Power MOSFET, Dual P-Channel -40 V, -20 A, 12.5 m Ω #### **Features** - Small Footprint (5x6 mm) for Compact Design - Low R_{DS(on)} to Minimize Conduction Losses - Low QG and Capacitance to Minimize Driver Losses - Wettable Flanks for Enhanced Optical Inspection - AEC-Q101 Qualified and PPAP Capable - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant # MAXIMUM RATINGS (T_J = 25°C unless otherwise noted) | Parameter | | Symbol | Value | Unit | | | |---|-----------------|------------------------|----------------------|-------|----|--| | Drain-to-Source Voltage | | VDSS | -40 | V | | | | Gate-to-Source Voltage | | | Vgs | ±16 | V | | | Continuous Drain | | T _C = 25°C | | -60.8 | _ | | | Current R _{θJC} (Notes 1, 3) | Steady
State | T _C = 100°C | I _D | -43.0 | Α | | | Power Dissipation R _{θJC} (Note 1) | | T _C = 25°C | _ | 75 | | | | | | T _C = 100°C | P _D | 37.5 | W | | | Continuous Drain
Current R _{θJA} (Notes
1, 2, 3) | Steady
State | T _C = 25°C | | -12.2 | | | | | | T _C = 100°C | l _D | -8.6 | Α | | | Power Dissipation R _{θJA} (Notes 1 & 2) | | T _C = 25°C | _ | 3.0 | W | | | | | T _C = 100°C | P _D | 1.5 | | | | Pulsed Drain Current $T_C = 25^{\circ}C, t_p = 10 \mu s$ | | | Ірм | -281 | А | | | Operating Junction and Storage Temperature | | | TJ, Tstg -55 to +175 | | °C | | | Source Current (Body Diode) | | | I _S | -20 | Α | | | Single Pulse Drain-to-Source Avalanche Energy (IL(pk) = -19) | | | Eas | 90 | mJ | | | Lead Temperature for Soldering Purposes (1/83 from case for 10 s) | | | T _L | 260 | °C | | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### THERMAL RESISTANCE MAXIMUM RATINGS | Parameter | Symbol | Value | Unit | |---|-----------------|-------|------| | Junction-to-Case - Steady State | $R_{ heta JC}$ | 2 | °C/W | | Junction-to-Ambient - Steady State (Note 2) | $R_{\theta JA}$ | 50 | °C/W | - The entire application environment impacts the thermal resistance values shown, they are not constants and are only valid for the particular conditions noted. - 2. Surface–mounted on FR4 board using a 650 mm², 2 oz. Cu pad. - 3. Maximum current for pulses as long as 1 second is higher but is dependent on pulse duration and duty cycle. ## ON Semiconductor® #### www.onsemi.com | V _{(BR)DSS} | R _{DS(ON)} MAX | I _D MAX | |----------------------|-------------------------|--------------------| | -40 V | 12.5 mΩ @ –10 V | –20 A | | | 19.5 mΩ @ –4.5 V | | #### **ORDERING INFORMATION** See detailed ordering, marking and shipping information on page 3 of this data sheet. # **ELECTRICAL CHARACTERISTICS** (T_J = 25°C unless otherwise noted) | Parameter | Symbol | Test Condition | | Min | Тур | Max | Unit | |--|--|---|------------------------|----------|-------|----------|----------| | Off Characteristics | • | | | | | • | • | | Drain to Source Breakdown Voltage | V(BR)DSS | $V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$ | | -40 | | | ٧ | | Drain-to-Source Breakdown Voltage
Temperature Coefficient | V(BR)DSS/ T _J | | | | 21 | | mV/°C | | Zero Gate Voltage Drain Current | IDSS | V _{GS} = 0 V, V _{DS} = -40 V | T _J = 25°C | | | -1 | μΑ | | | | | T _J = 175°C | | | -1 | mA | | Zero Gate Voltage Drain Current | Igss | $V_{DS} = 0 \text{ V}, V_{GS} = \pm 16 \text{ V}$ | | | | ±100 | nA | | On Characteristics (Note 4) | | | | | U. | I. | | | Gate Threshold Voltage | VGS(TH) | $V_{GS} = V_{DS}, I_D = -250 \mu A$ | | -1 | -1.8 | -3 | ٧ | | Threshold Temperature Coefficient | VGS(TH)/TJ | | | | -5.5 | | mV/°C | | Drain-to-Source