Typ<br>(Note 2) | Max | Min | Max | Unit | | Output Voltage "0" Le V <sub>in</sub> = V <sub>DD</sub> or 0 | | 5.0<br>10<br>15 | -<br>-<br>- | 0.05<br>0.05<br>0.05 | -<br>-<br>- | 0<br>0<br>0 | 0.05<br>0.05<br>0.05 | -<br>-<br>- | 0.05<br>0.05<br>0.05 | Vdc | | $V_{in}$ = 0 or $V_{DD}$ "1" Le | vel V <sub>OH</sub> | 5.0<br>10<br>15 | 4.95<br>9.95<br>14.95 | -<br>-<br>- | 4.95<br>9.95<br>14.95 | 5.0<br>10<br>15 | -<br>-<br>- | 4.95<br>9.95<br>14.95 | -<br>-<br>- | Vdc | | Input Voltage "0" Le<br>(V <sub>O</sub> = 4.5 or 0.5 Vdc)<br>(V <sub>O</sub> = 9.0 or 1.0 Vdc)<br>(V <sub>O</sub> = 13.5 or 1.5 Vdc) | | 5.0<br>10<br>15 | -<br>-<br>- | 1.5<br>3.0<br>4.0 | -<br>-<br>- | 2.25<br>4.50<br>6.75 | 1.5<br>3.0<br>4.0 | -<br>-<br>- | 1.5<br>3.0<br>4.0 | Vdc | | "1" Le $(V_O = 0.5 \text{ or } 4.5 \text{ Vdc})$ $(V_O = 1.0 \text{ or } 9.0 \text{ Vdc})$ $(V_O = 1.5 \text{ or } 13.5 \text{ Vdc})$ | vel V <sub>IH</sub> | 5.0<br>10<br>15 | 3.5<br>7.0<br>11 | -<br>-<br>- | 3.5<br>7.0<br>11 | 2.75<br>5.50<br>8.25 | -<br>-<br>- | 3.5<br>7.0<br>11 | _<br>_<br>_ | Vdc | | Output Drive Current | rce | 5.0<br>5.0<br>10<br>15 | - 1.2<br>- 0.25<br>- 0.62<br>- 1.8 | -<br>-<br>- | - 1.0<br>- 0.2<br>- 0.5<br>- 1.5 | - 1.7<br>- 0.36<br>- 0.9<br>- 3.5 | -<br>-<br>- | - 0.7<br>- 0.14<br>- 0.35<br>- 1.1 | | mAdc | | $(V_{OL} = 0.4 \text{ Vdc})$ (V <sub>OL</sub> = 0.5 Vdc) (V <sub>OL</sub> = 1.5 Vdc) | ink I <sub>OL</sub> | 5.0<br>10<br>15 | 0.64<br>1.6<br>4.2 | -<br>-<br>- | 0.51<br>1.3<br>3.4 | 0.88<br>2.25<br>8.8 | -<br>-<br>- | 0.36<br>0.9<br>2.4 | -<br>-<br>- | mAdc | | Input Current | I <sub>in</sub> | 15 | _ | ±0.1 | - | ±0.00001 | ±0.1 | - | ±1.0 | μAdc | | Input Capacitance (V <sub>in</sub> = 0) | C <sub>in</sub> | - | _ | - | - | 5.0 | 7.5 | _ | - | pF | | Quiescent Current (Per Packaç | le) I <sub>DD</sub> | 5.0<br>10<br>15 | | 5.0<br>10<br>20 | -<br>-<br>- | 0.005<br>0.010<br>0.015 | 5.0<br>10<br>20 | -<br>-<br>- | 150<br>300<br>600 | μAdc | | Total Supply Current (Note 3, 4<br>(Dynamic plus Quiescent,<br>Per Package)<br>(C <sub>L</sub> = 50 pF on all outputs,<br>buffers switching) | | 5.0<br>10<br>15 | | | $I_{T} = (2$ | .35 μA/kHz)<br>.70 μA/kHz)<br>.05 μA/kHz) | f + I <sub>DD</sub> | | | μAdc | Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. The formulas given are for the typical characteristics only at 25°C. To calculate total supply current at loads other than 50 pF: I<sub>T</sub>(C<sub>L</sub>) = I<sub>T</sub>(50 pF) + (C<sub>L</sub> – 50) Vfk where: I<sub>T</sub> is in μA (per package), C<sub>L</sub> in pF, V = (V<sub>DD</sub> – V<sub>SS</sub>) in volts, f in kHz is input frequency, and k = 0.002. # SWITCHING CHARACTERISTICS (Note 5) ( $C_L = 50 \text{ pF}, T_A = 25^{\circ}C$ ) | | | | All Types | | | | |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------|------------------|-----------------------|--------------------|------| | Characteristic | Symbol | V <sub>DD</sub> | Min | Typ<br>(Note 6) | Max | Unit | | Output Rise Time $t_{TLH} = (3.0 \text{ ns/pF}) \text{ C}_L + 30 \text{ ns}$ $t_{TLH} = (1.5 \text{ ns/pF}) \text{ C}_L + 15 \text{ ns}$ $t_{TLH} = (1.1 \text{ ns/pF}) \text{ C}_L + 10 \text{ ns}$ | t <sub>TLH</sub> | 5.0<br>10<br>15 | -<br>-<br>- | 180<br>90<br>65 | 360<br>180<br>130 | ns | | Output Fall Time $t_{THL} = (1.5 \text{ ns/pF}) C_L + 25 \text{ ns} \\ t_{THL} = (0.75 \text{ ns/pF}) C_L + 12.5 \text{ ns} \\ t_{THL} = (0.55 \text{ ns/pF}) C_L + 9.5 \text{ ns}$ | t <sub>THL</sub> | 5.0<br>10<br>15 | -<br>-<br>- | 100<br>50<br>40 | 200<br>100<br>80 | ns | | Propagation Delay Time; Data, Strobe to S $t_{PLH}$ , $t_{PHL}$ = (1.7 ns/pF) $C_L$ + 465 ns $t_{PLH}$ , $t_{PHL}$ = (0.86 ns/pF) $C_L$ + 192 ns $t_{PLH}$ , $t_{PHL}$ = (0.5 ns/pF) $C_L$ + 125 ns | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | 5.0<br>10<br>15 | -<br>-<br>- | 550<br>225<br>150 | 1100<br>450<br>300 | ns | | Inhibit Propagation Delay Times $t_{PLH}, t_{PHL} = (1.7 \text{ ns/pF}) C_L + 315 \text{ ns} $ $t_{PLH}, t_{PHL} = (0.66 \text{ ns/pF}) C_L + 117 \text{ ns} $ $t_{PLH}, t_{PHL} = (0.5 \text{ ns/pF}) C_L + 75 \text{ ns} $ | t <sub>PLH</sub> ,<br>t <sub>PHL</sub> | 5.0<br>10<br>15 | -<br>-<br>- | 400<br>150<br>100 | 800<br>300<br>200 | ns | | Setup Time Data to Strobe | t <sub>su</sub> | 5.0<br>10<br>15 | 250<br>100<br>75 | 125<br>50<br>38 | -<br>-<br>- | ns | | Hold Time Strobe to Data | t <sub>h</sub> | 5.0<br>10<br>15 | - 20<br>0<br>10 | - 100<br>- 40<br>- 30 | -<br>-<br>- | ns | | Strobe Pulse Width | twн | 5.0<br>10<br>15 | 350<br>100<br>75 | 175<br>50<br>38 | -<br>-<br>- | ns | - 5. The formulas given are for the typical characteristics only at 25°C. - 6. Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance. Figure 1. Drain Characteristics Test Circuit Figure 2. Dynamic Power Dissipation Test Circuit and Waveform Figure 3. Switching Time Test Circuit and Waveforms IN MC14515B ONLY #### **COMPLEX DATA ROUTING** Two MC14512 eight—channel data selectors are used here with the MC14514B four—bit latch/decoder to effect a complex data routing system. A total of 16 inputs from data registers are selected and transferred via a 3–state data bus to a data distributor for rearrangement and entry into 16 output registers. In this way sequential data can be re—routed or intermixed according to patterns determined by data select and distribution inputs. Data is placed into the routing scheme via the eight inputs on both MC14512 data selectors. One register is assigned to each input. The signals on A0, A1, and A2 choose one of eight inputs for transfer out to the 3–state data bus. A fourth signal, labelled Dis, disables one of the MC14512 selectors, assuring transfer of data from only one register. In addition to a choice of input registers, 1 thru 16, the rate of transfer of the sequential information can also be varied. That is, if the MC14512 were addressed at a rate that is eight times faster then the shift frequency of the input registers, the most significant bit (MSB) from each register could be selected for transfer to the data bus. Therefore, all of the most significant bits from all of the registers can be transferred to the data bus before the next most significant bit is presented for transfer by the input registers. Information from the 3-state bus is redistributed by the MC14514B four-bit latch/decoder. Using the four-bit address, D1 thru D4, the information on the inhibit line can be transferred to the addressed output line to the desired output registers, A thru P. This distribution of data bits to the output registers can be made in many complex patterns. For example, all of the most significant bits from the input registers can be routed into output register A, all of the next most significant bits into register B, etc. In this way horizontal, vertical, or other methods of data slicing can be implemented. # **DATA ROUTING SYSTEM** ### PACKAGE DIMENSIONS # SOIC-24 WB CASE 751E-04 ISSUE F - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. - DIMENSIONS b AND c APPLY TO THE FLAT SECTION OF THE LEAD AND ARE MEASURED - BETWEEN 0.10 AND 0.25 FROM THE LEAD TIP. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD DIMENSIONS DANDE I DO NOT INCLODE MUCH FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.15 mm PER SIDE. INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE. DIMENSIONS D AND E1 ARE - DETERMINED AT DATUM H. A1 IS DEFINED AS THE VERTICAL DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT ON THE PACKAGE BODY. | | MILLIMETERS | | | | | |-----|-------------|-------|--|--|--| | DIM | MIN | MAX | | | | | Α | 2.35 | 2.65 | | | | | A1 | 0.13 | 0.29 | | | | | b | 0.35 | 0.49 | | | | | C | 0.23 | 0.32 | | | | | D | 15.25 | 15.54 | | | | | E | 10.30 BSC | | | | | | E1 | 7.40 | 7.60 | | | | | e | 1.27 BSC | | | | | | h | 0.25 | 0.75 | | | | | L | 0.41 | 0.90 | | | | | М | 0 ° | 8 ° | | | | #### RECOMMENDED **SOLDERING FOOTPRINT\*** **DIMENSIONS: MILLIMETERS** \*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking, pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. # **PUBLICATION ORDERING INFORMATION** # LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative