Preferred Device

Triacs

Silicon Bidirectional Thyristors

Designed primarily for full-wave ac control applications, such as lighting systems, heater controls, motor controls and power supplies; or wherever full-wave silicon-gate-controlled devices are needed.

- Off-State Voltages to 800 Volts
- All Diffused and Glass Passivated Junctions for Parameter Uniformity and Stability
- Small, Rugged Thermowatt Construction for Thermal Resistance and High Heat Dissipation
- Gate Triggering Guaranteed in Four Modes
- N Indicates UL Registered File #E69369
- Device Marking: Logo, Device Type, e.g., MAC223A6FP, Date Code

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage ⁽¹⁾ (T _J = -40 to +125°C, Sine Wave 50 to 60 Hz, Gate Open)	V _{DRM} , V _{RRM}		Volts
MAC223A6FP MAC223A8FP MAC223A10FP		400 600 800	(5)
On-State RMS Current (T _C = +80°C) ⁽²⁾ Full Cycle Sine Wave 50 to 60 Hz	I _{T(RMS)}	25	Amps
Peak Non-repetitive Surge Current (One Full Cycle, 60 Hz, T _C = 80°C) Preceded and followed by rated current	I _{TSM}	250	Amps
Circuit Fusing (t = 8.3 ms)	l ² t	260	A ² s
Peak Gate Power (t \leq 2 µsec; T _C = +80°C)	Р _{GМ}	20	Watts
Average Gate Power (t = 8.3 ms; T _C = +80°C)	P _{G(AV)}	0.5	Watt
Peak Gate Current (t \leq 2 µsec; T _C = +80°C)	I _{GM}	2.0	Amps
Peak Gate Voltage (t \leq 2 µsec; T _C = +80°C)	V _{GM}	±10	Volts
RMS Isolation Voltage ($T_A = 25^{\circ}C$, Relative Humidity $\leq 20\%$) (93)	V _(ISO)	1500	Volts
Operating Junction Temperature	TJ	-40 to +125	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque	_	8.0	in. lb.

⁽¹⁾ V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

ON Semiconductor

http://onsemi.com

ISOLATED TRIAC (9\) 25 AMPERES RMS 400 thru 800 VOLTS

ISOLATED TO-220 Full Pack CASE 221C STYLE 3

PIN ASSIGNMENT				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			

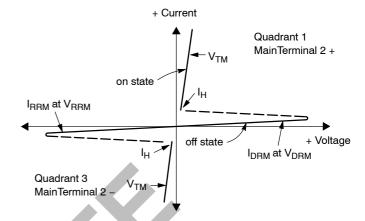
ORDERING INFORMATION

Device	Package	Shipping
MAC223A6FP	ISOLATED TO220FP	500/Box
MAC223A8FP	ISOLATED TO220FP	500/Box
MAC223A10FP	ISOLATED TO220FP	500/Box

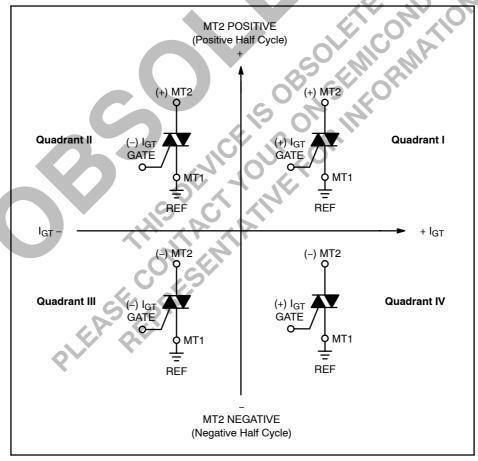
Preferred devices are recommended choices for future use and best overall value.

⁽²⁾ The case temperature reference point for all T_C measurements is a point on the center lead of the package as close as possible to the plastic body.

THERMAL CHARACTERISTICS


Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.2	°C/W
Thermal Resistance, Case to Sink	$R_{\theta CS}$	2.2	°C/W
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	60	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 10 Seconds	TL	260	°C

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)


Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
$ \begin{array}{ll} \mbox{Peak Repetitive Blocking Current} & T_{J} = 25^{\circ}\mbox{C} \\ \mbox{(V_{D} = Rated V_{DRM}, V_{RRM}; Gate Open)} & T_{J} = 125^{\circ}\mbox{C} \\ \end{array} $	I _{DRM} , I _{RRM}	_ _	_	10 2.0	μA mA
ON CHARACTERISTICS					
Peak On-State Voltage ($I_{TM} = \pm 35$ A Peak, Pulse Width ≤ 2 ms; Duty Cycle $\leq 2\%$)	V _{TM}	_	1.4	1.85	Volts
Gate Trigger Current (Continuous dc) $ (V_D=12\ V,\ R_L=100\ \Omega) \\ MT2(+),\ G(+);\ MT2(-),\ G(-);\ MT2(+),\ G(-) \\ MT2(-),\ G(+) $	lgт		20 30	50 75	mA
Gate Trigger Voltage (Continuous dc) $ (V_D = 12 \ V, \ R_L = 100 \ \Omega) \\ MT2(+), \ G(+); \ MT2(-), \ G(-); \ MT2(+), \ G(-) \\ MT2(-), \ G(+) $	V _{GT}		1.1 1.3	2.0 2.5	Volts
Gate Non-trigger Voltage (V_D = 12 V, T_J = 125°C, R_L = 100 Ω) All Quadrants	V _{GD}	0.2	0.4	1	Volts
Holding Current (V _D = 12 Vdc, Gate Open, Initiating Current = ±200 mA)	Ι	_	10	50	mA
Gate Controlled Turn-On Time (V _D = Rated V _{DRM} , I _{TM} = 35 A Peak, I _G = 200 mA)	t _{gt}	_	1.5	_	μs
YNAMIC CHARACTERISTICS					
Critical Rate of Rise of Off–State Voltage $(V_D = Rated V_{DRM}, Exponential Waveform, T_C = 125°C)$	dv/dt	=	40	=	V/μs
Critical Rate of Rise of Commutation Voltage (V_D = Rated V_{DRM} , I_{TM} = 35 A Peak, Commutating di/dt = 12.6 A/ms, Gate Unenergized, T_C = 80°C)	dv/dt(c)		5.0	_	V/μs
di/dt = 12.6 A/ms, Gate Unenergized, T _C = 80°C)					

Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol	Parameter
V _{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.

With in-phase signals (using standard AC lines) quadrants I and III are used.

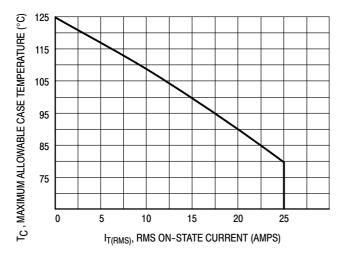


Figure 1. RMS Current Derating

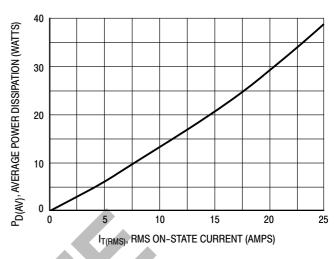


Figure 2. On-State Power Dissipation

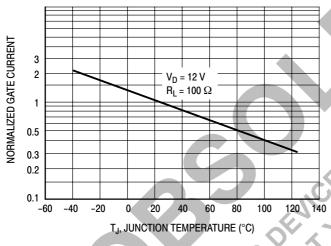


Figure 3. Typical Gate Trigger Current

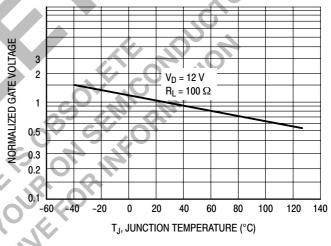


Figure 4. Typical Gate Trigger Voltage

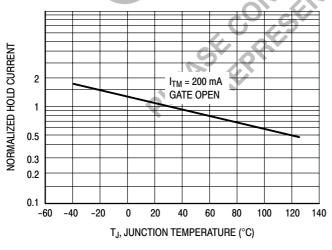


Figure 5. Typical Hold Current

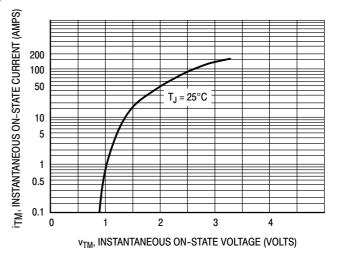
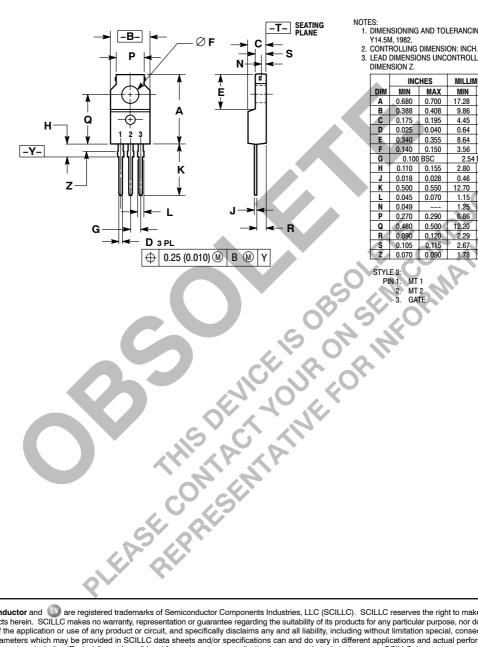



Figure 6. Typical On-State Characteristics

PACKAGE DIMENSIONS

ISOLATED TO-220 Full Pack

CASE 221C-02 **ISSUE C**

NOTES

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
 3. LEAD DIMENSIONS UNCONTROLLED WITHIN DIMENSION Z.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.680	0.700	17.28	17.78	
В	0.388	0.408	9.86	10.36	
C	0.175	0.195	4.45	4.95	
D	0.025	0.040	0.64	1.01	
E	0.340	0.355	8.64	9.01	
F	0.140	0.150	3.56	3.81	
G	0.100 BSC		2.54 BSC		
H	0.110	0.155	2.80	3.93	
J	0.018	0.028	0.46	0.71	
K	0.500	0.550	12.70	13.97	
L	0.045	0.070	1.15	1.77	
N	0.049		1.25	J	
P	0.270	0.290	6.86	7.36	
Q	0.480	0.500	12.20	12.70	
R	0.090	0.120	2.29	3.04	
S	0.105	0.115	2.67	2.92	
7	0.070	0.090	1.78	2 28	

ON Semiconductor and un are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice on semiconductor and are registered trademarks of semiconductor components intusties, text (Scilled). Solicited reserves the right to make a relargest without further notice to any products herein. Scilled makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

MAC223A6FP/D