On Resistance | RDS(on) | V _{GS} = -10 V | I _D = -20 A | | 10.4 | 12.5 | mΩ | | | | V _{GS} = -4.5 V | I _D = -10 A | | 14.6 | 19.5 | | | Charges, Capacitances & Gate Resis | stance | | | <u> </u> | 1 | <u> </u> | <u> </u> | | Input Capacitance | Ciss | V _{GS} = 0 V, f = 1 MHz, V _{DS} = -20 V | | | 2370 | | pF | | Output Capacitance | Coss | | | | 940 | | pF | | Reverse Transfer Capacitance | Crss |] | | | 40 | | pF | | Gate Resistance | R _g | V _{GS} = 0.5 V, f = 1 MHz | | | 17 | | Ω | | Total Gate Charge | QG(TOT) | $V_{GS} = -10 \text{ V}, V_{DS} = -32 \text{ V}; I_D = -20 \text{ A}$ | | | 33 | | nC | | | | $V_{GS} = -4.5V$, $V_{DS} = -32 V$; $I_D = -20 A$ | | | 13 | | | | Threshold Gate Charge | Qg(th) | V _{GS} = 0 to −1 V | | | 2 | | | | Gate to Source Gate Charge | Qgs | V _{DD} = -20 V, I _D = -20 A | | | 7 | | | | Gate to Drain "Miller" Charge | Qgd | | | | 4 | | | | Plateau Voltage | VGP | | | | -4 | | V | | Switching Characteristics | • | | | | • | | • | | Turn-On Delay Time | td(ON) | $V_{DD} = -20 \text{ V}, I_{D} = -20 \text{ A}, V_{GS} = -10 \text{ V},$ $R_{GEN} = 6 \Omega$ | | | 8 | | ns | | Turn-On Rise Time | t _r | | | | 21 | | ns | | Turn-Off Delay Time | td(OFF) | | | | 120 | | ns | | Turn-Off Fall Time | t _f | | | | 34 | | ns | | Drain-Source Diode Characteristics | | | | | | | • | | Source to Drain Diode Voltage | VsD I _{SD} = -20 A, V _{GS} = 0 V | | = 0 V | | -0.9 | -1.25 | V | | | | I _{SD} = -10 A, V _{GS} | = 0 V | | -0.83 | -1.2 | V | | Reverse Recovery Time | TRR | $V_{GS} = 0 \text{ V}, dI_{SD}/dt = 100 \text{ A/us}, I_{S} = -20 \text{ A}$ | | | 46 | | ns | | Charge Time | t _a | | | | 22 | | 1 | | Discharge Time | t _b | | | | 24 | | 1 | | Reverse Recovery Charge | Qrr | | | | 37 | | nC | Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions. 4. Pulse Test: pulse width $\leq 300~\mu s$, duty cycle $\leq 2\%$ 5. Switching characteristics are independent of operating junction temperatures. # **ORDERING INFORMATION** | Device | Device Marking | Package | Shipping [†] | |----------------|----------------|---|-----------------------| | FDWS9520L-F085 | FDWS9520L | PQFN8 5x6, 12.7P
(Pb–Free, Halogen Free) | 3,000 / Tape & Reel | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D #### TYPICAL CHARACTERISTICS Figure 1. Normalized Power Dissipation vs. Case Temperature Figure 2. Maximum Continuous Drain Current vs. Case Temperature Figure 3. Normalized Maximum Transient Thermal Impedance Figure 4. Peak Current Capability #### TYPICAL CHARACTERISTICS Figure 5. Forward Bias Safe Operating Area Note: Refer to ON Semiconductor Application Notes AN7514 and AN7515 Figure 6. Unclamped Inductive Switching Capability Figure 7. Transfer Characteristics Figure 8. Forward Diode Characteristics Figure 9. Saturation Characteristics Figure 10. Normalized R_{DS(ON)} vs. Drain Current ## **TYPICAL CHARACTERISTICS** 1.8 ID = -20 A VGS = -10 V Figure 12. Normalized R_{DS(on)} vs. Junction Temperature Figure 13. Normalized Gate Threshold Voltage vs. Temperature Figure 14. Normalized Drain-to-Source Breakdown Voltage vs. Junction Temperature Figure 15. Capacitance vs. Drain-to-Source Voltage Figure 16. Gate Charge vs. Gate-to-Source Voltage #### PACKAGE DIMENSIONS ## PQFN8 5X6, 1.27P CASE 483BL ISSUE O ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor dates sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify a # **PUBLICATION ORDERING INFORMATION** #### LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative